From 0c7d36a77ee678198042e95a46bb460148500bb4 Mon Sep 17 00:00:00 2001 From: Frank Adams <33405607+thedalles77@users.noreply.github.com> Date: Mon, 26 Dec 2022 12:44:08 -0800 Subject: [PATCH] Add files via upload --- Example_Touchpads/KB_TP_Stream_mode.ino | 960 ++++++++++++++++++++++++ 1 file changed, 960 insertions(+) create mode 100644 Example_Touchpads/KB_TP_Stream_mode.ino diff --git a/Example_Touchpads/KB_TP_Stream_mode.ino b/Example_Touchpads/KB_TP_Stream_mode.ino new file mode 100644 index 0000000..b310a8b --- /dev/null +++ b/Example_Touchpads/KB_TP_Stream_mode.ino @@ -0,0 +1,960 @@ +/* Copyright 2022 Frank Adams + Licensed under the Apache License, Version 2.0 (the "License"); + you may not use this file except in compliance with the License. + You may obtain a copy of the License at + http://www.apache.org/licenses/LICENSE-2.0 + Unless required by applicable law or agreed to in writing, software + distributed under the License is distributed on an "AS IS" BASIS, + WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. + See the License for the specific language governing permissions and + limitations under the License. +*/ +// This software creates a USB keyboard and touchpad. +// The touchpad is PS/2 and the code uses "stream mode" instead of "remote mode". +// +// define the pins on the Teensy used for the touchpad ps2 bus +#define TP_DATA 11 // Touchpad ps/2 data connected to Teensy I/O pin +#define TP_CLK 12 // Touchpad ps/2 clock connected to Teensy I/O pin +#define CAPS_LOCK_N 8 // driven low to turn on the CAPS LED +#define NUM_LOCK_N 13 // driven low to turn on the NUM LED (Note the LED on the Teensy 3.2 is also connected to this I/O and has opposite polarity) +// +#define MODIFIERKEY_FN 0x8f // give the Fn key a HID code so it can be handled like any other key +// +const byte rows_max = 15; // sets the number of rows in the keyboard matrix +const byte cols_max = 8; // sets the number of columns in the keyboard matrix +// +// Load the normal key matrix with the Teensyduino key names described at www.pjrc.com/teensy/td_keyboard.html +// A zero indicates no normal key at that location. +// +int normal[rows_max][cols_max] = { + {KEY_END,KEY_RIGHT,0,KEY_PRINTSCREEN,KEY_DELETE,KEY_HOME,KEY_PAGE_UP,KEY_PAGE_DOWN}, + {KEY_QUOTE,KEY_ENTER,KEY_PAUSE,0,KEY_EQUAL,KEY_BACKSPACE,KEY_RIGHT_BRACE,KEY_BACKSLASH}, + {KEY_SLASH,KEY_UP,KEY_MINUS,KEY_F12,KEY_0,KEY_P,KEY_LEFT_BRACE,KEY_SEMICOLON}, + {0,0,0,0,0,0,0,0}, + {0,0,KEY_F8,KEY_F9,0,0,KEY_MENU,KEY_LEFT}, + {KEY_COMMA,KEY_INSERT,KEY_F7,KEY_F6,KEY_F5,KEY_8,KEY_I,KEY_K}, + {0,0,0,0,0,0,0,0}, + {KEY_PERIOD,KEY_DOWN,0,KEY_F11,KEY_F10,KEY_9,KEY_O,KEY_L}, + {KEY_M,KEY_N,KEY_H,KEY_Y,KEY_6,KEY_7,KEY_U,KEY_J}, + {KEY_V,KEY_B,KEY_G,KEY_T,KEY_5,KEY_4,KEY_R,KEY_F}, + {KEY_X,KEY_Z,KEY_F2,KEY_F1,KEY_ESC,KEY_2,KEY_W,KEY_S}, + {KEY_C,KEY_SPACE,KEY_F3,KEY_F4,KEY_CAPS_LOCK,KEY_3,KEY_E,KEY_D}, + {0,0,0,0,0,0,0,0}, + {0,0,0,KEY_TAB,KEY_TILDE,KEY_1,KEY_Q,KEY_A}, + {0,0,0,0,0,0,0,0} +}; +// Load the numlock key matrix with key names at the correct row-column location. +// This matrix is the same as the normal matrix except for the number pad keys +// A zero indicates no numlock key at that location. +int numlock[rows_max][cols_max] = { + {KEY_END,KEY_RIGHT,0,KEY_PRINTSCREEN,KEY_DELETE,KEY_HOME,KEY_PAGE_UP,KEY_PAGE_DOWN}, + {KEY_QUOTE,KEY_ENTER,KEY_PAUSE,0,KEY_EQUAL,KEY_BACKSPACE,KEY_RIGHT_BRACE,KEY_BACKSLASH}, + {KEYPAD_SLASH,KEY_UP,KEY_MINUS,KEY_F12,KEYPAD_ASTERIX,KEYPAD_MINUS,KEY_LEFT_BRACE,KEYPAD_PLUS}, + {0,0,0,0,0,0,0,0}, + {0,0,KEY_F8,KEY_F9,0,0,KEY_MENU,KEY_LEFT}, + {KEY_COMMA,KEY_INSERT,KEY_F7,KEY_F6,KEY_F5,KEYPAD_8,KEYPAD_5,KEYPAD_2}, + {0,0,0,0,0,0,0,0}, + {KEYPAD_PERIOD,KEY_DOWN,0,KEY_F11,KEY_F10,KEYPAD_9,KEYPAD_6,KEYPAD_3}, + {KEYPAD_0,KEY_N,KEY_H,KEY_Y,KEY_6,KEYPAD_7,KEYPAD_4,KEYPAD_1}, + {KEY_V,KEY_B,KEY_G,KEY_T,KEY_5,KEY_4,KEY_R,KEY_F}, + {KEY_X,KEY_Z,KEY_F2,KEY_F1,KEY_ESC,KEY_2,KEY_W,KEY_S}, + {KEY_C,KEY_SPACE,KEY_F3,KEY_F4,KEY_CAPS_LOCK,KEY_3,KEY_E,KEY_D}, + {0,0,0,0,0,0,0,0}, + {0,0,0,KEY_TAB,KEY_TILDE,KEY_1,KEY_Q,KEY_A}, + {0,0,0,0,0,0,0,0} +}; +// Load the modifier key matrix with key names at the correct row-column location. +// A zero indicates no modifier key at that location. +int modifier[rows_max][cols_max] = { + {0,0,0,0,0,0,0,0}, + {0,0,0,0,0,0,0,0}, + {0,0,0,0,0,0,0,0}, + {0,MODIFIERKEY_LEFT_CTRL,0,0,MODIFIERKEY_RIGHT_CTRL,0,0,0}, + {0,0,0,0,0,0,0,0}, + {0,0,0,0,0,0,0,0}, + {MODIFIERKEY_RIGHT_SHIFT,MODIFIERKEY_LEFT_SHIFT,0,0,0,0,0,0}, + {0,0,0,0,0,0,0,0}, + {0,0,0,0,0,0,0,0}, + {0,0,0,0,0,0,0,0}, + {0,0,0,0,0,0,0,0}, + {0,0,0,0,0,0,0,0}, + {MODIFIERKEY_RIGHT_ALT,MODIFIERKEY_LEFT_ALT,0,0,0,0,0,0}, + {0,0,MODIFIERKEY_FN,0,0,0,0,0}, + {0,MODIFIERKEY_GUI,0,0,0,0,0,0} +}; +// Load the media key matrix with Fn key names at the correct row-column location. +// A zero indicates no media key at that location. +int media[rows_max][cols_max] = { + {0,0,0,0,KEY_SCROLL_LOCK,0,0,0}, + {0,0,0,0,0,0,0,0}, + {0,0,0,0,0,0,0,0}, + {0,0,0,0,0,0,0,0}, + {0,0,0,0,0,0,0,0}, + {0,KEY_NUM_LOCK,0,0,0,0,0,0}, + {0,0,0,0,0,0,0,0}, + {0,0,0,0,KEY_MEDIA_MUTE,0,0,0}, + {0,0,0,0,0,0,0,0}, + {0,0,0,0,0,0,0,0}, + {0,0,0,0,0,0,0,0}, + {0,0,KEY_MEDIA_VOLUME_DEC,KEY_MEDIA_VOLUME_INC,0,0,0,0}, + {0,0,0,0,0,0,0,0}, + {0,0,0,0,0,0,0,0}, + {0,0,0,0,0,0,0,0} +}; +// Initialize the old_key matrix with one's (no keys pressed). +// 1 = key not pressed, 0 = key is pressed +boolean old_key[rows_max][cols_max] = { + {1,1,1,1,1,1,1,1}, + {1,1,1,1,1,1,1,1}, + {1,1,1,1,1,1,1,1}, + {1,1,1,1,1,1,1,1}, + {1,1,1,1,1,1,1,1}, + {1,1,1,1,1,1,1,1}, + {1,1,1,1,1,1,1,1}, + {1,1,1,1,1,1,1,1}, + {1,1,1,1,1,1,1,1}, + {1,1,1,1,1,1,1,1}, + {1,1,1,1,1,1,1,1}, + {1,1,1,1,1,1,1,1}, + {1,1,1,1,1,1,1,1}, + {1,1,1,1,1,1,1,1}, + {1,1,1,1,1,1,1,1} +}; +// +// Define the Teensy 3.2 I/O numbers that are connected to the keyboard FPC connector pins +// Row FPC pin # 09,10,11,12,13,14,15,16,17,18,19,20,21,22,23 +// Teensy I/O # 18,33,19,20,21,22,23,24,25,26,27,28,07,06,05 +int Row_IO[rows_max] = {18,33,19,20,21,22,23,24,25,26,27,28,7,6,5}; // Teensy 3.2 I/O numbers for rows 0 thru 14 +// +// Column FPC pin # 01,02,03,04,05,06,07,08 +// Teensy I/O # 14,29,15,30,16,31,17,32 +int Col_IO[cols_max] = {14,29,15,30,16,31,17,32}; // Teensy 3.2 I/O numbers for columns 0 thru 7 +// +// Declare global variables that will be used by functions +// +boolean slots_full = LOW; // Goes high when USB slots 1 thru 6 contain normal keys +boolean touchpad_error = LOW; // set high if the touchpad fails to give the correct power-up response +char mstat; // touchpad status 8 bit register = Y overflow, X overflow, Y sign bit, X sign bit, Always 1, Middle Btn, Right Btn, Left Btn +char mx; // touchpad x movement = 8 data bits. The sign bit is in the status register to + // make a 9 bit 2's complement value. Left to right on the touchpad gives a positive value. +char my; // touchpad y movement also 8 bits plus sign bit in status reg. Touchpad movement away from the user gives a positive value. +// +// slot 1 thru slot 6 hold the normal key values to be sent over USB. +int slot1 = 0; //value of 0 means the slot is empty and can be used. +int slot2 = 0; +int slot3 = 0; +int slot4 = 0; +int slot5 = 0; +int slot6 = 0; +// +int mod_shift_l = 0; // These variables are sent over USB as modifier keys. +int mod_shift_r = 0; // Each is either set to 0 or MODIFIER_ ... +int mod_ctrl_l = 0; +int mod_ctrl_r = 0; +int mod_alt_l = 0; +int mod_alt_r = 0; +int mod_gui = 0; +// +// ********************Common Functions********************************************** +// +// Function to set a pin to high impedance (acts like open drain output) +void go_z(int pin) +{ + pinMode(pin, INPUT); + digitalWrite(pin, HIGH); +} +// +// Function to set a pin as an input with a pullup +void go_pu(int pin) +{ + pinMode(pin, INPUT_PULLUP); + digitalWrite(pin, HIGH); +} +// +// Function to send a pin to a logic low +void go_0(int pin) +{ + pinMode(pin, OUTPUT); + digitalWrite(pin, LOW); +} +// +// Function to send a pin to a logic high +void go_1(int pin) +{ + pinMode(pin, OUTPUT); + digitalWrite(pin, HIGH); +} +// +// ********************Functions for keyboard scanning******************************* +// +// Function to load the key name into the first available slot +void load_slot(int key) { + if (!slot1) { // check if slot 1 is empty + slot1 = key; // and load it with the key name + } + else if (!slot2) { // otherwise go thru all the other slots looking for an empty to load + slot2 = key; + } + else if (!slot3) { + slot3 = key; + } + else if (!slot4) { + slot4 = key; + } + else if (!slot5) { + slot5 = key; + } + else if (!slot6) { + slot6 = key; + } + if (!slot1 || !slot2 || !slot3 || !slot4 || !slot5 || !slot6) { // are any slots empty? + slots_full = LOW; // slots are not full + } + else { + slots_full = HIGH; // slots are full + } +} +// +// Function to clear the slot that contains the key name +void clear_slot(int key) { + if (slot1 == key) { // check if slot 1 contains the key that needs to be cleared + slot1 = 0; // and clear it + } + else if (slot2 == key) { // otherwise keep checking the other slots for a match + slot2 = 0; + } + else if (slot3 == key) { + slot3 = 0; + } + else if (slot4 == key) { + slot4 = 0; + } + else if (slot5 == key) { + slot5 = 0; + } + else if (slot6 == key) { + slot6 = 0; + } + if (!slot1 || !slot2 || !slot3 || !slot4 || !slot5 || !slot6) { // are any slots empty? + slots_full = LOW; // slots are not full + } + else { + slots_full = HIGH; // slots are full + } +} +// +// Function to load the modifier key name into the appropriate mod variable +void load_mod(int m_key) { + if (m_key == MODIFIERKEY_LEFT_SHIFT) { // Figure out which modifier key was pushed + mod_shift_l = m_key; // and load it into 1 of 7 possible variables + } + else if (m_key == MODIFIERKEY_RIGHT_SHIFT) { + mod_shift_r = m_key; + } + else if (m_key == MODIFIERKEY_LEFT_CTRL) { + mod_ctrl_l = m_key; + } + else if (m_key == MODIFIERKEY_RIGHT_CTRL) { + mod_ctrl_r = m_key; + } + else if (m_key == MODIFIERKEY_LEFT_ALT) { + mod_alt_l = m_key; + } + else if (m_key == MODIFIERKEY_RIGHT_ALT) { + mod_alt_r = m_key; + } + else if (m_key == MODIFIERKEY_GUI) { + mod_gui = m_key; + } +} +// +// Function to load 0 into the appropriate mod variable +void clear_mod(int m_key) { + if (m_key == MODIFIERKEY_LEFT_SHIFT) { // Figure out which modifier key was released + mod_shift_l = 0; // and clear the matching variable + } + else if (m_key == MODIFIERKEY_RIGHT_SHIFT) { + mod_shift_r = 0; + } + else if (m_key == MODIFIERKEY_LEFT_CTRL) { + mod_ctrl_l = 0; + } + else if (m_key == MODIFIERKEY_RIGHT_CTRL) { + mod_ctrl_r = 0; + } + else if (m_key == MODIFIERKEY_LEFT_ALT) { + mod_alt_l = 0; + } + else if (m_key == MODIFIERKEY_RIGHT_ALT) { + mod_alt_r = 0; + } + else if (m_key == MODIFIERKEY_GUI) { + mod_gui = 0; + } +} +// +// Function to send the modifier keys over usb +void send_mod() { + Keyboard.set_modifier(mod_shift_l | mod_shift_r | mod_ctrl_l | mod_ctrl_r | mod_alt_l | mod_alt_r | mod_gui); + Keyboard.send_now(); // sends all modifier values including the one that just changed (and all normal slots) +} +// +// Function to send the normal keys in the 6 slots over usb +void send_normals() { + Keyboard.set_key1(slot1); // load each slot into the cooresponding key number + Keyboard.set_key2(slot2); + Keyboard.set_key3(slot3); + Keyboard.set_key4(slot4); + Keyboard.set_key5(slot5); + Keyboard.set_key6(slot6); + Keyboard.send_now(); // sends all slots including the one that just changed (and all modifier values) +} +// +// *****************Functions for Touchpad*************************** +// +// Function to send the touchpad a byte of data (command) +// +void tp_write(char send_data) +{ + unsigned int timeout = 200; // break out of loop if watchdog over this value in msec + elapsedMillis watchdog; // zero the watchdog timer clock + char odd_parity = 0; // clear parity bit count +// Enable the PS/2 bus by floating the clock and data + go_pu(TP_CLK); // + go_pu(TP_DATA); // + delayMicroseconds(250); // wait before requesting the bus + go_0(TP_CLK); // Send the Clock line low to request to transmit data + delayMicroseconds(100); // wait for 100 microseconds per bus spec + go_0(TP_DATA); // Send the Data line low (the start bit) + delayMicroseconds(1); // + go_pu(TP_CLK); // Release the Clock line so it is pulled high + delayMicroseconds(1); // give some time to let the clock line go high + while (digitalRead(TP_CLK) == HIGH) { // loop until the clock goes low + if (watchdog >= timeout) { //check for infinite loop because tp did not respond + touchpad_error = HIGH; + break; // break out of infinite loop + } + } +// send the 8 bits of send_data + for (int j=0; j<8; j++) { + if (send_data & 1) { //check if lsb is set + go_pu(TP_DATA); // send a 1 to TP + odd_parity = odd_parity + 1; // keep running total of 1's sent + } + else { + go_0(TP_DATA); // send a 0 to TP + } + delayMicroseconds(1); // delay to let the clock settle out + while (digitalRead(TP_CLK) == LOW) { // loop until the clock goes high + if (watchdog >= timeout) { //check for infinite loop + touchpad_error = HIGH; + break; // break out of infinite loop + } + } + delayMicroseconds(1); // delay to let the clock settle out + while (digitalRead(TP_CLK) == HIGH) { // loop until the clock goes low + if (watchdog >= timeout) { //check for infinite loop + touchpad_error = HIGH; + break; // break out of infinite loop + } + } + send_data = send_data >> 1; // shift data right by 1 to prepare for next loop + } +// send the parity bit + if (odd_parity & 1) { //check if lsb of parity is set + go_0(TP_DATA); // already odd so send a 0 to TP + } + else { + go_pu(TP_DATA); // send a 1 to TP to make parity odd + } + delayMicroseconds(1); // delay to let the clock settle out + while (digitalRead(TP_CLK) == LOW) { // loop until the clock goes high + if (watchdog >= timeout) { //check for infinite loop + touchpad_error = HIGH; + break; // break out of infinite loop + } + } + delayMicroseconds(1); // delay to let the clock settle out + while (digitalRead(TP_CLK) == HIGH) { // loop until the clock goes low + if (watchdog >= timeout) { //check for infinite loop + touchpad_error = HIGH; + break; // break out of infinite loop + } + } + go_pu(TP_DATA); // Release the Data line so it goes high as the stop bit + delayMicroseconds(80); // testing shows delay at least 40us + while (digitalRead(TP_CLK) == HIGH) { // loop until the clock goes low + if (watchdog >= timeout) { //check for infinite loop + touchpad_error = HIGH; + break; // break out of infinite loop + } + } + delayMicroseconds(1); // wait to let the data settle + if (digitalRead(TP_DATA)) { // Ack bit s/b low if good transfer + } + while ((digitalRead(TP_CLK) == LOW) || (digitalRead(TP_DATA) == LOW)) { // loop if clock or data are low + if (watchdog >= timeout) { //check for infinite loop + touchpad_error = HIGH; + break; // break out of infinite loop + } + } +// Inhibit the bus so the tp only talks when the Teensy is listening + go_0(TP_CLK); +} +// +// Function to get a byte of data from the touchpad +// +char tp_read(void) +{ + unsigned int timeout = 200; // break out of loop if over this value in msec + elapsedMillis watchdog; // zero the watchdog timer clock + char rcv_data = 0; // initialize to zero + char mask = 1; // shift a 1 across the 8 bits to select where to load the data + char rcv_parity = 0; // count the ones received + go_pu(TP_CLK); // release the clock + go_pu(TP_DATA); // release the data + delayMicroseconds(5); // delay to let clock go high + while (digitalRead(TP_CLK) == HIGH) { // loop until the clock goes low + if (watchdog >= timeout) { //check for infinite loop + touchpad_error = HIGH; + break; // break out of infinite loop + } + } + if (digitalRead(TP_DATA)) { // Start bit s/b low from tp + // start bit not correct - put error handler here if desired + } + delayMicroseconds(1); // delay to let the clock settle out + while (digitalRead(TP_CLK) == LOW) { // loop until the clock goes high + if (watchdog >= timeout) { //check for infinite loop + touchpad_error = HIGH; + break; // break out of infinite loop + } + } + for (int k=0; k<8; k++) { + delayMicroseconds(1); // delay to let the clock settle out + while (digitalRead(TP_CLK) == HIGH) { // loop until the clock goes low + if (watchdog >= timeout) { //check for infinite loop + touchpad_error = HIGH; + break; // break out of infinite loop + } + } + if (digitalRead(TP_DATA)) { // check if data is high + rcv_data = rcv_data | mask; // set the appropriate bit in the rcv data + rcv_parity++; // increment the parity bit counter + } + mask = mask << 1; + delayMicroseconds(1); // delay to let the clock settle out + while (digitalRead(TP_CLK) == LOW) { // loop until the clock goes high + if (watchdog >= timeout) { //check for infinite loop + touchpad_error = HIGH; + break; // break out of infinite loop + } + } + } +// receive parity + delayMicroseconds(1); // delay to let the clock settle out + while (digitalRead(TP_CLK) == HIGH) { // loop until the clock goes low + if (watchdog >= timeout) { //check for infinite loop + touchpad_error = HIGH; + break; // break out of infinite loop + } + } + if (digitalRead(TP_DATA)) { // check if received parity is high + rcv_parity++; // increment the parity bit counter + } + rcv_parity = rcv_parity & 1; // mask off all bits except the lsb + if (rcv_parity == 0) { // check for bad (even) parity + touchpad_error = HIGH; + } + delayMicroseconds(1); // delay to let the clock settle out + while (digitalRead(TP_CLK) == LOW) { // loop until the clock goes high + if (watchdog >= timeout) { //check for infinite loop + touchpad_error = HIGH; + break; // break out of infinite loop + } + } +// stop bit + delayMicroseconds(1); // delay to let the clock settle out + while (digitalRead(TP_CLK) == HIGH) { // loop until the clock goes low + if (watchdog >= timeout) { //check for infinite loop + touchpad_error = HIGH; + break; // break out of infinite loop + } + } + if (digitalRead(TP_DATA) == LOW) { // check if stop bit is bad (low) + // send bad stop bit to future error handler + } + delayMicroseconds(1); // delay to let the clock settle out + while (digitalRead(TP_CLK) == LOW) { // loop until the clock goes high + if (watchdog >= timeout) { //check for infinite loop + touchpad_error = HIGH; + break; // break out of infinite loop + } + } +// Inhibit the bus so the tp only talks when the Teensy is listening + go_0(TP_CLK); + return rcv_data; // pass the received data back +} +// +// Function to decode 3 bytes of data from the touchpad = status, X Delta, Y Delta +// +char tp_packet(void) +{ +// ******************************Receive Byte 0 = Status*********************** + char rcv_data = 0; // initialize to zero + char mask = 1; // shift a 1 across the 8 bits to select where to load the data + char rcv_parity = 0; // count the ones received +// + unsigned int time_leftover = 24; // breakout of tp loop if timer is over this value in msec + elapsedMillis tp_timer; // zero the tp timer clock +// + go_pu(TP_CLK); // release the clock + go_pu(TP_DATA); // release the data + delayMicroseconds(5); // delay to let clock go high + while (digitalRead(TP_CLK) == HIGH) { // loop until the clock goes low + if (tp_timer >= time_leftover) { //check if ready for next keyboard scan due to no tp activity + go_0(TP_CLK); // Inhibit the bus so the tp won't try to send data + return 1; // go back to main routine with a 1 signifying no tp data was received + } + } + if (digitalRead(TP_DATA)) { // Start bit s/b low from tp + // start bit not correct - put error handler here if desired + } + delayMicroseconds(1); // delay to let the clock settle out + while (digitalRead(TP_CLK) == LOW) { // loop until the clock goes high + } + for (int k=0; k<8; k++) { + delayMicroseconds(1); // delay to let the clock settle out + while (digitalRead(TP_CLK) == HIGH) { // loop until the clock goes low + } + if (digitalRead(TP_DATA)) { // check if data is high + rcv_data = rcv_data | mask; // set the appropriate bit in the rcv data + rcv_parity++; // increment the parity bit counter + } + mask = mask << 1; + delayMicroseconds(1); // delay to let the clock settle out + while (digitalRead(TP_CLK) == LOW) { // loop until the clock goes high + } + } +// receive parity + delayMicroseconds(1); // delay to let the clock settle out + while (digitalRead(TP_CLK) == HIGH) { // loop until the clock goes low + } + if (digitalRead(TP_DATA)) { // check if received parity is high + rcv_parity++; // increment the parity bit counter + } + rcv_parity = rcv_parity & 1; // mask off all bits except the lsb + if (rcv_parity == 0) { // check for bad (even) parity + // parity bit not correct - put error handler here if desired + } + delayMicroseconds(1); // delay to let the clock settle out + while (digitalRead(TP_CLK) == LOW) { // loop until the clock goes high + } +// stop bit + delayMicroseconds(1); // delay to let the clock settle out + while (digitalRead(TP_CLK) == HIGH) { // loop until the clock goes low + } + if (digitalRead(TP_DATA) == LOW) { // check if stop bit is bad (low) + // stop bit not correct - put error handler here if desired + } + delayMicroseconds(1); // delay to let the clock settle out + while (digitalRead(TP_CLK) == LOW) { // loop until the clock goes high + } + mstat = rcv_data; // save data result in status byte +// ******************************Receive Byte 1 = Delta X************************** + rcv_data = 0; // initialize to zero + mask = 1; // shift a 1 across the 8 bits to select where to load the data + rcv_parity = 0; // count the ones received + delayMicroseconds(5); // delay to let the clock stop ringing + while (digitalRead(TP_CLK) == HIGH) { // loop until the clock goes low + } + if (digitalRead(TP_DATA)) { // Start bit s/b low from tp + // start bit not correct - put error handler here if desired + } + delayMicroseconds(1); // delay to let the clock settle out + while (digitalRead(TP_CLK) == LOW) { // loop until the clock goes high + } + for (int k=0; k<8; k++) { + delayMicroseconds(1); // delay to let the clock settle out + while (digitalRead(TP_CLK) == HIGH) { // loop until the clock goes low + } + if (digitalRead(TP_DATA)) { // check if data is high + rcv_data = rcv_data | mask; // set the appropriate bit in the rcv data + rcv_parity++; // increment the parity bit counter + } + mask = mask << 1; + delayMicroseconds(1); // delay to let the clock settle out + while (digitalRead(TP_CLK) == LOW) { // loop until the clock goes high + } + } +// receive parity + delayMicroseconds(1); // delay to let the clock settle out + while (digitalRead(TP_CLK) == HIGH) { // loop until the clock goes low + } + if (digitalRead(TP_DATA)) { // check if received parity is high + rcv_parity++; // increment the parity bit counter + } + rcv_parity = rcv_parity & 1; // mask off all bits except the lsb + if (rcv_parity == 0) { // check for bad (even) parity + // parity bit not correct - put error handler here if desired + } + delayMicroseconds(1); // delay to let the clock settle out + while (digitalRead(TP_CLK) == LOW) { // loop until the clock goes high + } +// stop bit + delayMicroseconds(1); // delay to let the clock settle out + while (digitalRead(TP_CLK) == HIGH) { // loop until the clock goes low + } + if (digitalRead(TP_DATA) == LOW) { // check if stop bit is bad (low) + // stop bit not correct - put error handler here if desired + } + delayMicroseconds(1); // delay to let the clock settle out + while (digitalRead(TP_CLK) == LOW) { // loop until the clock goes high + } + mx = rcv_data; // save data result in delta x byte +// Receive Byte 1 = Delta Y +// ******************************Receive Byte 2 = Delta Y************************** + rcv_data = 0; // initialize to zero + mask = 1; // shift a 1 across the 8 bits to select where to load the data + rcv_parity = 0; // count the ones received + delayMicroseconds(5); // delay to let the clock stop ringing + while (digitalRead(TP_CLK) == HIGH) { // loop until the clock goes low + } + if (digitalRead(TP_DATA)) { // Start bit s/b low from tp + // start bit not correct - put error handler here if desired + } + delayMicroseconds(1); // delay to let the clock settle out + while (digitalRead(TP_CLK) == LOW) { // loop until the clock goes high + } + for (int k=0; k<8; k++) { + delayMicroseconds(1); // delay to let the clock settle out + while (digitalRead(TP_CLK) == HIGH) { // loop until the clock goes low + } + if (digitalRead(TP_DATA)) { // check if data is high + rcv_data = rcv_data | mask; // set the appropriate bit in the rcv data + rcv_parity++; // increment the parity bit counter + } + mask = mask << 1; + delayMicroseconds(1); // delay to let the clock settle out + while (digitalRead(TP_CLK) == LOW) { // loop until the clock goes high + } + } +// receive parity + delayMicroseconds(1); // delay to let the clock settle out + while (digitalRead(TP_CLK) == HIGH) { // loop until the clock goes low + } + if (digitalRead(TP_DATA)) { // check if received parity is high + rcv_parity++; // increment the parity bit counter + } + rcv_parity = rcv_parity & 1; // mask off all bits except the lsb + if (rcv_parity == 0) { // check for bad (even) parity + // parity bit not correct - put error handler here if desired + } + delayMicroseconds(1); // delay to let the clock settle out + while (digitalRead(TP_CLK) == LOW) { // loop until the clock goes high + } +// stop bit + delayMicroseconds(1); // delay to let the clock settle out + while (digitalRead(TP_CLK) == HIGH) { // loop until the clock goes low + } + if (digitalRead(TP_DATA) == LOW) { // check if stop bit is bad (low) + // stop bit not correct - put error handler here if desired + } + delayMicroseconds(1); // delay to let the clock settle out + while (digitalRead(TP_CLK) == LOW) { // loop until the clock goes high + } + my = rcv_data; // save data result in delta y byte +// +// Inhibit the bus so the tp only talks when we're listening + go_0(TP_CLK); + +return 0; +} +// +void touchpad_init() +{ + touchpad_error = LOW; // start with no error + go_pu(TP_CLK); // float the clock and data to touchpad + go_pu(TP_DATA); + // Sending reset command to touchpad + tp_write(0xff); + if (tp_read() != 0xfa) { // verify correct ack byte + touchpad_error = HIGH; + } + delay(1000); // wait 1 second so tp can run its self diagnostic + // verify proper response from tp + if (tp_read() != 0xaa) { // verify basic assurance test passed + touchpad_error = HIGH; + } + if (tp_read() != 0x00) { // verify basic assurance test passed + touchpad_error = HIGH; + } + // Send touchpad disable code so that the mode byte can be loaded next + tp_write(0xf5); // tp disable + if (tp_read() != 0xfa) { // verify correct ack byte + touchpad_error = HIGH; + } + // Load Mode Byte with 00 using the following special sequence from page 38 of Synaptics Interfaceing Guide. + // Send set resolution to 0 four times followed by a set sample rate to 0x14 + // The resolution and sample rate are not actually changed but instead it loads the mode byte. +// #1 set resolution + tp_write(0xe8); // set resolution (actually part of setting mode byte) + if (tp_read() != 0xfa) { // verify correct ack byte + touchpad_error = HIGH; + } + tp_write(0x00); // to zero + if (tp_read() != 0xfa) { // verify correct ack byte + touchpad_error = HIGH; + } +// #2 set resolution (actually part of setting mode byte) + tp_write(0xe8); // set resolution + if (tp_read() != 0xfa) { // verify correct ack byte + touchpad_error = HIGH; + } + tp_write(0x00); // to zero + if (tp_read() != 0xfa) { // verify correct ack byte + touchpad_error = HIGH; + } +// #3 set resolution + tp_write(0xe8); // set resolution + if (tp_read() != 0xfa) { // verify correct ack byte + touchpad_error = HIGH; + } + tp_write(0x00); // to zero + if (tp_read() != 0xfa) { // verify correct ack byte + touchpad_error = HIGH; + } +// #4 set resolution (actually part of setting mode byte) + tp_write(0xe8); // set resolution + if (tp_read() != 0xfa) { // verify correct ack byte + touchpad_error = HIGH; + } + tp_write(0x00); // to zero + if (tp_read() != 0xfa) { // verify correct ack byte + touchpad_error = HIGH; + } +// Set sample rate (actually part of setting mode byte) + tp_write(0xf3); // set sample rate + if (tp_read() != 0xfa) { // verify correct ack byte + touchpad_error = HIGH; + } + tp_write(0x14); // to 14 hex + if (tp_read() != 0xfa) { // verify correct ack byte + touchpad_error = HIGH; + } +// This completes the mode byte load + // set the resolution for real + tp_write(0xe8); // Sending resolution command + if (tp_read() != 0xfa) { // verify correct ack byte + touchpad_error = HIGH; + } + tp_write(0x03); // value of 0x03 = 8 counts/mm resolution (default is 4 counts/mm) + if (tp_read() != 0xfa) { // verify correct ack byte + touchpad_error = HIGH; + } + // set the sample rate for real + tp_write(0xf3); // Sending sample rate command + if (tp_read() != 0xfa) { // verify correct ack byte + touchpad_error = HIGH; + } + tp_write(0x28); // 0x28 = 40 samples per second, the default value used for Synaptics TP + if (tp_read() != 0xfa) { // verify correct ack byte + touchpad_error = HIGH; + } + // Load stream mode command so tp will send data whenever it's available + tp_write(0xea); // stream mode + if (tp_read() != 0xfa) { // verify correct ack byte + touchpad_error = HIGH; + } + // Send touchpad enable code + tp_write(0xf4); // tp enable + if (tp_read() != 0xfa) { // verify correct ack byte + touchpad_error = HIGH; + } +} +// +//----------------------------------Setup before main loop------------------------------------------- +// +void setup() { + for (int a = 0; a < cols_max; a++) { // loop thru all keyboard column pins + go_pu(Col_IO[a]); // set each column pin as an input with a pullup + } +// + for (int b = 0; b < rows_max; b++) { // loop thru all keyboard row pins + go_z(Row_IO[b]); // set each row pin as a floating output + } + touchpad_init(); // reset tp and check that self diagnostic passed. Put tp in stream mode and enable it +// +} +// +boolean Fn_pressed = HIGH; // Active low, shows when the Fn key is pressed +extern volatile uint8_t keyboard_leds; // 8 bits sent from Host to Teensy that give keyboard LED status. +// declare and initialize touchpad variables +boolean over_flow; // Active high, set if x or y movement values are bad due to overflow +boolean left_button = 0; // Active high, on/off variable for left button is set if bit 0 of mstat is set +boolean right_button = 0; // Active high, on/off variable for right button is set if bit 1 of mstat is set +boolean old_left_button = 0; // Active high, on/off variable for left button status from the previous polling cycle +boolean old_right_button = 0; // Active high, on/off variable for right button status from the previous polling cycle +boolean button_change = 0; // Active high, shows when a touchpad left or right button has changed since the last polling cycle +// +//---------------------------------Main Loop--------------------------------------------- +// +void loop() { +// Scan keyboard matrix with an outer loop that drives each row low and an inner loop that reads every column (with pull ups). +// The routine looks at each key's present state (by reading the column input pin) and also the previous state from the last scan +// that was 30msec ago. The status of a key that was just pressed or just released is sent over USB and the state is saved in the old_key matrix. +// The keyboard keys will read as logic low if they are pressed (negative logic). +// The old_key matrix also uses negative logic (low=pressed). +// + for (int x = 0; x < rows_max; x++) { // loop thru the rows + go_0(Row_IO[x]); // Activate Row (send it low) + delayMicroseconds(10); // give the row time to go low and settle out + for (int y = 0; y < cols_max; y++) { // loop thru the columns +// +// **********Modifier keys including the Fn special case + if (modifier[x][y] != 0) { // check if modifier key exists at this location in the array (a non-zero value) + if (!digitalRead(Col_IO[y]) && (old_key[x][y])) { // Read column to see if key is low (pressed) and was previously not pressed + if (modifier[x][y] != MODIFIERKEY_FN) { // Exclude Fn modifier key because Fn is not sent to USB host + load_mod(modifier[x][y]); // function reads which modifier key is pressed and loads it into the appropriate mod_... variable + send_mod(); // function sends the state of all modifier keys over usb including the one that just got pressed + old_key[x][y] = LOW; // Save state of key as "pressed" + } + else { // keep track of Fn key being pressed + Fn_pressed = LOW; // Fn status variable is active low + old_key[x][y] = LOW; // old_key state is "pressed" (active low) + } + } + else if (digitalRead(Col_IO[y]) && (!old_key[x][y])) { //check if key is not pressed and was previously pressed + if (modifier[x][y] != MODIFIERKEY_FN) { // Exclude Fn modifier key + clear_mod(modifier[x][y]); // function reads which modifier key was released and loads 0 into the appropriate mod_... variable + send_mod(); // function sends all mod's over usb including the one that was just released + old_key[x][y] = HIGH; // Save state of key as "not pressed" + } + else { // keep track of Fn key being released + Fn_pressed = HIGH; // Fn is no longer active + old_key[x][y] = HIGH; // old_key state is "not pressed" + } + } + } +// ***********end of modifier section +// +// ***********Normal keys, num lock, and media keys in this section + else if ((normal[x][y] != 0) || (media[x][y] != 0)) { // check if normal or media key exists at this location in the array + if (!digitalRead(Col_IO[y]) && (old_key[x][y]) && (!slots_full)) { // check if key pressed and not previously pressed and slots not full + old_key[x][y] = LOW; // Save state of key as "pressed" + if (Fn_pressed) { // Fn is not pressed and normal or num lock key needs to be sent + if (keyboard_leds & 1) { // test if Num Lock is turned on + load_slot(numlock[x][y]); //update first available slot with key name from numlock matrix + send_normals(); // send all slots over USB including the key that just got pressed + } + else { // Num Lock is not turned on so send normal key + load_slot(normal[x][y]); //update first available slot with normal key name + send_normals(); // send all slots over USB including the key that just got pressed + } + } + else if (media[x][y] != 0) { // Fn is pressed so send media if a key exists in the matrix + Keyboard.press(media[x][y]); // media key is sent using keyboard.press function per PJRC instructions + delay(5); // delay 5 milliseconds before releasing to make sure it gets sent over USB + Keyboard.release(media[x][y]); // send media key release + } + } +// Key release + else if (digitalRead(Col_IO[y]) && (!old_key[x][y])) { //check if key is not pressed, but was previously pressed + old_key[x][y] = HIGH; // Save state of key as "not pressed" + if (Fn_pressed) { // only clear the slot if the Fn key is not pressed + if (keyboard_leds & 1) { // test if Num Lock is turned on + clear_slot(numlock[x][y]); //clear slot with key name from numlock matrix + send_normals(); // send all slots over USB including the key that just got released + } + else { + clear_slot(normal[x][y]); //clear the slot that contains the normal key name + send_normals(); // send all slots over USB including the key that was just released + } + } + } + } +// **************end of normal, media, and backlight section +// + } // end of column loop + go_z(Row_IO[x]); // De-activate the current Row (send it to hi-z) so the next row can be activated + } // end of row loop +// +// **********Keyboard scan complete +// +// ***********Touchpad Section +// + if (touchpad_error == LOW) { // Only proceed if the touchpad was initialized correctly and passed its self test +// + if (tp_packet() == 0x00) { // tp_packet returned zero so data was received in mstat, mx, and my variables + if (((0x80 & mstat) == 0x80) || ((0x40 & mstat) == 0x40)) { // x or y overflow bits set? + over_flow = 1; // set the overflow flag + } +// change the x data from 9 bit to 8 bit 2's complement + mx = mx & 0x7f; // mask off 8th bit + if ((0x10 & mstat) == 0x10) { // move the sign into + mx = 0x80 | mx; // the 8th bit position + } +// change the y data from 9 bit to 8 bit 2's complement and then take the 2's complement +// because y movement on ps/2 format is opposite of touchpad.move function + my = my & 0x7f; // mask off 8th bit + if ((0x20 & mstat) == 0x20) { // move the sign into + my = 0x80 | my; // the 8th bit position + } + my = (~my + 0x01); // change the sign of y data by taking the 2's complement (invert and add 1) +// zero out mx and my if over_flow is set + if (over_flow) { + mx = 0x00; // data is bad due to the overflow so zero it out + my = 0x00; + } +// send the x and y data back via usb if either one is non-zero + if ((mx != 0x00) || (my != 0x00)) { + Mouse.move(mx,my); + } +// +// read the left and right button bits in the PS/2 status byte from the touchpad + if ((0x01 & mstat) == 0x01) { // if left button is set in the status byte + left_button = 1; // set the left button variable + } + else { // otherwise clear the left button variable + left_button = 0; + } + if ((0x02 & mstat) == 0x02) { // if right button is set in the status byte + right_button = 1; // set the right button variable + } + else { // otherwise clear right button variable + right_button = 0; + } +// Determine if the left or right touchpad buttons have changed since last polling cycle using xor + button_change = (left_button ^ old_left_button) | (right_button ^ old_right_button); +// Don't send button status if there's no change since last time. + if (button_change){ + Mouse.set_buttons(left_button, 0, right_button); // send left, middle, and right button status + } + old_left_button = left_button; // remember button status for next polling cycle + old_right_button = right_button; + } + } +// +// End of touchpad routine +// +// Turn on or off the LEDs for Num Lock and Caps Lock based on bits 0 and 1 from the +// keyboard_leds variable returned by the host computer over USB. Sending the I/O pin low turns on the +// LED. +// + if (keyboard_leds & 1) { // mask off all bits but D0 and test if set + go_0(NUM_LOCK_N); // turn on the Num Lock LED + } + else { + go_1(NUM_LOCK_N); // turn off the Num Lock LED + } +// +// + if (keyboard_leds & 1<<1) { // mask off all bits but D1 and test if set + go_0(CAPS_LOCK_N); // turn on the Caps Lock LED + } + else { + go_1(CAPS_LOCK_N); // turn off the Caps Lock LED + } +// +// repeat loop at 30msec scan rate +}