From 27be4d5a4d5d3f120078bbcaedadcdb887ac161e Mon Sep 17 00:00:00 2001 From: Frank Adams <33405607+thedalles77@users.noreply.github.com> Date: Tue, 29 Aug 2023 14:48:23 -0700 Subject: [PATCH] Add files via upload --- .../IBM_T41_KeyboardandTouchpad.ino | 1233 +++++++++++++++++ 1 file changed, 1233 insertions(+) create mode 100644 Example_Keyboards/IBM_T41_Keyboard_and_Touchpad/IBM_T41_KeyboardandTouchpad.ino diff --git a/Example_Keyboards/IBM_T41_Keyboard_and_Touchpad/IBM_T41_KeyboardandTouchpad.ino b/Example_Keyboards/IBM_T41_Keyboard_and_Touchpad/IBM_T41_KeyboardandTouchpad.ino new file mode 100644 index 0000000..7c490e0 --- /dev/null +++ b/Example_Keyboards/IBM_T41_Keyboard_and_Touchpad/IBM_T41_KeyboardandTouchpad.ino @@ -0,0 +1,1233 @@ +/* Copyright 2023 Frank Adams + Licensed under the Apache License, Version 2.0 (the "License"); + you may not use this file except in compliance with the License. + You may obtain a copy of the License at + http://www.apache.org/licenses/LICENSE-2.0 + Unless required by applicable law or agreed to in writing, software + distributed under the License is distributed on an "AS IS" BASIS, + WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. + See the License for the specific language governing permissions and + limitations under the License. +*/ +// This software controls a IBM ThinkPad T41 Laptop Keyboard, PS/2 Trackpoint and PS/2 Touchpad +// using a Teensy 4.0 on a daughterboard with a 40 pin connector. +// This routine uses the Teensyduino "Micro-Manager Method" to send Normal and Modifier +// keys over USB. Only the volume control multi-media keys are supported by this routine. +// Description of Teensyduino keyboard functions is at www.pjrc.com/teensy/td_keyboard.html +// The ps/2 code uses the USB PJRC Mouse functions at www.pjrc.com/teensy/td_mouse.html +// In the Arduino IDE, select Tools, Teensy 4.0. Also under Tools, select Keyboard+Mouse+Joystick +// +// Revision History +// Rev New - August 17, 2023 - Original Release +// +// Trackpoint signals +#define TRACK_DATA 23 // ps/2 data to trackpoint (level translated) +#define TRACK_CLK 0 // ps/2 clock to trackpoint (level translated) +// Touchpad signals +#define TOUCH_DATA 17 // ps/2 data to touchpad (level translated) +#define TOUCH_CLK 16 // ps/2 clock to touchpad (level translated) +// Keyboard LEDs +#define CAPS_LED 18 // Wire these 3 I/O's to the anode side of LED's +#define NUM_LED 19 // Wire the cathode side thru a dropping resistor +#define BLINK_LED 13 // The LED on the Teensy is programmed to blink +// Keyboard Fn key (aka HOTKEY) +#define HOTKEY 9 // Fn key +// Set the keyboard row & column size +const byte rows_max = 16; // sets the number of rows in the matrix +const byte cols_max = 8; // sets the number of columns in the matrix +// +// Load the normal key matrix with the Teensyduino key names described at www.pjrc.com/teensy/td_keyboard.html +// A zero indicates no normal key at that location. +int normal[rows_max][cols_max] = { + {0,KEY_SCROLL_LOCK,KEY_PRINTSCREEN,0,0,0,0,0}, + {KEY_HOME,0,KEY_END,KEY_LEFT,KEY_PAUSE,0,0,KEY_UP}, + {KEY_PAGE_UP,0,KEY_PAGE_DOWN,KEY_PAGE_DOWN,KEY_PAGE_UP,0,0,0}, + {KEY_INSERT,0,KEY_F12,KEY_RIGHT,0,0,0,0}, + {KEY_DELETE,0,KEY_F11,KEY_DOWN,0,0,0,0}, + {KEY_MINUS,KEY_P,KEY_0,KEY_SLASH,0,KEY_SEMICOLON,KEY_LEFT_BRACE,KEY_QUOTE}, + {KEY_F8,KEY_O,KEY_9,0,KEY_PERIOD,KEY_L,KEY_F7,0}, + {KEY_EQUAL,KEY_I,KEY_8,0,KEY_COMMA,KEY_K,KEY_RIGHT_BRACE,KEY_F6}, + {KEY_TILDE,KEY_Q,KEY_1,0,KEY_Z,KEY_A,KEY_TAB,KEY_ESC}, + {0,0,0,0,0,0,0,0}, + {0,0,0,0,0,0,0,0}, + {KEY_F1,KEY_W,KEY_2,0,KEY_X,KEY_S,KEY_CAPS_LOCK,0}, + {KEY_F2,KEY_E,KEY_3,0,KEY_C,KEY_D,KEY_F3,KEY_F4}, + {KEY_5,KEY_R,KEY_4,KEY_B,KEY_V,KEY_F,KEY_T,KEY_G}, + {KEY_F9,0,KEY_F10,KEY_SPACE,KEY_ENTER,KEY_BACKSLASH,KEY_BACKSPACE,KEY_F5}, + {KEY_6,KEY_U,KEY_7,KEY_N,KEY_M,KEY_J,KEY_Y,KEY_H} +}; +// Load the num lock key matrix which is the same as the normal matrix except for the number pad keys +// A zero indicates no key at that location. +int numlock[rows_max][cols_max] = { + {0,KEY_SCROLL_LOCK,KEY_PRINTSCREEN,0,0,0,0,0}, + {KEY_HOME,0,KEY_END,KEY_LEFT,KEY_PAUSE,0,0,KEY_UP}, + {KEY_PAGE_UP,0,KEY_PAGE_DOWN,KEY_PAGE_DOWN,KEY_PAGE_UP,0,0,0}, + {KEY_INSERT,0,KEY_F12,KEY_RIGHT,0,0,0,0}, + {KEY_DELETE,0,KEY_F11,KEY_DOWN,0,0,0,0}, + {KEY_MINUS,KEYPAD_ASTERIX,KEYPAD_SLASH,KEYPAD_PLUS,0,KEYPAD_MINUS,KEY_LEFT_BRACE,KEY_QUOTE}, + {KEY_F8,KEYPAD_6,KEYPAD_9,0,KEYPAD_PERIOD,KEYPAD_3,KEY_F7,0}, + {KEY_EQUAL,KEYPAD_5,KEYPAD_8,0,KEY_COMMA,KEYPAD_2,KEY_RIGHT_BRACE,KEY_F6}, + {KEY_TILDE,KEY_Q,KEY_1,0,KEY_Z,KEY_A,KEY_TAB,KEY_ESC}, + {0,0,0,0,0,0,0,0}, + {0,0,0,0,0,0,0,0}, + {KEY_F1,KEY_W,KEY_2,0,KEY_X,KEY_S,KEY_CAPS_LOCK,0}, + {KEY_F2,KEY_E,KEY_3,0,KEY_C,KEY_D,KEY_F3,KEY_F4}, + {KEY_5,KEY_R,KEY_4,KEY_B,KEY_V,KEY_F,KEY_T,KEY_G}, + {KEY_F9,0,KEY_F10,KEY_SPACE,KEY_ENTER,KEY_BACKSLASH,KEY_BACKSPACE,KEY_F5}, + {KEY_6,KEYPAD_4,KEYPAD_7,KEY_N,KEYPAD_0,KEYPAD_1,KEY_Y,KEY_H} +}; +// Load the modifier key matrix with key names at the correct row-column location. +// Access IBM key is used as the Windows GUI key. +// A zero indicates no modifier key at that location. +int modifier[rows_max][cols_max] = { + {0,0,0,MODIFIERKEY_RIGHT_ALT,0,0,0,MODIFIERKEY_LEFT_ALT}, + {0,0,0,0,0,0,0,0}, + {0,0,0,0,0,0,0,0}, + {0,0,0,0,0,0,0,0}, + {0,0,0,0,0,0,0,MODIFIERKEY_GUI}, + {0,0,0,0,0,0,0,0}, + {0,0,0,0,0,0,0,0}, + {0,0,0,0,0,0,0,0}, + {0,0,0,0,0,0,0,0}, + {0,0,0,0,MODIFIERKEY_RIGHT_SHIFT,0,MODIFIERKEY_LEFT_SHIFT,0}, + {MODIFIERKEY_LEFT_CTRL,0,0,0,MODIFIERKEY_RIGHT_CTRL,0,0,0}, + {0,0,0,0,0,0,0,0}, + {0,0,0,0,0,0,0,0}, + {0,0,0,0,0,0,0,0}, + {0,0,0,0,0,0,0,0}, + {0,0,0,0,0,0,0,0} +}; +// Load the media key matrix with key names at the correct row-column location. +// A zero indicates no media key at that location. +int media[rows_max][cols_max] = { + {0,0,0,0,0,0,0,0}, + {0,0,0,0,0,0,0,0}, + {0,0,0,0,0,0,0,0}, + {0,0,0,0,0,0,0,0}, + {0,KEY_MEDIA_VOLUME_INC,0,0,0,KEY_MEDIA_MUTE,KEY_MEDIA_VOLUME_DEC,0}, + {0,0,0,0,0,0,0,0}, + {0,0,0,0,0,0,0,0}, + {0,0,0,0,0,0,0,0}, + {0,0,0,0,0,0,0,0}, + {0,0,0,0,0,0,0,0}, + {0,0,0,0,0,0,0,0}, + {0,0,0,0,0,0,0,0}, + {0,0,0,0,0,0,0,0}, + {0,0,0,0,0,0,0,0}, + {0,0,0,0,0,0,0,0}, + {0,0,0,0,0,0,0,0} +}; +// Initialize the old_key matrix with one's. +// 1 = key not pressed, 0 = key is pressed +boolean old_key[rows_max][cols_max] = { + {1,1,1,1,1,1,1,1}, + {1,1,1,1,1,1,1,1}, + {1,1,1,1,1,1,1,1}, + {1,1,1,1,1,1,1,1}, + {1,1,1,1,1,1,1,1}, + {1,1,1,1,1,1,1,1}, + {1,1,1,1,1,1,1,1}, + {1,1,1,1,1,1,1,1}, + {1,1,1,1,1,1,1,1}, + {1,1,1,1,1,1,1,1}, + {1,1,1,1,1,1,1,1}, + {1,1,1,1,1,1,1,1}, + {1,1,1,1,1,1,1,1}, + {1,1,1,1,1,1,1,1}, + {1,1,1,1,1,1,1,1}, + {1,1,1,1,1,1,1,1} +}; +// +// Define the Teensy 4.0 I/O numbers +// +// Row FPC pin # 32,28,24,20,16,12,08,04,22,26,30,18,14,10,06,02 +// Teensy I/O # 01,02,03,04,05,06,07,08,20,21,22,25,27,29,31,33 +int Row_IO[rows_max] = {1,2,3,4,5,6,7,8,20,21,22,25,27,29,31,33}; // Teensy 4.0 I/O numbers for rows +// +// Column FPC pin # 05,09,13,17,15,11,07,03 +// Teensy I/O # 10,11,12,24,26,28,30,32 +int Col_IO[cols_max] = {10,11,12,24,26,28,30,32}; // Teensy 4.0 I/O numbers for columns +// +// Declare variables that will be used by functions +boolean touchpad_error = LOW; // sent high when touch pad routine times out or gives bad ack. Also used to turn off. +boolean trackpoint_error = LOW; // sent high when track point routine times out or gives bad ack. Also to turn off. +boolean slots_full = LOW; // Goes high when slots 1 thru 6 contain normal keys +// slot 1 thru slot 6 hold the normal key values to be sent over USB. +int slot1 = 0; //value of 0 means the slot is empty and can be used. +int slot2 = 0; +int slot3 = 0; +int slot4 = 0; +int slot5 = 0; +int slot6 = 0; +// +int mod_shift_l = 0; // These variables are sent over USB as modifier keys. +int mod_shift_r = 0; // Each is either set to 0 or MODIFIER_ ... +int mod_ctrl_l = 0; +int mod_ctrl_r = 0; +int mod_alt_l = 0; +int mod_alt_r = 0; +int mod_gui = 0; +// +// **************Functions common to keyboard, trackpoint, and touchpad************************** +// +// Function to set a pin to high impedance (acts like open drain output) +void go_z(int pin) +{ + pinMode(pin, INPUT); + digitalWrite(pin, HIGH); +} +// +// Function to set a pin as an input with a pullup +void go_pu(int pin) +{ + pinMode(pin, INPUT_PULLUP); + digitalWrite(pin, HIGH); +} +// +// Function to send a pin to a logic low +void go_0(int pin) +{ + pinMode(pin, OUTPUT); + digitalWrite(pin, LOW); +} +// +// Function to send a pin to a logic high +void go_1(int pin) +{ + pinMode(pin, OUTPUT); + digitalWrite(pin, HIGH); +} +// +// *****************Functions for Trackpoint*************************** +// +// Function to send the trackpoint a byte of data (command) +// +void trackp_write(char send_data) +{ + unsigned int timeout = 200; // breakout of loop if over this value in msec + elapsedMillis watchdog; // zero the watchdog timer clock + char odd_parity = 0; // clear parity bit count +// Enable the bus by floating the clock and data + go_z(TRACK_CLK); // + go_z(TRACK_DATA); // + delayMicroseconds(250); // wait before requesting the bus + go_0(TRACK_CLK); // Send the Clock line low to request to transmit data + delayMicroseconds(100); // wait for 100 microseconds per bus spec + go_0(TRACK_DATA); // Send the Data line low (the start bit) + delayMicroseconds(1); // + go_z(TRACK_CLK); // Release the Clock line so it is pulled high + delayMicroseconds(1); // give some time to let the clock line go high + while (digitalRead(TRACK_CLK) == HIGH) { // loop until the clock goes low + if (watchdog >= timeout) { //check for infinite loop + trackpoint_error = HIGH; // set error flag + break; // break out of infinite loop + } + } +// send the 8 bits of send_data + for (int j=0; j<8; j++) { + if (send_data & 1) { //check if lsb is set + go_z(TRACK_DATA); // send a 1 to TP + odd_parity = odd_parity + 1; // keep running total of 1's sent + } + else { + go_0(TRACK_DATA); // send a 0 to TP + } + delayMicroseconds(1); // delay to let the clock settle out + while (digitalRead(TRACK_CLK) == LOW) { // loop until the clock goes high + if (watchdog >= timeout) { //check for infinite loop + trackpoint_error = HIGH; // set error flag + break; // break out of infinite loop + } + } + delayMicroseconds(1); // delay to let the clock settle out + while (digitalRead(TRACK_CLK) == HIGH) { // loop until the clock goes low + if (watchdog >= timeout) { //check for infinite loop + trackpoint_error = HIGH; // set error flag + break; // break out of infinite loop + } + } + send_data = send_data >> 1; // shift data right by 1 to prepare for next loop + } +// send the parity bit + if (odd_parity & 1) { //check if lsb of parity is set + go_0(TRACK_DATA); // already odd so send a 0 to TP + } + else { + go_z(TRACK_DATA); // send a 1 to TP to make parity odd + } + delayMicroseconds(1); // delay to let the clock settle out + while (digitalRead(TRACK_CLK) == LOW) { // loop until the clock goes high + if (watchdog >= timeout) { //check for infinite loop + trackpoint_error = HIGH; // set error flag + break; // break out of infinite loop + } + } + delayMicroseconds(1); // delay to let the clock settle out + while (digitalRead(TRACK_CLK) == HIGH) { // loop until the clock goes low + if (watchdog >= timeout) { //check for infinite loop + trackpoint_error = HIGH; // set error flag + break; // break out of infinite loop + } + } + go_z(TRACK_DATA); // Release the Data line so it goes high as the stop bit + delayMicroseconds(80); // testing shows delay at least 40us + while (digitalRead(TRACK_CLK) == HIGH) { // loop until the clock goes low + if (watchdog >= timeout) { //check for infinite loop + trackpoint_error = HIGH; // set error flag + break; // break out of infinite loop + } + } + delayMicroseconds(1); // wait to let the data settle + if (digitalRead(TRACK_DATA)) { // Ack bit s/b low if good transfer + trackpoint_error = HIGH; //bad ack bit so set the error flag + } + while ((digitalRead(TRACK_CLK) == LOW) || (digitalRead(TRACK_DATA) == LOW)) { // loop if clock or data are low + if (watchdog >= timeout) { //check for infinite loop + trackpoint_error = HIGH; // set error flag + break; // break out of infinite loop + } + } +// Inhibit the bus so the tp only talks when we're listening + go_0(TRACK_CLK); +} +// +// Function to get a byte of data from the trackpoint +// +char trackp_read(void) +{ + unsigned int timeout = 200; // breakout of loop if over this value in msec + elapsedMillis watchdog; // zero the watchdog timer clock + char rcv_data = 0; // initialize to zero + char mask = 1; // shift a 1 across the 8 bits to select where to load the data + char rcv_parity = 0; // count the ones received + go_z(TRACK_CLK); // release the clock + go_z(TRACK_DATA); // release the data + delayMicroseconds(5); // delay to let clock go high + while (digitalRead(TRACK_CLK) == HIGH) { // loop until the clock goes low + if (watchdog >= timeout) { //check for infinite loop + trackpoint_error = HIGH; // set error flag + break; // break out of infinite loop + } + } + if (digitalRead(TRACK_DATA)) { // Start bit s/b low from tp + trackpoint_error = HIGH; // No start bit so set the error flag + } + delayMicroseconds(1); // delay to let the clock settle out + while (digitalRead(TRACK_CLK) == LOW) { // loop until the clock goes high + if (watchdog >= timeout) { //check for infinite loop + trackpoint_error = HIGH; // set error flag + break; // break out of infinite loop + } + } + for (int k=0; k<8; k++) { + delayMicroseconds(1); // delay to let the clock settle out + while (digitalRead(TRACK_CLK) == HIGH) { // loop until the clock goes low + if (watchdog >= timeout) { //check for infinite loop + trackpoint_error = HIGH; // set error flag + break; // break out of infinite loop + } + } + if (digitalRead(TRACK_DATA)) { // check if data is high + rcv_data = rcv_data | mask; // set the appropriate bit in the rcv data + rcv_parity++; // increment the parity bit counter + } + mask = mask << 1; + delayMicroseconds(1); // delay to let the clock settle out + while (digitalRead(TRACK_CLK) == LOW) { // loop until the clock goes high + if (watchdog >= timeout) { //check for infinite loop + trackpoint_error = HIGH; // set error flag + break; // break out of infinite loop + } + } + } +// receive parity + delayMicroseconds(1); // delay to let the clock settle out + while (digitalRead(TRACK_CLK) == HIGH) { // loop until the clock goes low + if (watchdog >= timeout) { //check for infinite loop + trackpoint_error = HIGH; // set error flag + break; // break out of infinite loop + } + } + if (digitalRead(TRACK_DATA)) { // check if received parity is high + rcv_parity++; // increment the parity bit counter + } + rcv_parity = rcv_parity & 1; // mask off all bits except the lsb + if (rcv_parity == 0) { // check for bad (even) parity + trackpoint_error = HIGH; //bad parity so set the error flag + } + delayMicroseconds(1); // delay to let the clock settle out + while (digitalRead(TRACK_CLK) == LOW) { // loop until the clock goes high + if (watchdog >= timeout) { //check for infinite loop + trackpoint_error = HIGH; // set error flag + break; // break out of infinite loop + } + } +// stop bit + delayMicroseconds(1); // delay to let the clock settle out + while (digitalRead(TRACK_CLK) == HIGH) { // loop until the clock goes low + if (watchdog >= timeout) { //check for infinite loop + trackpoint_error = HIGH; // set error flag + break; // break out of infinite loop + } + } + if (digitalRead(TRACK_DATA) == LOW) { // check if stop bit is bad (low) + trackpoint_error = HIGH; //bad stop bit so set the error flag + } + delayMicroseconds(1); // delay to let the clock settle out + while (digitalRead(TRACK_CLK) == LOW) { // loop until the clock goes high + if (watchdog >= timeout) { //check for infinite loop + trackpoint_error = HIGH; // set error flag + break; // break out of infinite loop + } + } +// Inhibit the bus so the tp only talks when we're listening + go_0(TRACK_CLK); + return rcv_data; // pass the received data back +} +// +void trackpoint_init() +{ + trackpoint_error = LOW; // start with no error + go_z(TRACK_CLK); // float the clock and data to trackpoint + go_z(TRACK_DATA); + // Sending reset command to trackpoint + trackp_write(0xff); + if (trackp_read() != 0xfa) { // verify correct ack byte + trackpoint_error = HIGH; + } + delay(1000); // wait 1000ms so tp can run its self diagnostic + // verify proper response from touchpad + if (trackp_read() != 0xaa) { // verify basic assurance test passed + trackpoint_error = HIGH; + } + if (trackp_read() != 0x00) { // verify basic assurance test passed + trackpoint_error = HIGH; + } + // Send touchpad disable code + trackp_write(0xf5); // tp disable + if (trackp_read() != 0xfa) { // verify correct ack byte + trackpoint_error = HIGH; + } + // Load Mode Byte with 00 using the following special sequence from page 38. + // Send set resolution to 0 four times followed by a set sample rate to 0x14 +// #1 set resolution + trackp_write(0xe8); // set resolution + if (trackp_read() != 0xfa) { // verify correct ack byte + trackpoint_error = HIGH; + } + trackp_write(0x01); // to zero + if (trackp_read() != 0xfa) { // verify correct ack byte + trackpoint_error = HIGH; + } +// #2 set resolution + trackp_write(0xe8); // set resolution + if (trackp_read() != 0xfa) { // verify correct ack byte + trackpoint_error = HIGH; + } + trackp_write(0x00); // to zero + if (trackp_read() != 0xfa) { // verify correct ack byte + trackpoint_error = HIGH; + } +// #3 set resolution + trackp_write(0xe8); // set resolution + if (trackp_read() != 0xfa) { // verify correct ack byte + trackpoint_error = HIGH; + } + trackp_write(0x00); // to zero + if (trackp_read() != 0xfa) { // verify correct ack byte + trackpoint_error = HIGH; + } +// #4 set resolution + trackp_write(0xe8); // set resolution + if (trackp_read() != 0xfa) { // verify correct ack byte + trackpoint_error = HIGH; + } + trackp_write(0x00); // to zero + if (trackp_read() != 0xfa) { // verify correct ack byte + trackpoint_error = HIGH; + } +// Set sample rate + trackp_write(0xf3); // set sample rate + if (trackp_read() != 0xfa) { // verify correct ack byte + trackpoint_error = HIGH; + } + trackp_write(0x14); // to 14 hex + if (trackp_read() != 0xfa) { // verify correct ack byte + trackpoint_error = HIGH; + } + // set the resolution + trackp_write(0xe8); // Sending resolution command + if (trackp_read() != 0xfa) { // verify correct ack byte + trackpoint_error = HIGH; + } + trackp_write(0x03); // value of 0x03 = 8 counts/mm resolution (default is 4 counts/mm) + if (trackp_read() != 0xfa) { // verify correct ack byte + trackpoint_error = HIGH; + } + // set the sample rate + trackp_write(0xf3); // Sending sample rate command + if (trackp_read() != 0xfa) { // verify correct ack byte + trackpoint_error = HIGH; + } + trackp_write(0x28); // 0x28 = 40 samples per second, the default value used for Synaptics TP + if (trackp_read() != 0xfa) { // verify correct ack byte + trackpoint_error = HIGH; + } + // Sending remote mode code so the touchpad will send data only when polled + trackp_write(0xf0); // remote mode + if (trackp_read() != 0xfa) { // verify correct ack byte + trackpoint_error = HIGH; + } + // Sending touchpad enable code (needed for Elan touchpads) + trackp_write(0xf4); // tp enable + if (trackp_read() != 0xfa) { // verify correct ack byte + trackpoint_error = HIGH; + } +} +// +// *****************Functions for Keyboard***************************** +// Function to load the key name into the first available slot +void load_slot(int key) { + if (!slot1) { + slot1 = key; + } + else if (!slot2) { + slot2 = key; + } + else if (!slot3) { + slot3 = key; + } + else if (!slot4) { + slot4 = key; + } + else if (!slot5) { + slot5 = key; + } + else if (!slot6) { + slot6 = key; + } + if (!slot1 || !slot2 || !slot3 || !slot4 || !slot5 || !slot6) { + slots_full = LOW; // slots are not full + } + else { + slots_full = HIGH; // slots are full + } +} +// +// Function to clear the slot that contains the key name +void clear_slot(int key) { + if (slot1 == key) { + slot1 = 0; + } + else if (slot2 == key) { + slot2 = 0; + } + else if (slot3 == key) { + slot3 = 0; + } + else if (slot4 == key) { + slot4 = 0; + } + else if (slot5 == key) { + slot5 = 0; + } + else if (slot6 == key) { + slot6 = 0; + } + if (!slot1 || !slot2 || !slot3 || !slot4 || !slot5 || !slot6) { + slots_full = LOW; // slots are not full + } + else { + slots_full = HIGH; // slots are full + } +} +// +// Function to load the modifier key name into the appropriate mod variable +void load_mod(int m_key) { + if (m_key == MODIFIERKEY_LEFT_SHIFT) { + mod_shift_l = m_key; + } + else if (m_key == MODIFIERKEY_RIGHT_SHIFT) { + mod_shift_r = m_key; + } + else if (m_key == MODIFIERKEY_LEFT_CTRL) { + mod_ctrl_l = m_key; + } + else if (m_key == MODIFIERKEY_RIGHT_CTRL) { + mod_ctrl_r = m_key; + } + else if (m_key == MODIFIERKEY_LEFT_ALT) { + mod_alt_l = m_key; + } + else if (m_key == MODIFIERKEY_RIGHT_ALT) { + mod_alt_r = m_key; + } + else if (m_key == MODIFIERKEY_GUI) { + mod_gui = m_key; + } +} +// +// Function to load 0 into the appropriate mod variable +void clear_mod(int m_key) { + if (m_key == MODIFIERKEY_LEFT_SHIFT) { + mod_shift_l = 0; + } + else if (m_key == MODIFIERKEY_RIGHT_SHIFT) { + mod_shift_r = 0; + } + else if (m_key == MODIFIERKEY_LEFT_CTRL) { + mod_ctrl_l = 0; + } + else if (m_key == MODIFIERKEY_RIGHT_CTRL) { + mod_ctrl_r = 0; + } + else if (m_key == MODIFIERKEY_LEFT_ALT) { + mod_alt_l = 0; + } + else if (m_key == MODIFIERKEY_RIGHT_ALT) { + mod_alt_r = 0; + } + else if (m_key == MODIFIERKEY_GUI) { + mod_gui = 0; + } +} +// +// Function to send the modifier keys over usb +void send_mod() { + Keyboard.set_modifier(mod_shift_l | mod_shift_r | mod_ctrl_l | mod_ctrl_r | mod_alt_l | mod_alt_r | mod_gui); + Keyboard.send_now(); +} +// +// Function to send the normal keys in the 6 slots over usb +void send_normals() { + Keyboard.set_key1(slot1); + Keyboard.set_key2(slot2); + Keyboard.set_key3(slot3); + Keyboard.set_key4(slot4); + Keyboard.set_key5(slot5); + Keyboard.set_key6(slot6); + Keyboard.send_now(); +} +// +// *****************Functions for Touchpad*************************** +// +// Function to send the touchpad a byte of data (command) +// +void touch_write(char send_data) +{ + unsigned int timeout = 200; // breakout of loop if over this value in msec + elapsedMillis watchdog; // zero the watchdog timer clock + char odd_parity = 0; // clear parity bit count +// Enable the bus by floating the clock and data + go_pu(TOUCH_CLK); // + go_pu(TOUCH_DATA); // + delayMicroseconds(250); // wait before requesting the bus + go_0(TOUCH_CLK); // Send the Clock line low to request to transmit data + delayMicroseconds(100); // wait for 100 microseconds per bus spec + go_0(TOUCH_DATA); // Send the Data line low (the start bit) + delayMicroseconds(1); // + go_pu(TOUCH_CLK); // Release the Clock line so it is pulled high + delayMicroseconds(1); // give some time to let the clock line go high + while (digitalRead(TOUCH_CLK) == HIGH) { // loop until the clock goes low + if (watchdog >= timeout) { //check for infinite loop + touchpad_error = HIGH; // flag the touchpad as bad + break; // break out of infinite loop + } + } +// send the 8 bits of send_data + for (int j=0; j<8; j++) { + if (send_data & 1) { //check if lsb is set + go_pu(TOUCH_DATA); // send a 1 to TP + odd_parity = odd_parity + 1; // keep running total of 1's sent + } + else { + go_0(TOUCH_DATA); // send a 0 to TP + } + delayMicroseconds(1); // delay to let the clock settle out + while (digitalRead(TOUCH_CLK) == LOW) { // loop until the clock goes high + if (watchdog >= timeout) { //check for infinite loop + touchpad_error = HIGH; // flag the touchpad as bad + break; // break out of infinite loop + } + } + delayMicroseconds(1); // delay to let the clock settle out + while (digitalRead(TOUCH_CLK) == HIGH) { // loop until the clock goes low + if (watchdog >= timeout) { //check for infinite loop + touchpad_error = HIGH; // flag the touchpad as bad + break; // break out of infinite loop + } + } + send_data = send_data >> 1; // shift data right by 1 to prepare for next loop + } +// send the parity bit + if (odd_parity & 1) { //check if lsb of parity is set + go_0(TOUCH_DATA); // already odd so send a 0 to TP + } + else { + go_pu(TOUCH_DATA); // send a 1 to TP to make parity odd + } + delayMicroseconds(1); // delay to let the clock settle out + while (digitalRead(TOUCH_CLK) == LOW) { // loop until the clock goes high + if (watchdog >= timeout) { //check for infinite loop + touchpad_error = HIGH; // flag the touchpad as bad + break; // break out of infinite loop + } + } + delayMicroseconds(1); // delay to let the clock settle out + while (digitalRead(TOUCH_CLK) == HIGH) { // loop until the clock goes low + if (watchdog >= timeout) { //check for infinite loop + touchpad_error = HIGH; // flag the touchpad as bad + break; // break out of infinite loop + } + } + go_pu(TOUCH_DATA); // Release the Data line so it goes high as the stop bit + delayMicroseconds(80); // testing shows delay at least 40us + while (digitalRead(TOUCH_CLK) == HIGH) { // loop until the clock goes low + if (watchdog >= timeout) { //check for infinite loop + touchpad_error = HIGH; // flag the touchpad as bad + break; // break out of infinite loop + } + } + delayMicroseconds(1); // wait to let the data settle + if (digitalRead(TOUCH_DATA)) { // Ack bit s/b low if good transfer + } + while ((digitalRead(TOUCH_CLK) == LOW) || (digitalRead(TOUCH_DATA) == LOW)) { // loop if clock or data are low + if (watchdog >= timeout) { //check for infinite loop + touchpad_error = HIGH; // flag the touchpad as bad + break; // break out of infinite loop + } + } +// Inhibit the bus so the touchpad only talks when we're listening + go_0(TOUCH_CLK); +} +// +// Function to get a byte of data from the touchpad +// +char touch_read(void) +{ + unsigned int timeout = 200; // breakout of loop if over this value in msec + elapsedMillis watchdog; // zero the watchdog timer clock + char rcv_touch_data = 0; // initialize to zero + char mask = 1; // shift a 1 across the 8 bits to select where to load the data + char rcv_parity = 0; // count the ones received + go_pu(TOUCH_CLK); // release the clock + go_pu(TOUCH_DATA); // release the data + delayMicroseconds(5); // delay to let clock go high + while (digitalRead(TOUCH_CLK) == HIGH) { // loop until the clock goes low + if (watchdog >= timeout) { //check for infinite loop + touchpad_error = HIGH; // flag the touchpad as bad + break; // break out of infinite loop + } + } + if (digitalRead(TOUCH_DATA)) { // Start bit s/b low from tp + // start bit not correct - put error handler here if desired + } + delayMicroseconds(1); // delay to let the clock settle out + while (digitalRead(TOUCH_CLK) == LOW) { // loop until the clock goes high + if (watchdog >= timeout) { //check for infinite loop + touchpad_error = HIGH; // flag the touchpad as bad + break; // break out of infinite loop + } + } + for (int k=0; k<8; k++) { + delayMicroseconds(1); // delay to let the clock settle out + while (digitalRead(TOUCH_CLK) == HIGH) { // loop until the clock goes low + if (watchdog >= timeout) { //check for infinite loop + touchpad_error = HIGH; // flag the touchpad as bad + break; // break out of infinite loop + } + } + if (digitalRead(TOUCH_DATA)) { // check if data is high + rcv_touch_data = rcv_touch_data | mask; // set the appropriate bit in the rcv data + rcv_parity++; // increment the parity bit counter + } + mask = mask << 1; + delayMicroseconds(1); // delay to let the clock settle out + while (digitalRead(TOUCH_CLK) == LOW) { // loop until the clock goes high + if (watchdog >= timeout) { //check for infinite loop + touchpad_error = HIGH; // flag the touchpad as bad + break; // break out of infinite loop + } + } + } +// receive parity + delayMicroseconds(1); // delay to let the clock settle out + while (digitalRead(TOUCH_CLK) == HIGH) { // loop until the clock goes low + if (watchdog >= timeout) { //check for infinite loop + touchpad_error = HIGH; // flag the touchpad as bad + break; // break out of infinite loop + } + } + if (digitalRead(TOUCH_DATA)) { // check if received parity is high + rcv_parity++; // increment the parity bit counter + } + rcv_parity = rcv_parity & 1; // mask off all bits except the lsb + if (rcv_parity == 0) { // check for bad (even) parity + // bad parity - pass to future error handler + } + delayMicroseconds(1); // delay to let the clock settle out + while (digitalRead(TOUCH_CLK) == LOW) { // loop until the clock goes high + if (watchdog >= timeout) { //check for infinite loop + touchpad_error = HIGH; // flag the touchpad as bad + break; // break out of infinite loop + } + } +// stop bit + delayMicroseconds(1); // delay to let the clock settle out + while (digitalRead(TOUCH_CLK) == HIGH) { // loop until the clock goes low + if (watchdog >= timeout) { //check for infinite loop + touchpad_error = HIGH; // flag the touchpad as bad + break; // break out of infinite loop + } + } + if (digitalRead(TOUCH_DATA) == LOW) { // check if stop bit is bad (low) + // send bad stop bit to future error handler + } + delayMicroseconds(1); // delay to let the clock settle out + while (digitalRead(TOUCH_CLK) == LOW) { // loop until the clock goes high + if (watchdog >= timeout) { //check for infinite loop + touchpad_error = HIGH; // flag the touchpad as bad + break; // break out of infinite loop + } + } +// Inhibit the bus so the touchpad only talks when we're listening + go_0(TOUCH_CLK); + return rcv_touch_data; // pass the received data back +} +// +void touchpad_init() +{ + touchpad_error = LOW; // start with no error + go_pu(TOUCH_CLK); // float the clock and data to touchpad + go_pu(TOUCH_DATA); + // Sending reset command to touchpad + touch_write(0xff); + if (touch_read() != 0xfa) { // verify correct ack byte + touchpad_error = HIGH; + } + delay(1000); // wait 1000ms so tp can run its self diagnostic + // verify proper response from touchpad + if (touch_read() != 0xaa) { // verify basic assurance test passed + touchpad_error = HIGH; + } + if (touch_read() != 0x00) { // verify basic assurance test passed + touchpad_error = HIGH; + } + // Send touchpad disable code + touch_write(0xf5); // tp disable + if (touch_read() != 0xfa) { // verify correct ack byte + touchpad_error = HIGH; + } + // Load Mode Byte with 00 using the following special sequence from page 38. + // Send set resolution to 0 four times followed by a set sample rate to 0x14 +// #1 set resolution + touch_write(0xe8); // set resolution + if (touch_read() != 0xfa) { // verify correct ack byte + touchpad_error = HIGH; + } + touch_write(0x01); // to zero + if (touch_read() != 0xfa) { // verify correct ack byte + touchpad_error = HIGH; + } +// #2 set resolution + touch_write(0xe8); // set resolution + if (touch_read() != 0xfa) { // verify correct ack byte + touchpad_error = HIGH; + } + touch_write(0x00); // to zero + if (touch_read() != 0xfa) { // verify correct ack byte + touchpad_error = HIGH; + } +// #3 set resolution + touch_write(0xe8); // set resolution + if (touch_read() != 0xfa) { // verify correct ack byte + touchpad_error = HIGH; + } + touch_write(0x00); // to zero + if (touch_read() != 0xfa) { // verify correct ack byte + touchpad_error = HIGH; + } +// #4 set resolution + touch_write(0xe8); // set resolution + if (touch_read() != 0xfa) { // verify correct ack byte + touchpad_error = HIGH; + } + touch_write(0x00); // to zero + if (touch_read() != 0xfa) { // verify correct ack byte + touchpad_error = HIGH; + } +// Set sample rate + touch_write(0xf3); // set sample rate + if (touch_read() != 0xfa) { // verify correct ack byte + touchpad_error = HIGH; + } + touch_write(0x14); // to 14 hex + if (touch_read() != 0xfa) { // verify correct ack byte + touchpad_error = HIGH; + } + // set the resolution + touch_write(0xe8); // Sending resolution command + if (touch_read() != 0xfa) { // verify correct ack byte + touchpad_error = HIGH; + } + touch_write(0x03); // value of 0x03 = 8 counts/mm resolution (default is 4 counts/mm) + if (touch_read() != 0xfa) { // verify correct ack byte + touchpad_error = HIGH; + } + // set the sample rate + touch_write(0xf3); // Sending sample rate command + if (touch_read() != 0xfa) { // verify correct ack byte + touchpad_error = HIGH; + } + touch_write(0x28); // 0x28 = 40 samples per second, the default value used for Synaptics TP + if (touch_read() != 0xfa) { // verify correct ack byte + touchpad_error = HIGH; + } + // Sending remote mode code so the touchpad will send data only when polled + touch_write(0xf0); // remote mode + if (touch_read() != 0xfa) { // verify correct ack byte + touchpad_error = HIGH; + } + // Sending touchpad enable code (needed for Elan touchpads) + touch_write(0xf4); // tp enable + if (touch_read() != 0xfa) { // verify correct ack byte + touchpad_error = HIGH; + } +} +//************************************Setup******************************************* +void setup() { +// ************trackpoint setup + trackpoint_init(); // reset trackpoint, then set it's resolution and put it in remote mode + if (trackpoint_error) { + delay(500); // wait 1/2 sec + trackpoint_init(); // try one more time to initialize the trackpoint + } +// ************touchpad setup + touchpad_init(); // reset touchpad, then set it's resolution and put it in remote mode + if (touchpad_error) { + delay(500); // wait 1/2 sec + touchpad_init(); // try one more time to initialize the touchpad + } +// ************keyboard setup + for (int a = 0; a < cols_max; a++) { // loop thru all column pins + go_pu(Col_IO[a]); // set each column pin as an input with a pullup + } +// + for (int b = 0; b < rows_max; b++) { // loop thru all row pins + go_z(Row_IO[b]); // set each row pin as a floating output + } +// +// Turn off Num lock if it's on at power up. This avoids unwanted numbers showing up instead of letters. + extern volatile uint8_t keyboard_leds; // 8 bits sent from Host to Teensy that give keyboard LED status. + delay(1000); // wait to let the Teensy receive keyboard_leds byte from host + if (keyboard_leds & 1) { // test if bit d0 is set, this is the num lock bit + Keyboard.press(KEY_NUM_LOCK); // Press the num lock key to de-select it + delay(5); // delay 5 milliseconds before releasing the key + Keyboard.release(KEY_NUM_LOCK); // Release the num lock key + } +// + go_pu(HOTKEY); // Pull up the Fn "Hotkey" input so it can be read. If key pressed, it will be low. +// + pinMode(BLINK_LED, OUTPUT); // I/O 13 drives the LED on the Teensy as a heartbeat +} +// +// *******declare and initialize trackpoint variables +char mstat_track; // trackpoint status reg = Y overflow, X overflow, Y sign bit, X sign bit, Always 1, Middle Btn, Right Btn, Left Btn +char mx_track; // trackpoint x movement = 8 data bits. The sign bit is in the status register to + // make a 9 bit 2's complement value. Left to right on the trackpoint gives a positive value. +char my_track; // trackpoint y movement also 8 bits plus sign. trackpoint movement away from the user gives a positive value. +boolean over_flow_track; // set if x or y movement values are bad due to overflow +boolean left_button_track = 0; // on/off variable for left button = bit 0 of mstat_track +boolean right_button_track = 0; // on/off variable for right button = bit 1 of mstat_track +boolean middle_button_track = 0; // on/off variable for middle button = bit 2 of mstat_track +boolean old_left_button_track = 0; // on/off variable for left button status the previous polling cycle +boolean old_right_button_track = 0; // on/off variable for right button status the previous polling cycle +boolean old_middle_button_track = 0; // on/off variable for middle button status the previous polling cycle +boolean button_change_track = 0; // Active high, shows when any trackpoint button has changed since last polling cycle +// +// ********declare and initialize touchpad variables + char mstat_touch; // touchpad status reg = Y overflow, X overflow, Y sign bit, X sign bit, Always 1, Middle Btn, Right Btn, Left Btn + char mx_touch; // touchpad x movement = 8 data bits. The sign bit is in the status register to + // make a 9 bit 2's complement value. Left to right on the touchpad gives a positive value. + char my_touch; // touchpad y movement also 8 bits plus sign. Touchpad movement away from the user gives a positive value. + boolean over_flow_touch; // set if x or y movement values are bad due to overflow + boolean left_button_touch = 0; // on/off variable for left button = bit 0 of mstat_touch + boolean right_button_touch = 0; // on/off variable for right button = bit 1 of mstat_touch + boolean old_left_button_touch = 0; // on/off variable for left button status the previous polling cycle + boolean old_right_button_touch = 0; // on/off variable for right button status the previous polling cycle + boolean button_change_touch = 0; // Active high, shows when a touchpad left or right button has changed since last polling cycle +// +// **********declare and initialize keyboard variables +boolean Fn_pressed = HIGH; // Initialize Fn key to HIGH = "not pressed" +extern volatile uint8_t keyboard_leds; // 8 bits sent from Host to Teensy that give keyboard LED status. +char blink_count = 0; // Blink loop counter +boolean blinky = LOW; // Blink LED state +// +//*********************************Main Loop******************************************** +// +void loop() { +// *************Keyboard Main************** +// Read the Fn key (aka Hotkey) which is not part of the key matrix + if (!digitalRead(HOTKEY)) { + Fn_pressed = LOW; // Fn key is pressed (active low) + } + else { + Fn_pressed = HIGH; // Fn key is not pressed + } +// +// Scan keyboard matrix with an outer loop that drives each row low and an inner loop that reads every column (with pull ups). +// The routine looks at each key's present state (by reading the column input pin) and also the previous state from the last scan +// that was 30msec ago. The status of a key that was just pressed or just released is sent over USB and the state is saved in the old_key matrix. +// The keyboard keys will read as logic low if they are pressed (negative logic). +// The old_key matrix also uses negative logic (low=pressed). +// + for (int x = 0; x < rows_max; x++) { // loop thru the rows + go_0(Row_IO[x]); // Activate Row (send it low) + delayMicroseconds(10); // give the row time to go low and settle out + for (int y = 0; y < cols_max; y++) { // loop thru the columns +// **********Modifier keys + if (modifier[x][y] != 0) { // check if modifier key exists at this location in the array (a non-zero value) + if (!digitalRead(Col_IO[y]) && (old_key[x][y])) { // Read column to see if key is low (pressed) and was previously not pressed + load_mod(modifier[x][y]); // function reads which modifier key is pressed and loads it into the appropriate mod_... variable + send_mod(); // function sends the state of all modifier keys over usb including the one that just got pressed + old_key[x][y] = LOW; // Save state of key as "pressed" + } + else if (digitalRead(Col_IO[y]) && (!old_key[x][y])) { //check if key is not pressed and was previously pressed + clear_mod(modifier[x][y]); // function reads which modifier key was released and loads 0 into the appropriate mod_... variable + send_mod(); // function sends all mod's over usb including the one that just released + old_key[x][y] = HIGH; // Save state of key as "not pressed" + } + } +// ***********end of modifier section +// +// ***********Normal keys section + else if (normal[x][y] != 0) { // check if normal key exists at this location in the array (a non-zero value) + if (!digitalRead(Col_IO[y]) && (old_key[x][y]) && (!slots_full)) { // check if key pressed and not previously pressed and slots not full + old_key[x][y] = LOW; // Save state of key as "pressed" + if ((normal[x][y] == KEY_SCROLL_LOCK) && (!Fn_pressed)) { // check for special case of Num Lock Key + load_slot(KEY_NUM_LOCK); // update first available slot with Num Lock instead of Scroll Lock + send_normals(); // send all slots over USB including the Num Lock Key that just got pressed + } + else if ((normal[x][y] == KEY_F1) && (!Fn_pressed)) { // check for special case of Fn & F1 to toggle trackpoint on/off + trackpoint_error = !trackpoint_error; // invert the state of the trackpoint error flag to turn it on or off + while (!digitalRead(Col_IO[y])) { // loop until F1 key is released + delay(1); // + } + } + else if ((normal[x][y] == KEY_F2) && (!Fn_pressed)) { // check for special case of Fn & F2 to toggle touchpad on/off + touchpad_error = !touchpad_error; // invert the state of the touchpad error flag to turn it on or off + while (!digitalRead(Col_IO[y])) { // loop until F2 key is released + delay(1); // + } + } + else if (keyboard_leds & 1) { // test if Num Lock is turned on + load_slot(numlock[x][y]); //update first available slot with key name from numlock matrix + send_normals(); // send all slots over USB including the key that just got pressed + } + else { + load_slot(normal[x][y]); //update first available slot with normal key name + send_normals(); // send all slots over USB including the key that just got pressed + } + } + else if (digitalRead(Col_IO[y]) && (!old_key[x][y])) { //check if key is not pressed, but was previously pressed + old_key[x][y] = HIGH; // Save state of key as "not pressed" + if ((normal[x][y] == KEY_SCROLL_LOCK) && (!Fn_pressed)) { // check for special case of Num Lock Key + clear_slot(KEY_NUM_LOCK); // clear the slot that contains Num Lock + send_normals(); // send all slots over USB including the Num Lock key + } + else if (keyboard_leds & 1) { // test if Num Lock is turned on + clear_slot(numlock[x][y]); //clear slot with key name from numlock matrix + send_normals(); // send all slots over USB including the key that just got released + } + else { + clear_slot(normal[x][y]); //clear the slot that contains the normal key name + send_normals(); // send all slots over USB including the key that was just released + } + } + } +// **************end of normal section +// +// *************Volume key section. Note PJRC states that volume up, down, & mute should be sent with Keyboard.press function. + else if (media[x][y] != 0) { // check if any volume control key exists at this location in the array (a non-zero value) + if (!digitalRead(Col_IO[y]) && (old_key[x][y])) { // check if key is pressed and was not previously pressed + old_key[x][y] = LOW; // Save state of key as "pressed" + Keyboard.press(media[x][y]); // send volume key press + } + else if (digitalRead(Col_IO[y]) && (!old_key[x][y])) { //check if key is not pressed, but was previously pressed + old_key[x][y] = HIGH; // Save state of key as "not pressed" + Keyboard.release(media[x][y]); // send volume key release + } + } +// ***************end of volume section + } + go_z(Row_IO[x]); // De-activate Row (send it to hi-z) + } +// +// **********keyboard scan complete +// +// ****************************Read the Trackpoint registers********************************* +// + if (!trackpoint_error) { // check if trackpoint is working and enabled + // poll the trackpoint for new movement data + over_flow_track = 0; // assume no overflow until status is received + trackp_write(0xeb); // request data + if (trackp_read() != 0xfa) { // verify correct ack byte + trackpoint_error = HIGH; + } + mstat_track = trackp_read(); // save into status variable + mx_track = trackp_read(); // save into x variable + my_track = trackp_read(); // save into y variable + if (((0x80 & mstat_track) == 0x80) || ((0x40 & mstat_track) == 0x40)) { // x or y overflow bits set? + over_flow_track = 1; // set the overflow flag + } +// change the x data from 9 bit to 8 bit 2's complement + mx_track = mx_track >> 1; // convert to 7 bits of data by dividing by 2 + mx_track = mx_track & 0x7f; // don't allow sign extension + if ((0x10 & mstat_track) == 0x10) { // move the sign into the 8th bit position + mx_track = 0x80 | mx_track; + } +// change the y data from 9 bit to 8 bit 2's complement and then take the 2's complement +// because y movement on ps/2 format is opposite of touchpad.move function + my_track = my_track >> 1; // convert to 7 bits of data by dividing by 2 + my_track = my_track & 0x7f; // don't allow sign extension + if ((0x20 & mstat_track) == 0x20) { // move the sign into + my_track = 0x80 | my_track; // the 8th bit position + } + my_track = (~my_track + 0x01); // change the sign of y data by taking the 2's complement (invert and add 1) +// zero out mx_track and my_track if over_flow_track or trackpoint_error is set + if ((over_flow_track) || (trackpoint_error)) { + mx_track = 0x00; // data is garbage so zero it out + my_track = 0x00; + } + } +// +// ***********************Read the Touchpad registers +// + if (touchpad_error == LOW) { // check if touchpad is working and enabled +// poll the touchpad for new movement data + over_flow_touch = 0; // assume no overflow until status is received + touch_write(0xeb); // request data + if (touch_read() != 0xfa) { // verify correct ack byte + touchpad_error = HIGH; + } + mstat_touch = touch_read(); // save into status variable + mx_touch = touch_read(); // save into x variable + my_touch = touch_read(); // save into y variable + if (((0x80 & mstat_touch) == 0x80) || ((0x40 & mstat_touch) == 0x40)) { // x or y overflow bits set? + over_flow_touch = 1; // set the overflow flag + } +// change the x data from 9 bit to 8 bit 2's complement + mx_touch = mx_touch & 0x7f; // mask off 8th bit + if ((0x10 & mstat_touch) == 0x10) { // move the sign into the 8th bit position + mx_touch = 0x80 | mx_touch; + } +// change the y data from 9 bit to 8 bit 2's complement and then take the 2's complement +// because y movement on ps/2 format is opposite of touchpad.move function + my_touch = my_touch & 0x7f; // mask off 8th bit + if ((0x20 & mstat_touch) == 0x20) { // move the sign into + my_touch = 0x80 | my_touch; // the 8th bit position + } + my_touch = (~my_touch + 0x01); // change the sign of y data by taking the 2's complement (invert and add 1) +// zero out mx_touch and my_touch if over_flow_touch or touchpad_error is set + if ((over_flow_touch) || (touchpad_error)) { + mx_touch = 0x00; // data is garbage so zero it out + my_touch = 0x00; + } + } +// send the x and y trackpoint data over USB if x or y is non-zero + if ((mx_track != 0x00) || (my_track != 0x00)) { + Mouse.move(mx_track,my_track); + } +// if no trackpoint data, send the x and y touchpad data over USB if x or y is non-zero + else if ((mx_touch != 0x00) || (my_touch != 0x00)) { + Mouse.move(mx_touch,my_touch); + } +// +// trackpoint button status +// + if ((0x01 & mstat_track) == 0x01) { // if left button set + left_button_track = 1; + } + else { // clear left button + left_button_track = 0; + } + if ((0x02 & mstat_track) == 0x02) { // if right button set + right_button_track = 1; + } + else { // clear right button + right_button_track = 0; + } + if ((0x04 & mstat_track) == 0x04) { // if middle button set + middle_button_track = 1; + } + else { // clear middle button + middle_button_track = 0; + } + // Determine if any trackpoint buttons have changed since last polling cycle + button_change_track = ((left_button_track ^ old_left_button_track) | (right_button_track ^ old_right_button_track) | (middle_button_track ^ old_middle_button_track)); +// touchpad button status + if ((0x01 & mstat_touch) == 0x01) { // if left button set + left_button_touch = 1; + } + else { // clear left button + left_button_touch = 0; + } + if ((0x02 & mstat_touch) == 0x02) { // if right button set + right_button_touch = 1; + } + else { // clear right button + right_button_touch = 0; + } + // Determine if any touchpad buttons have changed since last polling cycle + button_change_touch = (left_button_touch ^ old_left_button_touch) | (right_button_touch ^ old_right_button_touch); +// +// Send trackpoint button status if there was a change since last time. + if (button_change_track) { + Mouse.set_buttons(left_button_track, middle_button_track, right_button_track); // send button status + old_left_button_track = left_button_track; // remember new button status for next polling cycle + old_right_button_track = right_button_track; + old_middle_button_track = middle_button_track; + } +// if no button change from trackpoint, check if touchpad buttons have changed + else if (button_change_touch){ + Mouse.set_buttons(left_button_touch, 0, right_button_touch); // send button status + old_left_button_touch = left_button_touch; // remember new button status for next polling cycle + old_right_button_touch = right_button_touch; + } +// +// **************************************End of trackpoint/touchpad routine*********************************** +// +// *******keyboard LEDs +// Turn on or off the LEDs for Num Lock and Caps Lock based on bit 0 and 1 from the keyboard_leds +// variable controlled by the USB host computer +// + if (keyboard_leds & 1) { // mask off all bits but D0 and test if set + go_1(NUM_LED); // turn on the Num Lock LED + } + else { + go_0(NUM_LED); // turn off the Num Lock LED + } +// +// + if (keyboard_leds & 1<<1) { // mask off all bits but D1 and test if set + go_1(CAPS_LED); // turn on the Caps Lock LED + } + else { + go_0(CAPS_LED); // turn off the Caps Lock LED + } +// +// Blink LED on Teensy to show a heart beat +// + if (blink_count == 0x17) { + digitalWrite(BLINK_LED, blinky); + blinky = !blinky; + blink_count = 0; + } + else { + blink_count = blink_count + 1; + } +// +// ****************End of main loop +// + delay(24); // The overall keyboard/trackpoint scanning rate is approximately 30ms +}