From 416d80b7e4d62655eaae53f0c0a634cff9cdac68 Mon Sep 17 00:00:00 2001 From: Frank Adams Date: Sat, 19 Sep 2020 18:50:15 -0700 Subject: [PATCH] Add files via upload --- .../Toshiba_2415/Toshiba_2415_KVM.ino | 935 ++++++++++++++++++ 1 file changed, 935 insertions(+) create mode 100644 Example_Keyboards/Toshiba_2415/Toshiba_2415_KVM.ino diff --git a/Example_Keyboards/Toshiba_2415/Toshiba_2415_KVM.ino b/Example_Keyboards/Toshiba_2415/Toshiba_2415_KVM.ino new file mode 100644 index 0000000..6e2d516 --- /dev/null +++ b/Example_Keyboards/Toshiba_2415/Toshiba_2415_KVM.ino @@ -0,0 +1,935 @@ +/* Copyright 2020 Frank Adams + Licensed under the Apache License, Version 2.0 (the "License"); + you may not use this file except in compliance with the License. + You may obtain a copy of the License at + http://www.apache.org/licenses/LICENSE-2.0 + Unless required by applicable law or agreed to in writing, software + distributed under the License is distributed on an "AS IS" BASIS, + WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. + See the License for the specific language governing permissions and + limitations under the License. +*/ +// This Teensy 3.2 software controls the keyboard and touchpad in a gutted Toshiba 2415 laptop to create a composite USB +// keyboard/mouse device. The caps lock, num lock, and cursor lock LEDs built into the keyboard are driven by the Teensy. +// Scroll lock can also be turned on/off but is only displayed on the LED that is on the Teensy. The touchpad can be +// toggled on/off with Fn-F9. Volume Mute is done with Fn-Esc, Volume Down with Fn-F1, Volumne Up with Fn-F2. +// An M.NT68676.2A video card receives HDMI from a PC and converts it to LVDS for the display. The Teensy code +// controls the video card's Menu, Down, and Up push buttons so that the dispaly brightness can be adjusted down or up +// with Fn-F6 and Fn-F7. The contrast is controlled down and up with Fn-F3 and Fn-F4. +// +// Revision History +// Initial Release Sept 19, 2020 +// +#define MODIFIERKEY_FN 0x8f // give Fn key a fake HID code +#define KEY_ARROW_LOCK KEY_F13 // give arrow lock key an unused code +#define KEY_TP_TOGGLE KEY_F14 // give TP Toggle key an unused code +#define KEY_BRT_DN KEY_F15 // give LCD Down key an unused code +#define KEY_BRT_UP KEY_F16 // give LCD Up key an unused code +#define KEY_LCD_POWER KEY_F17 // give LCD Off key an unused code +#define KEY_CON_DN KEY_F18 // give LCD Contrast down key an unused code +#define KEY_CON_UP KEY_F19 // give LCD Contrast up key an unused code +// LED I/O connections +#define CAPS_LED 16 +#define NUM_LED 23 +#define SCRL_LED 13 // this is the LED on the Teensy +#define ARROW_LED 2 +// TP I/O connections +#define TP_CLK 15 +#define TP_DATA 14 +// Video Card push button connections to I/O's +#define Vol_Up 1 // The Teensy takes the place of the push button switches to navigate the menus of the video card. +#define Vol_Dn 0 // The signals are driven low or floated by the Teensy (acts like open drain). +#define Menu 22 // The LCD Controller card has pullups on these signals to 3.3 volts. +#define On_Off 21 // +#define Lo_time 100 // time in milliseconds that the push button signal is sent low +#define Hi_time 400 // time in milliseconds that the push button signal is sent high + +const byte rows_max = 16; // sets the number of rows in the matrix +const byte cols_max = 8; // sets the number of columns in the matrix +// +// Load the normal key matrix with the Teensyduino key names +// described at www.pjrc.com/teensy/td_keyboard.html +// A zero indicates no normal key at that location. +int normal[rows_max][cols_max] = { + {KEY_CAPS_LOCK,KEY_A,KEY_Z,KEY_Q,KEY_1,KEY_F1,KEY_TAB,KEY_ESC}, + {0,0,0,0,0,0,0,0}, + {0,0,0,0,0,0,0,0}, + {0,0,0,0,0,0,0,0}, + {KEY_X,KEY_TILDE,0,KEY_S,KEY_2,KEY_F3,KEY_W,KEY_F2}, + {KEY_C,0,KEY_PRINTSCREEN,KEY_D,KEY_E,KEY_3,KEY_F5,KEY_F4}, + {KEY_DELETE,0,KEY_RIGHT,KEY_PERIOD,KEY_O,KEY_9,KEY_L,KEY_F12}, + {KEY_V,0,KEY_PAUSE,0,KEY_F6,KEY_R,KEY_F,KEY_4}, + {0,0,0,0,0,0,0,0}, + {KEY_SEMICOLON,0,KEY_SLASH,KEY_LEFT_BRACE,KEY_MINUS,KEY_0,KEY_P,KEY_SPACE}, + {0,KEY_N,KEY_LEFT,0,KEY_F9,KEY_Y,KEY_H,KEY_6}, + {0,KEY_B,0,KEY_G,KEY_T,KEY_5,KEY_F8,KEY_F7}, + {KEY_INSERT,0,KEY_DOWN,KEY_COMMA,KEY_I,KEY_8,KEY_K,KEY_F11}, + {KEY_M,0,KEY_UP,KEY_J,KEY_U,KEY_7,0,KEY_F10}, + {KEY_QUOTE,KEY_ENTER,0,KEY_RIGHT_BRACE,0,KEY_EQUAL,KEY_BACKSPACE,0}, + {KEY_END,KEY_BACKSLASH,KEY_MENU,KEY_PAGE_DOWN,KEY_HOME,0,KEY_PAGE_UP,0} +}; +// Load the numlock key matrix with key names at the correct row-column location. +// This matrix is the same as the normal matrix except for the number pad keys +// A zero indicates no numlock key at that location. +int numlock[rows_max][cols_max] = { + {KEY_CAPS_LOCK,KEY_A,KEY_Z,KEY_Q,KEY_1,KEY_F1,KEY_TAB,KEY_ESC}, + {0,0,0,0,0,0,0,0}, + {0,0,0,0,0,0,0,0}, + {0,0,0,0,0,0,0,0}, + {KEY_X,KEY_TILDE,0,KEY_S,KEY_2,KEY_F3,KEY_W,KEY_F2}, + {KEY_C,0,KEY_PRINTSCREEN,KEY_D,KEY_E,KEY_3,KEY_F5,KEY_F4}, + {KEY_DELETE,0,KEY_RIGHT,KEYPAD_PERIOD,KEYPAD_6,KEYPAD_9,KEYPAD_3,KEY_F12}, + {KEY_V,0,KEY_PAUSE,0,KEY_F6,KEY_R,KEY_F,KEY_4}, + {0,0,0,0,0,0,0,0}, + {KEYPAD_PLUS,0,KEYPAD_SLASH,KEY_LEFT_BRACE,KEY_MINUS,KEYPAD_ASTERIX,KEYPAD_MINUS,KEY_SPACE}, + {0,KEY_N,KEY_LEFT,0,KEY_F9,KEY_Y,KEY_H,KEY_6}, + {0,KEY_B,0,KEY_G,KEY_T,KEY_5,KEY_F8,KEY_F7}, + {KEY_INSERT,0,KEY_DOWN,KEY_COMMA,KEYPAD_5,KEYPAD_8,KEYPAD_2,KEY_F11}, + {KEYPAD_0,0,KEY_UP,KEYPAD_1,KEYPAD_4,KEYPAD_7,0,KEY_F10}, + {KEY_QUOTE,KEY_ENTER,0,KEY_RIGHT_BRACE,0,KEY_EQUAL,KEY_BACKSPACE,0}, + {KEY_END,KEY_BACKSLASH,KEY_MENU,KEY_PAGE_DOWN,KEY_HOME,0,KEY_PAGE_UP,0} +}; +// Load the arrowlock key matrix with key names at the correct row-column location. +// This matrix is the same as the normal matrix except for the arrow pad keys +// A zero indicates no numlock key at that location. +int arrowlock[rows_max][cols_max] = { + {KEY_CAPS_LOCK,KEY_A,KEY_Z,KEY_Q,KEY_1,KEY_F1,KEY_TAB,KEY_ESC}, + {0,0,0,0,0,0,0,0}, + {0,0,0,0,0,0,0,0}, + {0,0,0,0,0,0,0,0}, + {KEY_X,KEY_TILDE,0,KEY_S,KEY_2,KEY_F3,KEY_W,KEY_F2}, + {KEY_C,0,KEY_PRINTSCREEN,KEY_D,KEY_E,KEY_3,KEY_F5,KEY_F4}, + {KEY_DELETE,0,KEY_RIGHT,KEY_DELETE,KEYPAD_6,KEY_PAGE_UP,KEY_PAGE_DOWN,KEY_F12}, + {KEY_V,0,KEY_PAUSE,0,KEY_F6,KEY_R,KEY_F,KEY_4}, + {0,0,0,0,0,0,0,0}, + {KEY_SEMICOLON,0,KEY_SLASH,KEY_LEFT_BRACE,KEY_MINUS,KEY_0,KEY_P,KEY_SPACE}, + {0,KEY_N,KEY_LEFT,0,KEY_F9,KEY_Y,KEY_H,KEY_6}, + {0,KEY_B,0,KEY_G,KEY_T,KEY_5,KEY_F8,KEY_F7}, + {KEY_INSERT,0,KEY_DOWN,KEY_COMMA,0,KEY_UP,KEY_DOWN,KEY_F11}, + {KEY_INSERT,0,KEY_UP,KEY_END,KEY_LEFT,KEY_HOME,0,KEY_F10}, + {KEY_QUOTE,KEY_ENTER,0,KEY_RIGHT_BRACE,0,KEY_EQUAL,KEY_BACKSPACE,0}, + {KEY_END,KEY_BACKSLASH,KEY_MENU,KEY_PAGE_DOWN,KEY_HOME,0,KEY_PAGE_UP,0} +}; +// Load the modifier key matrix with key names at the correct row-column location. +// A zero indicates no modifier key at that location. +int modifier[rows_max][cols_max] = { + {0,0,0,0,0,0,0,0}, + {MODIFIERKEY_LEFT_CTRL,0,0,0,0,0,0,0}, + {0,MODIFIERKEY_LEFT_SHIFT,0,0,0,0,0,MODIFIERKEY_RIGHT_SHIFT}, + {0,0,MODIFIERKEY_FN,0,0,0,MODIFIERKEY_GUI,0}, + {0,0,0,0,0,0,0,0}, + {0,0,0,0,0,0,0,0}, + {0,0,0,0,0,0,0,0}, + {0,0,0,0,0,0,0,0}, + {0,0,0,MODIFIERKEY_LEFT_ALT,MODIFIERKEY_RIGHT_ALT,0,0,0}, + {0,0,0,0,0,0,0,0}, + {0,0,0,0,0,0,0,0}, + {0,0,0,0,0,0,0,0}, + {0,0,0,0,0,0,0,0}, + {0,0,0,0,0,0,0,0}, + {0,0,0,0,0,0,0,0}, + {0,0,0,0,0,0,0,0} +}; +// Load the media key matrix with Fn key names at the correct row-column location. +// A zero indicates no media key at that location. +int media[rows_max][cols_max] = { + {0,0,0,0,0,KEY_MEDIA_VOLUME_DEC,0,KEY_MEDIA_MUTE}, + {0,0,0,0,0,0,0,0}, + {0,0,0,0,0,0,0,0}, + {0,0,0,0,0,0,0,0}, + {0,0,0,0,0,KEY_CON_DN,0,KEY_MEDIA_VOLUME_INC}, + {0,0,0,0,0,0,KEY_LCD_POWER,KEY_CON_UP}, + {0,0,0,0,0,0,0,KEY_SCROLL_LOCK}, + {0,0,0,0,KEY_BRT_DN,0,0,0}, + {0,0,0,0,0,0,0,0}, + {0,0,0,0,0,0,0,0}, + {0,0,0,0,KEY_TP_TOGGLE,0,0,0}, + {0,0,0,0,0,0,0,KEY_BRT_UP}, + {0,0,0,0,0,0,0,KEY_NUM_LOCK}, + {0,0,0,0,0,0,0,KEY_ARROW_LOCK}, + {0,0,0,0,0,0,0,0}, + {0,0,0,0,0,0,0,0} +}; +// Initialize the old_key matrix with one's. +// 1 = key not pressed, 0 = key is pressed +boolean old_key[rows_max][cols_max] = { + {1,1,1,1,1,1,1,1}, + {1,1,1,1,1,1,1,1}, + {1,1,1,1,1,1,1,1}, + {1,1,1,1,1,1,1,1}, + {1,1,1,1,1,1,1,1}, + {1,1,1,1,1,1,1,1}, + {1,1,1,1,1,1,1,1}, + {1,1,1,1,1,1,1,1}, + {1,1,1,1,1,1,1,1}, + {1,1,1,1,1,1,1,1}, + {1,1,1,1,1,1,1,1}, + {1,1,1,1,1,1,1,1}, + {1,1,1,1,1,1,1,1}, + {1,1,1,1,1,1,1,1}, + {1,1,1,1,1,1,1,1}, + {1,1,1,1,1,1,1,1} +}; +// +// Assign the Teensy I/O row numbers +int Row_IO[rows_max] = {20,3,18,5,24,7,9,26,10,11,28,12,32,31,30,29}; +// +// Assignb the column I/O numbers +int Col_IO[cols_max] = {19,4,17,6,25,8,33,27}; +// +// Declare variables that will be used by functions +boolean slots_full = LOW; // Goes high when slots 1 thru 6 contain normal keys +boolean touchpad_error = LOW; // sent high when touch pad routine times out +// +// slot 1 thru slot 6 hold the normal key values to be sent over USB. +int slot1 = 0; //value of 0 means the slot is empty and can be used. +int slot2 = 0; +int slot3 = 0; +int slot4 = 0; +int slot5 = 0; +int slot6 = 0; +// +int mod_shift_l = 0; // These variables are sent over USB as modifier keys. +int mod_shift_r = 0; // Each is either set to 0 or MODIFIER_ ... +int mod_ctrl_l = 0; +int mod_ctrl_r = 0; +int mod_alt_l = 0; +int mod_alt_r = 0; +int mod_gui = 0; +// +// Function to load the key name into the first available slot +void load_slot(int key) { + if (!slot1) { + slot1 = key; + } + else if (!slot2) { + slot2 = key; + } + else if (!slot3) { + slot3 = key; + } + else if (!slot4) { + slot4 = key; + } + else if (!slot5) { + slot5 = key; + } + else if (!slot6) { + slot6 = key; + } + if (!slot1 || !slot2 || !slot3 || !slot4 || !slot5 || !slot6) { + slots_full = LOW; // slots are not full + } + else { + slots_full = HIGH; // slots are full + } +} +// +// Function to clear the slot that contains the key name +void clear_slot(int key) { + if (slot1 == key) { + slot1 = 0; + } + else if (slot2 == key) { + slot2 = 0; + } + else if (slot3 == key) { + slot3 = 0; + } + else if (slot4 == key) { + slot4 = 0; + } + else if (slot5 == key) { + slot5 = 0; + } + else if (slot6 == key) { + slot6 = 0; + } + if (!slot1 || !slot2 || !slot3 || !slot4 || !slot5 || !slot6) { + slots_full = LOW; // slots are not full + } + else { + slots_full = HIGH; // slots are full + } +} +// +// Function to load the modifier key name into the appropriate mod variable +void load_mod(int m_key) { + if (m_key == MODIFIERKEY_LEFT_SHIFT) { + mod_shift_l = m_key; + } + else if (m_key == MODIFIERKEY_RIGHT_SHIFT) { + mod_shift_r = m_key; + } + else if (m_key == MODIFIERKEY_LEFT_CTRL) { + mod_ctrl_l = m_key; + } + else if (m_key == MODIFIERKEY_RIGHT_CTRL) { + mod_ctrl_r = m_key; + } + else if (m_key == MODIFIERKEY_LEFT_ALT) { + mod_alt_l = m_key; + } + else if (m_key == MODIFIERKEY_RIGHT_ALT) { + mod_alt_r = m_key; + } + else if (m_key == MODIFIERKEY_GUI) { + mod_gui = m_key; + } +} +// +// Function to load 0 into the appropriate mod variable +void clear_mod(int m_key) { + if (m_key == MODIFIERKEY_LEFT_SHIFT) { + mod_shift_l = 0; + } + else if (m_key == MODIFIERKEY_RIGHT_SHIFT) { + mod_shift_r = 0; + } + else if (m_key == MODIFIERKEY_LEFT_CTRL) { + mod_ctrl_l = 0; + } + else if (m_key == MODIFIERKEY_RIGHT_CTRL) { + mod_ctrl_r = 0; + } + else if (m_key == MODIFIERKEY_LEFT_ALT) { + mod_alt_l = 0; + } + else if (m_key == MODIFIERKEY_RIGHT_ALT) { + mod_alt_r = 0; + } + else if (m_key == MODIFIERKEY_GUI) { + mod_gui = 0; + } +} +// +// Function to send the modifier keys over usb +void send_mod() { + Keyboard.set_modifier(mod_shift_l | mod_shift_r | mod_ctrl_l | mod_ctrl_r | mod_alt_l | mod_alt_r | mod_gui); + Keyboard.send_now(); +} +// +// Function to send the normal keys in the 6 slots over usb +void send_normals() { + Keyboard.set_key1(slot1); + Keyboard.set_key2(slot2); + Keyboard.set_key3(slot3); + Keyboard.set_key4(slot4); + Keyboard.set_key5(slot5); + Keyboard.set_key6(slot6); + Keyboard.send_now(); +} +// +// Function to set a pin to high impedance (acts like open drain output) +void go_z(int pin) +{ + pinMode(pin, INPUT); + digitalWrite(pin, HIGH); +} +// +// Function to set a pin as an input with a pullup +void go_pu(int pin) +{ + pinMode(pin, INPUT_PULLUP); + digitalWrite(pin, HIGH); +} +// +// Function to send a pin to a logic low +void go_0(int pin) +{ + pinMode(pin, OUTPUT); + digitalWrite(pin, LOW); +} +// +// Function to send a pin to a logic high +void go_1(int pin) +{ + pinMode(pin, OUTPUT); + digitalWrite(pin, HIGH); +} +// +// *****************Functions for Touchpad*************************** +// +// Function to send the touchpad a byte of data (command) +// +void tp_write(char send_data) +{ + unsigned int timeout = 200; // breakout of loop if over this value in msec + elapsedMillis watchdog; // zero the watchdog timer clock + char odd_parity = 0; // clear parity bit count +// Enable the bus by floating the clock and data + go_pu(TP_CLK); // + go_pu(TP_DATA); // + delayMicroseconds(250); // wait before requesting the bus + go_0(TP_CLK); // Send the Clock line low to request to transmit data + delayMicroseconds(100); // wait for 100 microseconds per bus spec + go_0(TP_DATA); // Send the Data line low (the start bit) + delayMicroseconds(1); // + go_pu(TP_CLK); // Release the Clock line so it is pulled high + delayMicroseconds(1); // give some time to let the clock line go high + while (digitalRead(TP_CLK) == HIGH) { // loop until the clock goes low + if (watchdog >= timeout) { //check for infinite loop + break; // break out of infinite loop + } + } +// send the 8 bits of send_data + for (int j=0; j<8; j++) { + if (send_data & 1) { //check if lsb is set + go_pu(TP_DATA); // send a 1 to TP + odd_parity = odd_parity + 1; // keep running total of 1's sent + } + else { + go_0(TP_DATA); // send a 0 to TP + } + delayMicroseconds(1); // delay to let the clock settle out + while (digitalRead(TP_CLK) == LOW) { // loop until the clock goes high + if (watchdog >= timeout) { //check for infinite loop + break; // break out of infinite loop + } + } + delayMicroseconds(1); // delay to let the clock settle out + while (digitalRead(TP_CLK) == HIGH) { // loop until the clock goes low + if (watchdog >= timeout) { //check for infinite loop + break; // break out of infinite loop + } + } + send_data = send_data >> 1; // shift data right by 1 to prepare for next loop + } +// send the parity bit + if (odd_parity & 1) { //check if lsb of parity is set + go_0(TP_DATA); // already odd so send a 0 to TP + } + else { + go_pu(TP_DATA); // send a 1 to TP to make parity odd + } + delayMicroseconds(1); // delay to let the clock settle out + while (digitalRead(TP_CLK) == LOW) { // loop until the clock goes high + if (watchdog >= timeout) { //check for infinite loop + break; // break out of infinite loop + } + } + delayMicroseconds(1); // delay to let the clock settle out + while (digitalRead(TP_CLK) == HIGH) { // loop until the clock goes low + if (watchdog >= timeout) { //check for infinite loop + break; // break out of infinite loop + } + } + go_pu(TP_DATA); // Release the Data line so it goes high as the stop bit + delayMicroseconds(80); // testing shows delay at least 40us + while (digitalRead(TP_CLK) == HIGH) { // loop until the clock goes low + if (watchdog >= timeout) { //check for infinite loop + break; // break out of infinite loop + } + } + delayMicroseconds(1); // wait to let the data settle + if (digitalRead(TP_DATA)) { // Ack bit s/b low if good transfer + } + while ((digitalRead(TP_CLK) == LOW) || (digitalRead(TP_DATA) == LOW)) { // loop if clock or data are low + if (watchdog >= timeout) { //check for infinite loop + break; // break out of infinite loop + } + } +// Inhibit the bus so the tp only talks when we're listening + go_0(TP_CLK); +} +// +// Function to get a byte of data from the touchpad +// +char tp_read(void) +{ + unsigned int timeout = 200; // breakout of loop if over this value in msec + elapsedMillis watchdog; // zero the watchdog timer clock + char rcv_data = 0; // initialize to zero + char mask = 1; // shift a 1 across the 8 bits to select where to load the data + char rcv_parity = 0; // count the ones received + go_pu(TP_CLK); // release the clock + go_pu(TP_DATA); // release the data + delayMicroseconds(5); // delay to let clock go high + while (digitalRead(TP_CLK) == HIGH) { // loop until the clock goes low + if (watchdog >= timeout) { //check for infinite loop + break; // break out of infinite loop + } + } + if (digitalRead(TP_DATA)) { // Start bit s/b low from tp + // start bit not correct - put error handler here if desired + } + delayMicroseconds(1); // delay to let the clock settle out + while (digitalRead(TP_CLK) == LOW) { // loop until the clock goes high + if (watchdog >= timeout) { //check for infinite loop + break; // break out of infinite loop + } + } + for (int k=0; k<8; k++) { + delayMicroseconds(1); // delay to let the clock settle out + while (digitalRead(TP_CLK) == HIGH) { // loop until the clock goes low + if (watchdog >= timeout) { //check for infinite loop + break; // break out of infinite loop + } + } + if (digitalRead(TP_DATA)) { // check if data is high + rcv_data = rcv_data | mask; // set the appropriate bit in the rcv data + rcv_parity++; // increment the parity bit counter + } + mask = mask << 1; + delayMicroseconds(1); // delay to let the clock settle out + while (digitalRead(TP_CLK) == LOW) { // loop until the clock goes high + if (watchdog >= timeout) { //check for infinite loop + break; // break out of infinite loop + } + } + } +// receive parity + delayMicroseconds(1); // delay to let the clock settle out + while (digitalRead(TP_CLK) == HIGH) { // loop until the clock goes low + if (watchdog >= timeout) { //check for infinite loop + break; // break out of infinite loop + } + } + if (digitalRead(TP_DATA)) { // check if received parity is high + rcv_parity++; // increment the parity bit counter + } + rcv_parity = rcv_parity & 1; // mask off all bits except the lsb + if (rcv_parity == 0) { // check for bad (even) parity + // bad parity - pass to future error handler + } + delayMicroseconds(1); // delay to let the clock settle out + while (digitalRead(TP_CLK) == LOW) { // loop until the clock goes high + if (watchdog >= timeout) { //check for infinite loop + break; // break out of infinite loop + } + } +// stop bit + delayMicroseconds(1); // delay to let the clock settle out + while (digitalRead(TP_CLK) == HIGH) { // loop until the clock goes low + if (watchdog >= timeout) { //check for infinite loop + break; // break out of infinite loop + } + } + if (digitalRead(TP_DATA) == LOW) { // check if stop bit is bad (low) + // send bad stop bit to future error handler + } + delayMicroseconds(1); // delay to let the clock settle out + while (digitalRead(TP_CLK) == LOW) { // loop until the clock goes high + if (watchdog >= timeout) { //check for infinite loop + break; // break out of infinite loop + } + } +// Inhibit the bus so the tp only talks when we're listening + go_0(TP_CLK); + return rcv_data; // pass the received data back +} +// +void touchpad_init() +{ + touchpad_error = LOW; // start with no error + go_pu(TP_CLK); // float the clock and data to touchpad + go_pu(TP_DATA); + // Sending reset command to touchpad + tp_write(0xff); + if (tp_read() != 0xfa) { // verify correct ack byte + touchpad_error = HIGH; + } + delay(1000); // wait 1000ms so tp can run its self diagnostic + // verify proper response from tp + if (tp_read() != 0xaa) { // verify basic assurance test passed + touchpad_error = HIGH; + } + if (tp_read() != 0x00) { // verify basic assurance test passed + touchpad_error = HIGH; + } + // Send touchpad disable code + tp_write(0xf5); // tp disable + if (tp_read() != 0xfa) { // verify correct ack byte +// init_error = HIGH; + } + // Load Mode Byte with 00 using the following special sequence from page 38. + // Send set resolution to 0 four times followed by a set sample rate to 0x14 +// #1 set resolution + tp_write(0xe8); // set resolution + if (tp_read() != 0xfa) { // verify correct ack byte +// init_error = HIGH; + } + tp_write(0x01); // to zero + if (tp_read() != 0xfa) { // verify correct ack byte +// init_error = HIGH; + } +// #2 set resolution + tp_write(0xe8); // set resolution + if (tp_read() != 0xfa) { // verify correct ack byte +// init_error = HIGH; + } + tp_write(0x00); // to zero + if (tp_read() != 0xfa) { // verify correct ack byte +// init_error = HIGH; + } +// #3 set resolution + tp_write(0xe8); // set resolution + if (tp_read() != 0xfa) { // verify correct ack byte +// init_error = HIGH; + } + tp_write(0x00); // to zero + if (tp_read() != 0xfa) { // verify correct ack byte +// init_error = HIGH; + } +// #4 set resolution + tp_write(0xe8); // set resolution + if (tp_read() != 0xfa) { // verify correct ack byte +// init_error = HIGH; + } + tp_write(0x00); // to zero + if (tp_read() != 0xfa) { // verify correct ack byte +// init_error = HIGH; + } +// Set sample rate + tp_write(0xf3); // set sample rate + if (tp_read() != 0xfa) { // verify correct ack byte +// init_error = HIGH; + } + tp_write(0x14); // to 14 hex + if (tp_read() != 0xfa) { // verify correct ack byte +// init_error = HIGH; + } + // set the resolution + tp_write(0xe8); // Sending resolution command + if (tp_read() != 0xfa) { // verify correct ack byte +// init_error = HIGH; + } + tp_write(0x03); // value of 0x03 = 8 counts/mm resolution (default is 4 counts/mm) + if (tp_read() != 0xfa) { // verify correct ack byte +// init_error = HIGH; + } + // set the sample rate + tp_write(0xf3); // Sending sample rate command + if (tp_read() != 0xfa) { // verify correct ack byte +// init_error = HIGH; + } + tp_write(0x28); // 0x28 = 40 samples per second, the default value used for Synaptics TP + if (tp_read() != 0xfa) { // verify correct ack byte +// init_error = HIGH; + } + // Sending remote mode code so the touchpad will send data only when polled + tp_write(0xf0); // remote mode + if (tp_read() != 0xfa) { // verify correct ack byte +// touchpad_error = HIGH; + } + // Sending touchpad enable code (needed for Elan touchpads) + tp_write(0xf4); // tp enable + if (tp_read() != 0xfa) { // verify correct ack byte +// touchpad_error = HIGH; + } +} +// +// ***********Functions for Video Converter Card ********************************************* +// +// Function to initialize the lcd control interface +void lcd_control_init() +{ + go_z(Vol_Dn); // send all lcd controls to hi z + go_z(Vol_Up); + go_z(Menu); + go_z(On_Off); +} +// Function to pulse the Menu key on the lcd control card +void pulse_menu() +{ + go_0(Menu); //Pulse Menu key low, then back high + delay(Lo_time); + go_z(Menu); + delay(Hi_time); +} +// Function to pulse the Vol Up key on the lcd control card +void pulse_vol_up() +{ + go_0(Vol_Up); //Pulse Vol_Up key low, then back high + delay(Lo_time); + go_z(Vol_Up); + delay(Hi_time); +} +// Function to pulse the Vol_Dn key on the lcd control card +void pulse_vol_dn() +{ + go_0(Vol_Dn); //Pulse Vol_Dn key low, then back high + delay(Lo_time); + go_z(Vol_Dn); + delay(Hi_time); +} +// Function to pulse the power key on the lcd control card +void pulse_power() +{ + go_0(On_Off); //Pulse On_Off key low, then back high + delay(Lo_time); + go_z(On_Off); + delay(Hi_time); +} +// +//----------------------------------Setup------------------------------------------- +void setup() { +// Keyboard + for (int a = 0; a < cols_max; a++) { // loop thru all column pins + go_pu(Col_IO[a]); // set each column pin as an input with a pullup + } +// + for (int b = 0; b < rows_max; b++) { // loop thru all row pins + go_z(Row_IO[b]); // set each row pin as a floating output + } +// Touchpad + touchpad_init(); // reset touchpad, then set it's resolution and put it in remote mode +// LCD Control + lcd_control_init(); // float the lcd control signals so they get pulled up to 3.3 volts +} +// +// Keyboard variables +extern volatile uint8_t keyboard_leds; // 8 bits sent from Host to Teensy that give keyboard status. +// Num lock is bit D0. +// Caps lock is bit D1. +// Scroll lock is bit D2. +// Compose is bit D3. Compose has the same HID code as the Menu key. +// Kana is bit D4. Kana switches to a Japanese key layer. +// Power is bit D5. +// Shift is bit D6. +// Do Not Disturb is bit D7. +// +boolean Fn_pressed = HIGH; // Initialize Fn key to HIGH = "not pressed". +boolean tp_on = HIGH; // Wake up with TP turned on +boolean arrow_lock = LOW; // Wake up with arrow lock turned off +// +// Touchpad variables + char mstat; // touchpad status reg = Y overflow, X overflow, Y sign bit, X sign bit, Always 1, Middle Btn, Right Btn, Left Btn + char mx; // touchpad x movement = 8 data bits. The sign bit is in the status register to + // make a 9 bit 2's complement value. Left to right on the touchpad gives a positive value. + char my; // touchpad y movement also 8 bits plus sign. Touchpad movement away from the user gives a positive value. + boolean over_flow; // set if x or y movement values are bad due to overflow + boolean left_button = 0; // on/off variable for left button = bit 0 of mstat + boolean right_button = 0; // on/off variable for right button = bit 1 of mstat + boolean old_left_button = 0; // on/off variable for left button status the previous polling cycle + boolean old_right_button = 0; // on/off variable for right button status the previous polling cycle + boolean button_change = 0; // Active high, shows when a touchpad left or right button has changed since last polling cycle +// +//---------------------------------Main Loop--------------------------------------------- +// +void loop() { +// Scan keyboard matrix with an outer loop that drives each row low and an inner loop that reads every column (with pull ups). +// The routine looks at each key's present state (by reading the column input pin) and also the previous state from the last scan +// that was 30msec ago. The status of a key that was just pressed or just released is sent over USB and the state is saved in the old_key matrix. +// The keyboard keys will read as logic low if they are pressed (negative logic). +// The old_key matrix also uses negative logic (low=pressed). +// + for (int x = 0; x < rows_max; x++) { // loop thru the rows + go_0(Row_IO[x]); // Activate Row (send it low) + delayMicroseconds(10); // give the row time to go low and settle out + for (int y = 0; y < cols_max; y++) { // loop thru the columns +// **********Modifier keys including the Fn special case + if (modifier[x][y] != 0) { // check if modifier key exists at this location in the array (a non-zero value) + if (!digitalRead(Col_IO[y]) && (old_key[x][y])) { // Read column to see if key is low (pressed) and was previously not pressed + if (modifier[x][y] != MODIFIERKEY_FN) { // Exclude Fn modifier key + load_mod(modifier[x][y]); // function reads which modifier key is pressed and loads it into the appropriate mod_... variable + send_mod(); // function sends the state of all modifier keys over usb including the one that just got pressed + old_key[x][y] = LOW; // Save state of key as "pressed" + } + else { // Fn is pressed + Fn_pressed = LOW; // Fn status variable is active low + old_key[x][y] = LOW; // old_key state is "pressed" (active low) + } + } + else if (digitalRead(Col_IO[y]) && (!old_key[x][y])) { //check if key is not pressed and was previously pressed + if (modifier[x][y] != MODIFIERKEY_FN) { // Exclude Fn modifier key + clear_mod(modifier[x][y]); // function reads which modifier key was released and loads 0 into the appropriate mod_... variable + send_mod(); // function sends all mod's over usb including the one that just released + old_key[x][y] = HIGH; // Save state of key as "not pressed" + } + else { // Fn is released + Fn_pressed = HIGH; // Fn is no longer active + old_key[x][y] = HIGH; // old_key state is "not pressed" + } + } + } +// ***********end of modifier section +// +// ***********Normal keys, num lock, arrow lock keys and media keys in this section + else if ((normal[x][y] != 0) || (media[x][y] != 0)) { // check if normal or media key exists at this location in the array + if (!digitalRead(Col_IO[y]) && (old_key[x][y]) && (!slots_full)) { // check if key pressed and not previously pressed and slots not full + old_key[x][y] = LOW; // Save state of key as "pressed" + if (Fn_pressed) { // Fn is not pressed and normal key needs to be sent + if (keyboard_leds & 1) { // test if Num Lock is turned on + load_slot(numlock[x][y]); //update first available slot with key name from numlock matrix + send_normals(); // send all slots over USB including the key that just got pressed + } + else if (arrow_lock) { // test if Arrow Lock is turned on + load_slot(arrowlock[x][y]); //update first available slot with key name from arrowlock matrix + send_normals(); // send all slots over USB including the key that just got pressed + } + else { + load_slot(normal[x][y]); //update first available slot with key name from normal matrix + send_normals(); // send all slots over USB including the key that just got pressed + } + } + else if (media[x][y] != 0) { // Fn is pressed so send media if a key exists in the matrix + if (media[x][y] == KEY_TP_TOGGLE) { + tp_on = !tp_on; // invert the TP on/off control + } + else if (media[x][y] == KEY_ARROW_LOCK) { + arrow_lock = !arrow_lock; // invert the arrow lock control + } + else if (media[x][y] == KEY_BRT_DN) { + pulse_menu(); // Go thru the video card menu to decrease brightness + pulse_menu(); + pulse_menu(); + while (!digitalRead(Col_IO[y])) { // repeat until F6 key is released + pulse_vol_dn(); + } + } + else if (media[x][y] == KEY_BRT_UP) { + pulse_menu(); // Go thru the video card menu to increase brightness + pulse_menu(); + pulse_menu(); + while (!digitalRead(Col_IO[y])) { // repeat until F7 key is released + pulse_vol_up(); + } + } + else if (media[x][y] == KEY_CON_DN) { + pulse_menu(); // Go thru the video card menu to decrease contrast + pulse_menu(); + pulse_vol_dn(); + pulse_menu(); + while (!digitalRead(Col_IO[y])) { // repeat until F3 key is released + pulse_vol_dn(); + } + } + else if (media[x][y] == KEY_CON_UP) { + pulse_menu(); // Go thru the video card menu to increase brightness + pulse_menu(); + pulse_vol_dn(); + pulse_menu(); + while (!digitalRead(Col_IO[y])) { // repeat until F4 key is released + pulse_vol_up(); + } + } + else if (media[x][y] == KEY_LCD_POWER) { + pulse_power(); // momentarily pulse the video controller's on/off button + } + else { // + Keyboard.press(media[x][y]); // media key is sent using keyboard press function per PJRC + delay(5); // delay 5 milliseconds before releasing to make sure it gets sent over USB + Keyboard.release(media[x][y]); // send media key release + } + } + } + else if (digitalRead(Col_IO[y]) && (!old_key[x][y])) { //check if key is not pressed, but was previously pressed + old_key[x][y] = HIGH; // Save state of key as "not pressed" + if (Fn_pressed) { // Fn is not pressed + if (keyboard_leds & 1) { // test if Num Lock is turned on + clear_slot(numlock[x][y]); //clear slot with key name from numlock matrix + send_normals(); // send all slots over USB including the key that just got released + } + else if (arrow_lock) { // test if Arrow lock is turned on + clear_slot(arrowlock[x][y]); //clear slot with key name from arrowlock matrix + send_normals(); // send all slots over USB including the key that just got released + } + else { + clear_slot(normal[x][y]); //clear slot with key name from normal matrix + send_normals(); // send all slots over USB including the key that just got released + } + } + } + } +// **************end of normal, num lock, and media key section +// + } + go_z(Row_IO[x]); // De-activate Row (send it to hi-z) + } +// +// **********keyboard scan complete +// +// Control the 4 keyboard LEDs +// + if (keyboard_leds & 1<<1) { // mask off all bits but D1 and test if set + go_1(CAPS_LED); // turn on the LED + } + else { + go_0(CAPS_LED); // turn off the LED + } +// + if (keyboard_leds & 1) { // mask off all bits but D0 and test if set + go_1(NUM_LED); // turn on the Num Lock LED + } + else { + go_0(NUM_LED); // turn off the Num Lock LED + } +// + if (keyboard_leds & 1<<2) { // mask off all bits but D2 and test if set + go_1(SCRL_LED); // turn on the Scroll Lock LED + } + else { + go_0(SCRL_LED); // turn off the Scroll Lock LED + } +// + if (arrow_lock) { + go_1(ARROW_LED); // turn on the Arrow Lock LED + } + else { + go_0(ARROW_LED); // turn off the Arrow Lock LED + } +// +// *******************Touchpad section******************************************************** +// + if ((!touchpad_error) && (tp_on)) { // Did the TP pass its startup check and is the TP currently turned on? + //If yes, poll TP for new movement or button data + over_flow = 0; // assume no overflow until status is received + tp_write(0xeb); // request data from TP + if (tp_read() != 0xfa) { // verify correct ack byte + // bad ack - pass to future error handler + } + mstat = tp_read(); // save into status variable + mx = tp_read(); // save into x variable + my = tp_read(); // save into y variable + if (((0x80 & mstat) == 0x80) || ((0x40 & mstat) == 0x40)) { // x or y overflow bits set? + over_flow = 1; // set the overflow flag + } +// change the x data from 9 bit to 8 bit 2's complement + mx = mx & 0x7f; // mask off 8th bit + if ((0x10 & mstat) == 0x10) { // move the sign into + mx = 0x80 | mx; // the 8th bit position + } +// change the y data from 9 bit to 8 bit 2's complement and then take the 2's complement +// because y movement on ps/2 format is opposite of touchpad.move function + my = my & 0x7f; // mask off 8th bit + if ((0x20 & mstat) == 0x20) { // move the sign into + my = 0x80 | my; // the 8th bit position + } + my = (~my + 0x01); // change the sign of y data by taking the 2's complement (invert and add 1) +// zero out mx and my if over_flow is set + if (over_flow) { + mx = 0x00; // data is garbage so zero it out + my = 0x00; + } +// send the x and y data back via usb if either one is non-zero + if ((mx != 0x00) || (my != 0x00)) { + Mouse.move(mx,my); + } +// +// send the touchpad left and right button status over usb if no error + if ((0x01 & mstat) == 0x01) { // if left button set + left_button = 1; + } + else { // clear left button + left_button = 0; + } + if ((0x02 & mstat) == 0x02) { // if right button set + right_button = 1; + } + else { // clear right button + right_button = 0; + } +// Determine if the left or right touch pad buttons have changed since last polling cycle + button_change = (left_button ^ old_left_button) | (right_button ^ old_right_button); +// Don't send button status if there's no change since last time. + if (button_change){ + Mouse.set_buttons(left_button, 0, right_button); // send button status + } + old_left_button = left_button; // remember new button status for next polling cycle + old_right_button = right_button; + } +// +//******************Delay before the next scan + delay(25); // The overall keyboard scanning rate is about 30ms +}