Add files via upload
This commit is contained in:
parent
cf7bc5ccea
commit
6fabc00322
1 changed files with 842 additions and 0 deletions
842
Example_Keyboards/Toshiba_2415/Toshiba_2415_kb_tp.ino
Normal file
842
Example_Keyboards/Toshiba_2415/Toshiba_2415_kb_tp.ino
Normal file
|
@ -0,0 +1,842 @@
|
|||
/* Copyright 2020 Frank Adams
|
||||
Licensed under the Apache License, Version 2.0 (the "License");
|
||||
you may not use this file except in compliance with the License.
|
||||
You may obtain a copy of the License at
|
||||
http://www.apache.org/licenses/LICENSE-2.0
|
||||
Unless required by applicable law or agreed to in writing, software
|
||||
distributed under the License is distributed on an "AS IS" BASIS,
|
||||
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
See the License for the specific language governing permissions and
|
||||
limitations under the License.
|
||||
*/
|
||||
// This software creates a USB keyboard and Trackpoint (TP) from a
|
||||
// Toshiba 2415 replacement keyboard and a TP from an HP DV9000 laptop.
|
||||
// TP part number is 920-000702-04 Rev A
|
||||
// The test points on the touchpad are used to solder jumpers as follows:
|
||||
// T22 = 3.3V
|
||||
// T23 = Gnd (I soldered to the ground plane)
|
||||
// T10 = Clock
|
||||
// T11 = Data
|
||||
// This touchpad has active pullups so no additional pullups were required.
|
||||
//
|
||||
// Revision History
|
||||
// Initial Release Aug 24, 2020
|
||||
//
|
||||
#define MODIFIERKEY_FN 0x8f // give Fn key a fake HID code
|
||||
#define KEY_ARROW_LOCK KEY_F13 // give arrow lock key an unused code
|
||||
#define KEY_TP_TOGGLE KEY_F14 // give TP Toggle key an unused code
|
||||
// LED I/O connections
|
||||
#define CAPS_LED 13
|
||||
#define NUM_LED 15
|
||||
#define SCRL_LED 16
|
||||
#define ARROW_LED 14
|
||||
// TP I/O connections
|
||||
#define TP_CLK 0
|
||||
#define TP_DATA 1
|
||||
//
|
||||
const byte rows_max = 16; // sets the number of rows in the matrix
|
||||
const byte cols_max = 8; // sets the number of columns in the matrix
|
||||
//
|
||||
// Load the normal key matrix with the Teensyduino key names
|
||||
// described at www.pjrc.com/teensy/td_keyboard.html
|
||||
// A zero indicates no normal key at that location.
|
||||
int normal[rows_max][cols_max] = {
|
||||
{KEY_CAPS_LOCK,KEY_A,KEY_Z,KEY_Q,KEY_1,KEY_F1,KEY_TAB,KEY_ESC},
|
||||
{0,0,0,0,0,0,0,0},
|
||||
{0,0,0,0,0,0,0,0},
|
||||
{0,0,0,0,0,0,0,0},
|
||||
{KEY_X,KEY_TILDE,0,KEY_S,KEY_2,KEY_F3,KEY_W,KEY_F2},
|
||||
{KEY_C,0,KEY_PRINTSCREEN,KEY_D,KEY_E,KEY_3,KEY_F5,KEY_F4},
|
||||
{KEY_DELETE,0,KEY_RIGHT,KEY_PERIOD,KEY_O,KEY_9,KEY_L,KEY_F12},
|
||||
{KEY_V,0,KEY_PAUSE,0,KEY_F6,KEY_R,KEY_F,KEY_4},
|
||||
{0,0,0,0,0,0,0,0},
|
||||
{KEY_SEMICOLON,0,KEY_SLASH,KEY_LEFT_BRACE,KEY_MINUS,KEY_0,KEY_P,KEY_SPACE},
|
||||
{0,KEY_N,KEY_LEFT,0,KEY_F9,KEY_Y,KEY_H,KEY_6},
|
||||
{0,KEY_B,0,KEY_G,KEY_T,KEY_5,KEY_F8,KEY_F7},
|
||||
{KEY_INSERT,0,KEY_DOWN,KEY_COMMA,KEY_I,KEY_8,KEY_K,KEY_F11},
|
||||
{KEY_M,0,KEY_UP,KEY_J,KEY_U,KEY_7,0,KEY_F10},
|
||||
{KEY_QUOTE,KEY_ENTER,0,KEY_RIGHT_BRACE,0,KEY_EQUAL,KEY_BACKSPACE,0},
|
||||
{KEY_END,KEY_BACKSLASH,KEY_MENU,KEY_PAGE_DOWN,KEY_HOME,0,KEY_PAGE_UP,0}
|
||||
};
|
||||
// Load the numlock key matrix with key names at the correct row-column location.
|
||||
// This matrix is the same as the normal matrix except for the number pad keys
|
||||
// A zero indicates no numlock key at that location.
|
||||
int numlock[rows_max][cols_max] = {
|
||||
{KEY_CAPS_LOCK,KEY_A,KEY_Z,KEY_Q,KEY_1,KEY_F1,KEY_TAB,KEY_ESC},
|
||||
{0,0,0,0,0,0,0,0},
|
||||
{0,0,0,0,0,0,0,0},
|
||||
{0,0,0,0,0,0,0,0},
|
||||
{KEY_X,KEY_TILDE,0,KEY_S,KEY_2,KEY_F3,KEY_W,KEY_F2},
|
||||
{KEY_C,0,KEY_PRINTSCREEN,KEY_D,KEY_E,KEY_3,KEY_F5,KEY_F4},
|
||||
{KEY_DELETE,0,KEY_RIGHT,KEYPAD_PERIOD,KEYPAD_6,KEYPAD_9,KEYPAD_3,KEY_F12},
|
||||
{KEY_V,0,KEY_PAUSE,0,KEY_F6,KEY_R,KEY_F,KEY_4},
|
||||
{0,0,0,0,0,0,0,0},
|
||||
{KEYPAD_PLUS,0,KEYPAD_SLASH,KEY_LEFT_BRACE,KEY_MINUS,KEYPAD_ASTERIX,KEYPAD_MINUS,KEY_SPACE},
|
||||
{0,KEY_N,KEY_LEFT,0,KEY_F9,KEY_Y,KEY_H,KEY_6},
|
||||
{0,KEY_B,0,KEY_G,KEY_T,KEY_5,KEY_F8,KEY_F7},
|
||||
{KEY_INSERT,0,KEY_DOWN,KEY_COMMA,KEYPAD_5,KEYPAD_8,KEYPAD_2,KEY_F11},
|
||||
{KEYPAD_0,0,KEY_UP,KEYPAD_1,KEYPAD_4,KEYPAD_7,0,KEY_F10},
|
||||
{KEY_QUOTE,KEY_ENTER,0,KEY_RIGHT_BRACE,0,KEY_EQUAL,KEY_BACKSPACE,0},
|
||||
{KEY_END,KEY_BACKSLASH,KEY_MENU,KEY_PAGE_DOWN,KEY_HOME,0,KEY_PAGE_UP,0}
|
||||
};
|
||||
// Load the arrowlock key matrix with key names at the correct row-column location.
|
||||
// This matrix is the same as the normal matrix except for the arrow pad keys
|
||||
// A zero indicates no numlock key at that location.
|
||||
int arrowlock[rows_max][cols_max] = {
|
||||
{KEY_CAPS_LOCK,KEY_A,KEY_Z,KEY_Q,KEY_1,KEY_F1,KEY_TAB,KEY_ESC},
|
||||
{0,0,0,0,0,0,0,0},
|
||||
{0,0,0,0,0,0,0,0},
|
||||
{0,0,0,0,0,0,0,0},
|
||||
{KEY_X,KEY_TILDE,0,KEY_S,KEY_2,KEY_F3,KEY_W,KEY_F2},
|
||||
{KEY_C,0,KEY_PRINTSCREEN,KEY_D,KEY_E,KEY_3,KEY_F5,KEY_F4},
|
||||
{KEY_DELETE,0,KEY_RIGHT,KEY_DELETE,KEYPAD_6,KEY_PAGE_UP,KEY_PAGE_DOWN,KEY_F12},
|
||||
{KEY_V,0,KEY_PAUSE,0,KEY_F6,KEY_R,KEY_F,KEY_4},
|
||||
{0,0,0,0,0,0,0,0},
|
||||
{KEY_SEMICOLON,0,KEY_SLASH,KEY_LEFT_BRACE,KEY_MINUS,KEY_0,KEY_P,KEY_SPACE},
|
||||
{0,KEY_N,KEY_LEFT,0,KEY_F9,KEY_Y,KEY_H,KEY_6},
|
||||
{0,KEY_B,0,KEY_G,KEY_T,KEY_5,KEY_F8,KEY_F7},
|
||||
{KEY_INSERT,0,KEY_DOWN,KEY_COMMA,0,KEY_UP,KEY_DOWN,KEY_F11},
|
||||
{KEY_INSERT,0,KEY_UP,KEY_END,KEY_LEFT,KEY_HOME,0,KEY_F10},
|
||||
{KEY_QUOTE,KEY_ENTER,0,KEY_RIGHT_BRACE,0,KEY_EQUAL,KEY_BACKSPACE,0},
|
||||
{KEY_END,KEY_BACKSLASH,KEY_MENU,KEY_PAGE_DOWN,KEY_HOME,0,KEY_PAGE_UP,0}
|
||||
};
|
||||
// Load the modifier key matrix with key names at the correct row-column location.
|
||||
// A zero indicates no modifier key at that location.
|
||||
int modifier[rows_max][cols_max] = {
|
||||
{0,0,0,0,0,0,0,0},
|
||||
{MODIFIERKEY_LEFT_CTRL,0,0,0,0,0,0,0},
|
||||
{0,MODIFIERKEY_LEFT_SHIFT,0,0,0,0,0,MODIFIERKEY_RIGHT_SHIFT},
|
||||
{0,0,MODIFIERKEY_FN,0,0,0,MODIFIERKEY_GUI,0},
|
||||
{0,0,0,0,0,0,0,0},
|
||||
{0,0,0,0,0,0,0,0},
|
||||
{0,0,0,0,0,0,0,0},
|
||||
{0,0,0,0,0,0,0,0},
|
||||
{0,0,0,MODIFIERKEY_LEFT_ALT,MODIFIERKEY_RIGHT_ALT,0,0,0},
|
||||
{0,0,0,0,0,0,0,0},
|
||||
{0,0,0,0,0,0,0,0},
|
||||
{0,0,0,0,0,0,0,0},
|
||||
{0,0,0,0,0,0,0,0},
|
||||
{0,0,0,0,0,0,0,0},
|
||||
{0,0,0,0,0,0,0,0},
|
||||
{0,0,0,0,0,0,0,0}
|
||||
};
|
||||
// Load the media key matrix with Fn key names at the correct row-column location.
|
||||
// A zero indicates no media key at that location.
|
||||
int media[rows_max][cols_max] = {
|
||||
{0,0,0,0,0,KEY_MEDIA_VOLUME_DEC,0,KEY_MEDIA_MUTE},
|
||||
{0,0,0,0,0,0,0,0},
|
||||
{0,0,0,0,0,0,0,0},
|
||||
{0,0,0,0,0,0,0,0},
|
||||
{0,0,0,0,0,0,0,KEY_MEDIA_VOLUME_INC},
|
||||
{0,0,0,0,0,0,0,0},
|
||||
{0,0,0,0,0,0,0,KEY_SCROLL_LOCK},
|
||||
{0,0,0,0,0,0,0,0},
|
||||
{0,0,0,0,0,0,0,0},
|
||||
{0,0,0,0,0,0,0,0},
|
||||
{0,0,0,0,KEY_TP_TOGGLE,0,0,0},
|
||||
{0,0,0,0,0,0,0,0},
|
||||
{0,0,0,0,0,0,0,KEY_NUM_LOCK},
|
||||
{0,0,0,0,0,0,0,KEY_ARROW_LOCK},
|
||||
{0,0,0,0,0,0,0,0},
|
||||
{0,0,0,0,0,0,0,0}
|
||||
};
|
||||
// Initialize the old_key matrix with one's.
|
||||
// 1 = key not pressed, 0 = key is pressed
|
||||
boolean old_key[rows_max][cols_max] = {
|
||||
{1,1,1,1,1,1,1,1},
|
||||
{1,1,1,1,1,1,1,1},
|
||||
{1,1,1,1,1,1,1,1},
|
||||
{1,1,1,1,1,1,1,1},
|
||||
{1,1,1,1,1,1,1,1},
|
||||
{1,1,1,1,1,1,1,1},
|
||||
{1,1,1,1,1,1,1,1},
|
||||
{1,1,1,1,1,1,1,1},
|
||||
{1,1,1,1,1,1,1,1},
|
||||
{1,1,1,1,1,1,1,1},
|
||||
{1,1,1,1,1,1,1,1},
|
||||
{1,1,1,1,1,1,1,1},
|
||||
{1,1,1,1,1,1,1,1},
|
||||
{1,1,1,1,1,1,1,1},
|
||||
{1,1,1,1,1,1,1,1},
|
||||
{1,1,1,1,1,1,1,1}
|
||||
};
|
||||
//
|
||||
// Assign the Teensy I/O row numbers
|
||||
int Row_IO[rows_max] = {20,3,18,5,24,7,9,26,10,11,28,12,32,31,30,29};
|
||||
//
|
||||
// Assignb the column I/O numbers
|
||||
int Col_IO[cols_max] = {19,4,17,6,25,8,33,27};
|
||||
//
|
||||
// Declare variables that will be used by functions
|
||||
boolean slots_full = LOW; // Goes high when slots 1 thru 6 contain normal keys
|
||||
boolean touchpad_error = LOW; // sent high when touch pad routine times out
|
||||
//
|
||||
// slot 1 thru slot 6 hold the normal key values to be sent over USB.
|
||||
int slot1 = 0; //value of 0 means the slot is empty and can be used.
|
||||
int slot2 = 0;
|
||||
int slot3 = 0;
|
||||
int slot4 = 0;
|
||||
int slot5 = 0;
|
||||
int slot6 = 0;
|
||||
//
|
||||
int mod_shift_l = 0; // These variables are sent over USB as modifier keys.
|
||||
int mod_shift_r = 0; // Each is either set to 0 or MODIFIER_ ...
|
||||
int mod_ctrl_l = 0;
|
||||
int mod_ctrl_r = 0;
|
||||
int mod_alt_l = 0;
|
||||
int mod_alt_r = 0;
|
||||
int mod_gui = 0;
|
||||
//
|
||||
// Function to load the key name into the first available slot
|
||||
void load_slot(int key) {
|
||||
if (!slot1) {
|
||||
slot1 = key;
|
||||
}
|
||||
else if (!slot2) {
|
||||
slot2 = key;
|
||||
}
|
||||
else if (!slot3) {
|
||||
slot3 = key;
|
||||
}
|
||||
else if (!slot4) {
|
||||
slot4 = key;
|
||||
}
|
||||
else if (!slot5) {
|
||||
slot5 = key;
|
||||
}
|
||||
else if (!slot6) {
|
||||
slot6 = key;
|
||||
}
|
||||
if (!slot1 || !slot2 || !slot3 || !slot4 || !slot5 || !slot6) {
|
||||
slots_full = LOW; // slots are not full
|
||||
}
|
||||
else {
|
||||
slots_full = HIGH; // slots are full
|
||||
}
|
||||
}
|
||||
//
|
||||
// Function to clear the slot that contains the key name
|
||||
void clear_slot(int key) {
|
||||
if (slot1 == key) {
|
||||
slot1 = 0;
|
||||
}
|
||||
else if (slot2 == key) {
|
||||
slot2 = 0;
|
||||
}
|
||||
else if (slot3 == key) {
|
||||
slot3 = 0;
|
||||
}
|
||||
else if (slot4 == key) {
|
||||
slot4 = 0;
|
||||
}
|
||||
else if (slot5 == key) {
|
||||
slot5 = 0;
|
||||
}
|
||||
else if (slot6 == key) {
|
||||
slot6 = 0;
|
||||
}
|
||||
if (!slot1 || !slot2 || !slot3 || !slot4 || !slot5 || !slot6) {
|
||||
slots_full = LOW; // slots are not full
|
||||
}
|
||||
else {
|
||||
slots_full = HIGH; // slots are full
|
||||
}
|
||||
}
|
||||
//
|
||||
// Function to load the modifier key name into the appropriate mod variable
|
||||
void load_mod(int m_key) {
|
||||
if (m_key == MODIFIERKEY_LEFT_SHIFT) {
|
||||
mod_shift_l = m_key;
|
||||
}
|
||||
else if (m_key == MODIFIERKEY_RIGHT_SHIFT) {
|
||||
mod_shift_r = m_key;
|
||||
}
|
||||
else if (m_key == MODIFIERKEY_LEFT_CTRL) {
|
||||
mod_ctrl_l = m_key;
|
||||
}
|
||||
else if (m_key == MODIFIERKEY_RIGHT_CTRL) {
|
||||
mod_ctrl_r = m_key;
|
||||
}
|
||||
else if (m_key == MODIFIERKEY_LEFT_ALT) {
|
||||
mod_alt_l = m_key;
|
||||
}
|
||||
else if (m_key == MODIFIERKEY_RIGHT_ALT) {
|
||||
mod_alt_r = m_key;
|
||||
}
|
||||
else if (m_key == MODIFIERKEY_GUI) {
|
||||
mod_gui = m_key;
|
||||
}
|
||||
}
|
||||
//
|
||||
// Function to load 0 into the appropriate mod variable
|
||||
void clear_mod(int m_key) {
|
||||
if (m_key == MODIFIERKEY_LEFT_SHIFT) {
|
||||
mod_shift_l = 0;
|
||||
}
|
||||
else if (m_key == MODIFIERKEY_RIGHT_SHIFT) {
|
||||
mod_shift_r = 0;
|
||||
}
|
||||
else if (m_key == MODIFIERKEY_LEFT_CTRL) {
|
||||
mod_ctrl_l = 0;
|
||||
}
|
||||
else if (m_key == MODIFIERKEY_RIGHT_CTRL) {
|
||||
mod_ctrl_r = 0;
|
||||
}
|
||||
else if (m_key == MODIFIERKEY_LEFT_ALT) {
|
||||
mod_alt_l = 0;
|
||||
}
|
||||
else if (m_key == MODIFIERKEY_RIGHT_ALT) {
|
||||
mod_alt_r = 0;
|
||||
}
|
||||
else if (m_key == MODIFIERKEY_GUI) {
|
||||
mod_gui = 0;
|
||||
}
|
||||
}
|
||||
//
|
||||
// Function to send the modifier keys over usb
|
||||
void send_mod() {
|
||||
Keyboard.set_modifier(mod_shift_l | mod_shift_r | mod_ctrl_l | mod_ctrl_r | mod_alt_l | mod_alt_r | mod_gui);
|
||||
Keyboard.send_now();
|
||||
}
|
||||
//
|
||||
// Function to send the normal keys in the 6 slots over usb
|
||||
void send_normals() {
|
||||
Keyboard.set_key1(slot1);
|
||||
Keyboard.set_key2(slot2);
|
||||
Keyboard.set_key3(slot3);
|
||||
Keyboard.set_key4(slot4);
|
||||
Keyboard.set_key5(slot5);
|
||||
Keyboard.set_key6(slot6);
|
||||
Keyboard.send_now();
|
||||
}
|
||||
//
|
||||
// Function to set a pin to high impedance (acts like open drain output)
|
||||
void go_z(int pin)
|
||||
{
|
||||
pinMode(pin, INPUT);
|
||||
digitalWrite(pin, HIGH);
|
||||
}
|
||||
//
|
||||
// Function to set a pin as an input with a pullup
|
||||
void go_pu(int pin)
|
||||
{
|
||||
pinMode(pin, INPUT_PULLUP);
|
||||
digitalWrite(pin, HIGH);
|
||||
}
|
||||
//
|
||||
// Function to send a pin to a logic low
|
||||
void go_0(int pin)
|
||||
{
|
||||
pinMode(pin, OUTPUT);
|
||||
digitalWrite(pin, LOW);
|
||||
}
|
||||
//
|
||||
// Function to send a pin to a logic high
|
||||
void go_1(int pin)
|
||||
{
|
||||
pinMode(pin, OUTPUT);
|
||||
digitalWrite(pin, HIGH);
|
||||
}
|
||||
//
|
||||
// *****************Functions for Touchpad***************************
|
||||
//
|
||||
// Function to send the touchpad a byte of data (command)
|
||||
//
|
||||
void tp_write(char send_data)
|
||||
{
|
||||
unsigned int timeout = 200; // breakout of loop if over this value in msec
|
||||
elapsedMillis watchdog; // zero the watchdog timer clock
|
||||
char odd_parity = 0; // clear parity bit count
|
||||
// Enable the bus by floating the clock and data
|
||||
go_pu(TP_CLK); //
|
||||
go_pu(TP_DATA); //
|
||||
delayMicroseconds(250); // wait before requesting the bus
|
||||
go_0(TP_CLK); // Send the Clock line low to request to transmit data
|
||||
delayMicroseconds(100); // wait for 100 microseconds per bus spec
|
||||
go_0(TP_DATA); // Send the Data line low (the start bit)
|
||||
delayMicroseconds(1); //
|
||||
go_pu(TP_CLK); // Release the Clock line so it is pulled high
|
||||
delayMicroseconds(1); // give some time to let the clock line go high
|
||||
while (digitalRead(TP_CLK) == HIGH) { // loop until the clock goes low
|
||||
if (watchdog >= timeout) { //check for infinite loop
|
||||
break; // break out of infinite loop
|
||||
}
|
||||
}
|
||||
// send the 8 bits of send_data
|
||||
for (int j=0; j<8; j++) {
|
||||
if (send_data & 1) { //check if lsb is set
|
||||
go_pu(TP_DATA); // send a 1 to TP
|
||||
odd_parity = odd_parity + 1; // keep running total of 1's sent
|
||||
}
|
||||
else {
|
||||
go_0(TP_DATA); // send a 0 to TP
|
||||
}
|
||||
delayMicroseconds(1); // delay to let the clock settle out
|
||||
while (digitalRead(TP_CLK) == LOW) { // loop until the clock goes high
|
||||
if (watchdog >= timeout) { //check for infinite loop
|
||||
break; // break out of infinite loop
|
||||
}
|
||||
}
|
||||
delayMicroseconds(1); // delay to let the clock settle out
|
||||
while (digitalRead(TP_CLK) == HIGH) { // loop until the clock goes low
|
||||
if (watchdog >= timeout) { //check for infinite loop
|
||||
break; // break out of infinite loop
|
||||
}
|
||||
}
|
||||
send_data = send_data >> 1; // shift data right by 1 to prepare for next loop
|
||||
}
|
||||
// send the parity bit
|
||||
if (odd_parity & 1) { //check if lsb of parity is set
|
||||
go_0(TP_DATA); // already odd so send a 0 to TP
|
||||
}
|
||||
else {
|
||||
go_pu(TP_DATA); // send a 1 to TP to make parity odd
|
||||
}
|
||||
delayMicroseconds(1); // delay to let the clock settle out
|
||||
while (digitalRead(TP_CLK) == LOW) { // loop until the clock goes high
|
||||
if (watchdog >= timeout) { //check for infinite loop
|
||||
break; // break out of infinite loop
|
||||
}
|
||||
}
|
||||
delayMicroseconds(1); // delay to let the clock settle out
|
||||
while (digitalRead(TP_CLK) == HIGH) { // loop until the clock goes low
|
||||
if (watchdog >= timeout) { //check for infinite loop
|
||||
break; // break out of infinite loop
|
||||
}
|
||||
}
|
||||
go_pu(TP_DATA); // Release the Data line so it goes high as the stop bit
|
||||
delayMicroseconds(80); // testing shows delay at least 40us
|
||||
while (digitalRead(TP_CLK) == HIGH) { // loop until the clock goes low
|
||||
if (watchdog >= timeout) { //check for infinite loop
|
||||
break; // break out of infinite loop
|
||||
}
|
||||
}
|
||||
delayMicroseconds(1); // wait to let the data settle
|
||||
if (digitalRead(TP_DATA)) { // Ack bit s/b low if good transfer
|
||||
}
|
||||
while ((digitalRead(TP_CLK) == LOW) || (digitalRead(TP_DATA) == LOW)) { // loop if clock or data are low
|
||||
if (watchdog >= timeout) { //check for infinite loop
|
||||
break; // break out of infinite loop
|
||||
}
|
||||
}
|
||||
// Inhibit the bus so the tp only talks when we're listening
|
||||
go_0(TP_CLK);
|
||||
}
|
||||
//
|
||||
// Function to get a byte of data from the touchpad
|
||||
//
|
||||
char tp_read(void)
|
||||
{
|
||||
unsigned int timeout = 200; // breakout of loop if over this value in msec
|
||||
elapsedMillis watchdog; // zero the watchdog timer clock
|
||||
char rcv_data = 0; // initialize to zero
|
||||
char mask = 1; // shift a 1 across the 8 bits to select where to load the data
|
||||
char rcv_parity = 0; // count the ones received
|
||||
go_pu(TP_CLK); // release the clock
|
||||
go_pu(TP_DATA); // release the data
|
||||
delayMicroseconds(5); // delay to let clock go high
|
||||
while (digitalRead(TP_CLK) == HIGH) { // loop until the clock goes low
|
||||
if (watchdog >= timeout) { //check for infinite loop
|
||||
break; // break out of infinite loop
|
||||
}
|
||||
}
|
||||
if (digitalRead(TP_DATA)) { // Start bit s/b low from tp
|
||||
// start bit not correct - put error handler here if desired
|
||||
}
|
||||
delayMicroseconds(1); // delay to let the clock settle out
|
||||
while (digitalRead(TP_CLK) == LOW) { // loop until the clock goes high
|
||||
if (watchdog >= timeout) { //check for infinite loop
|
||||
break; // break out of infinite loop
|
||||
}
|
||||
}
|
||||
for (int k=0; k<8; k++) {
|
||||
delayMicroseconds(1); // delay to let the clock settle out
|
||||
while (digitalRead(TP_CLK) == HIGH) { // loop until the clock goes low
|
||||
if (watchdog >= timeout) { //check for infinite loop
|
||||
break; // break out of infinite loop
|
||||
}
|
||||
}
|
||||
if (digitalRead(TP_DATA)) { // check if data is high
|
||||
rcv_data = rcv_data | mask; // set the appropriate bit in the rcv data
|
||||
rcv_parity++; // increment the parity bit counter
|
||||
}
|
||||
mask = mask << 1;
|
||||
delayMicroseconds(1); // delay to let the clock settle out
|
||||
while (digitalRead(TP_CLK) == LOW) { // loop until the clock goes high
|
||||
if (watchdog >= timeout) { //check for infinite loop
|
||||
break; // break out of infinite loop
|
||||
}
|
||||
}
|
||||
}
|
||||
// receive parity
|
||||
delayMicroseconds(1); // delay to let the clock settle out
|
||||
while (digitalRead(TP_CLK) == HIGH) { // loop until the clock goes low
|
||||
if (watchdog >= timeout) { //check for infinite loop
|
||||
break; // break out of infinite loop
|
||||
}
|
||||
}
|
||||
if (digitalRead(TP_DATA)) { // check if received parity is high
|
||||
rcv_parity++; // increment the parity bit counter
|
||||
}
|
||||
rcv_parity = rcv_parity & 1; // mask off all bits except the lsb
|
||||
if (rcv_parity == 0) { // check for bad (even) parity
|
||||
// bad parity - pass to future error handler
|
||||
}
|
||||
delayMicroseconds(1); // delay to let the clock settle out
|
||||
while (digitalRead(TP_CLK) == LOW) { // loop until the clock goes high
|
||||
if (watchdog >= timeout) { //check for infinite loop
|
||||
break; // break out of infinite loop
|
||||
}
|
||||
}
|
||||
// stop bit
|
||||
delayMicroseconds(1); // delay to let the clock settle out
|
||||
while (digitalRead(TP_CLK) == HIGH) { // loop until the clock goes low
|
||||
if (watchdog >= timeout) { //check for infinite loop
|
||||
break; // break out of infinite loop
|
||||
}
|
||||
}
|
||||
if (digitalRead(TP_DATA) == LOW) { // check if stop bit is bad (low)
|
||||
// send bad stop bit to future error handler
|
||||
}
|
||||
delayMicroseconds(1); // delay to let the clock settle out
|
||||
while (digitalRead(TP_CLK) == LOW) { // loop until the clock goes high
|
||||
if (watchdog >= timeout) { //check for infinite loop
|
||||
break; // break out of infinite loop
|
||||
}
|
||||
}
|
||||
// Inhibit the bus so the tp only talks when we're listening
|
||||
go_0(TP_CLK);
|
||||
return rcv_data; // pass the received data back
|
||||
}
|
||||
//
|
||||
void touchpad_init()
|
||||
{
|
||||
touchpad_error = LOW; // start with no error
|
||||
go_pu(TP_CLK); // float the clock and data to touchpad
|
||||
go_pu(TP_DATA);
|
||||
// Sending reset command to touchpad
|
||||
tp_write(0xff);
|
||||
if (tp_read() != 0xfa) { // verify correct ack byte
|
||||
touchpad_error = HIGH;
|
||||
}
|
||||
delay(1000); // wait 1000ms so tp can run its self diagnostic
|
||||
// verify proper response from tp
|
||||
if (tp_read() != 0xaa) { // verify basic assurance test passed
|
||||
touchpad_error = HIGH;
|
||||
}
|
||||
if (tp_read() != 0x00) { // verify basic assurance test passed
|
||||
touchpad_error = HIGH;
|
||||
}
|
||||
// Send touchpad disable code
|
||||
tp_write(0xf5); // tp disable
|
||||
if (tp_read() != 0xfa) { // verify correct ack byte
|
||||
// init_error = HIGH;
|
||||
}
|
||||
// Load Mode Byte with 00 using the following special sequence from page 38.
|
||||
// Send set resolution to 0 four times followed by a set sample rate to 0x14
|
||||
// #1 set resolution
|
||||
tp_write(0xe8); // set resolution
|
||||
if (tp_read() != 0xfa) { // verify correct ack byte
|
||||
// init_error = HIGH;
|
||||
}
|
||||
tp_write(0x01); // to zero
|
||||
if (tp_read() != 0xfa) { // verify correct ack byte
|
||||
// init_error = HIGH;
|
||||
}
|
||||
// #2 set resolution
|
||||
tp_write(0xe8); // set resolution
|
||||
if (tp_read() != 0xfa) { // verify correct ack byte
|
||||
// init_error = HIGH;
|
||||
}
|
||||
tp_write(0x00); // to zero
|
||||
if (tp_read() != 0xfa) { // verify correct ack byte
|
||||
// init_error = HIGH;
|
||||
}
|
||||
// #3 set resolution
|
||||
tp_write(0xe8); // set resolution
|
||||
if (tp_read() != 0xfa) { // verify correct ack byte
|
||||
// init_error = HIGH;
|
||||
}
|
||||
tp_write(0x00); // to zero
|
||||
if (tp_read() != 0xfa) { // verify correct ack byte
|
||||
// init_error = HIGH;
|
||||
}
|
||||
// #4 set resolution
|
||||
tp_write(0xe8); // set resolution
|
||||
if (tp_read() != 0xfa) { // verify correct ack byte
|
||||
// init_error = HIGH;
|
||||
}
|
||||
tp_write(0x00); // to zero
|
||||
if (tp_read() != 0xfa) { // verify correct ack byte
|
||||
// init_error = HIGH;
|
||||
}
|
||||
// Set sample rate
|
||||
tp_write(0xf3); // set sample rate
|
||||
if (tp_read() != 0xfa) { // verify correct ack byte
|
||||
// init_error = HIGH;
|
||||
}
|
||||
tp_write(0x14); // to 14 hex
|
||||
if (tp_read() != 0xfa) { // verify correct ack byte
|
||||
// init_error = HIGH;
|
||||
}
|
||||
// set the resolution
|
||||
tp_write(0xe8); // Sending resolution command
|
||||
if (tp_read() != 0xfa) { // verify correct ack byte
|
||||
// init_error = HIGH;
|
||||
}
|
||||
tp_write(0x03); // value of 0x03 = 8 counts/mm resolution (default is 4 counts/mm)
|
||||
if (tp_read() != 0xfa) { // verify correct ack byte
|
||||
// init_error = HIGH;
|
||||
}
|
||||
// set the sample rate
|
||||
tp_write(0xf3); // Sending sample rate command
|
||||
if (tp_read() != 0xfa) { // verify correct ack byte
|
||||
// init_error = HIGH;
|
||||
}
|
||||
tp_write(0x28); // 0x28 = 40 samples per second, the default value used for Synaptics TP
|
||||
if (tp_read() != 0xfa) { // verify correct ack byte
|
||||
// init_error = HIGH;
|
||||
}
|
||||
// Sending remote mode code so the touchpad will send data only when polled
|
||||
tp_write(0xf0); // remote mode
|
||||
if (tp_read() != 0xfa) { // verify correct ack byte
|
||||
// touchpad_error = HIGH;
|
||||
}
|
||||
// Sending touchpad enable code (needed for Elan touchpads)
|
||||
tp_write(0xf4); // tp enable
|
||||
if (tp_read() != 0xfa) { // verify correct ack byte
|
||||
// touchpad_error = HIGH;
|
||||
}
|
||||
}
|
||||
//----------------------------------Setup-------------------------------------------
|
||||
void setup() {
|
||||
// Keyboard
|
||||
for (int a = 0; a < cols_max; a++) { // loop thru all column pins
|
||||
go_pu(Col_IO[a]); // set each column pin as an input with a pullup
|
||||
}
|
||||
//
|
||||
for (int b = 0; b < rows_max; b++) { // loop thru all row pins
|
||||
go_z(Row_IO[b]); // set each row pin as a floating output
|
||||
}
|
||||
// Touchpad
|
||||
touchpad_init(); // reset touchpad, then set it's resolution and put it in remote mode
|
||||
}
|
||||
//
|
||||
// Keyboard variables
|
||||
extern volatile uint8_t keyboard_leds; // 8 bits sent from Host to Teensy that give keyboard status.
|
||||
// Num lock is bit D0.
|
||||
// Caps lock is bit D1.
|
||||
// Scroll lock is bit D2.
|
||||
// Compose is bit D3. Compose has the same HID code as the Menu key.
|
||||
// Kana is bit D4. Kana switches to a Japanese key layer.
|
||||
// Power is bit D5.
|
||||
// Shift is bit D6.
|
||||
// Do Not Disturb is bit D7.
|
||||
//
|
||||
boolean Fn_pressed = HIGH; // Initialize Fn key to HIGH = "not pressed".
|
||||
boolean tp_on = HIGH; // Wake up with TP turned on
|
||||
boolean arrow_lock = LOW; // Wake up with arrow lock turned off
|
||||
//
|
||||
// Touchpad variables
|
||||
char mstat; // touchpad status reg = Y overflow, X overflow, Y sign bit, X sign bit, Always 1, Middle Btn, Right Btn, Left Btn
|
||||
char mx; // touchpad x movement = 8 data bits. The sign bit is in the status register to
|
||||
// make a 9 bit 2's complement value. Left to right on the touchpad gives a positive value.
|
||||
char my; // touchpad y movement also 8 bits plus sign. Touchpad movement away from the user gives a positive value.
|
||||
boolean over_flow; // set if x or y movement values are bad due to overflow
|
||||
boolean left_button = 0; // on/off variable for left button = bit 0 of mstat
|
||||
boolean right_button = 0; // on/off variable for right button = bit 1 of mstat
|
||||
boolean old_left_button = 0; // on/off variable for left button status the previous polling cycle
|
||||
boolean old_right_button = 0; // on/off variable for right button status the previous polling cycle
|
||||
boolean button_change = 0; // Active high, shows when a touchpad left or right button has changed since last polling cycle
|
||||
//
|
||||
//---------------------------------Main Loop---------------------------------------------
|
||||
//
|
||||
void loop() {
|
||||
// Scan keyboard matrix with an outer loop that drives each row low and an inner loop that reads every column (with pull ups).
|
||||
// The routine looks at each key's present state (by reading the column input pin) and also the previous state from the last scan
|
||||
// that was 30msec ago. The status of a key that was just pressed or just released is sent over USB and the state is saved in the old_key matrix.
|
||||
// The keyboard keys will read as logic low if they are pressed (negative logic).
|
||||
// The old_key matrix also uses negative logic (low=pressed).
|
||||
//
|
||||
for (int x = 0; x < rows_max; x++) { // loop thru the rows
|
||||
go_0(Row_IO[x]); // Activate Row (send it low)
|
||||
delayMicroseconds(10); // give the row time to go low and settle out
|
||||
for (int y = 0; y < cols_max; y++) { // loop thru the columns
|
||||
// **********Modifier keys including the Fn special case
|
||||
if (modifier[x][y] != 0) { // check if modifier key exists at this location in the array (a non-zero value)
|
||||
if (!digitalRead(Col_IO[y]) && (old_key[x][y])) { // Read column to see if key is low (pressed) and was previously not pressed
|
||||
if (modifier[x][y] != MODIFIERKEY_FN) { // Exclude Fn modifier key
|
||||
load_mod(modifier[x][y]); // function reads which modifier key is pressed and loads it into the appropriate mod_... variable
|
||||
send_mod(); // function sends the state of all modifier keys over usb including the one that just got pressed
|
||||
old_key[x][y] = LOW; // Save state of key as "pressed"
|
||||
}
|
||||
else { // Fn is pressed
|
||||
Fn_pressed = LOW; // Fn status variable is active low
|
||||
old_key[x][y] = LOW; // old_key state is "pressed" (active low)
|
||||
}
|
||||
}
|
||||
else if (digitalRead(Col_IO[y]) && (!old_key[x][y])) { //check if key is not pressed and was previously pressed
|
||||
if (modifier[x][y] != MODIFIERKEY_FN) { // Exclude Fn modifier key
|
||||
clear_mod(modifier[x][y]); // function reads which modifier key was released and loads 0 into the appropriate mod_... variable
|
||||
send_mod(); // function sends all mod's over usb including the one that just released
|
||||
old_key[x][y] = HIGH; // Save state of key as "not pressed"
|
||||
}
|
||||
else { // Fn is released
|
||||
Fn_pressed = HIGH; // Fn is no longer active
|
||||
old_key[x][y] = HIGH; // old_key state is "not pressed"
|
||||
}
|
||||
}
|
||||
}
|
||||
// ***********end of modifier section
|
||||
//
|
||||
// ***********Normal keys, num lock, arrow lock keys and media keys in this section
|
||||
else if ((normal[x][y] != 0) || (media[x][y] != 0)) { // check if normal or media key exists at this location in the array
|
||||
if (!digitalRead(Col_IO[y]) && (old_key[x][y]) && (!slots_full)) { // check if key pressed and not previously pressed and slots not full
|
||||
old_key[x][y] = LOW; // Save state of key as "pressed"
|
||||
if (Fn_pressed) { // Fn is not pressed and normal key needs to be sent
|
||||
if (keyboard_leds & 1) { // test if Num Lock is turned on
|
||||
load_slot(numlock[x][y]); //update first available slot with key name from numlock matrix
|
||||
send_normals(); // send all slots over USB including the key that just got pressed
|
||||
}
|
||||
else if (arrow_lock) { // test if Arrow Lock is turned on
|
||||
load_slot(arrowlock[x][y]); //update first available slot with key name from arrowlock matrix
|
||||
send_normals(); // send all slots over USB including the key that just got pressed
|
||||
}
|
||||
else {
|
||||
load_slot(normal[x][y]); //update first available slot with key name from normal matrix
|
||||
send_normals(); // send all slots over USB including the key that just got pressed
|
||||
}
|
||||
}
|
||||
else if (media[x][y] != 0) { // Fn is pressed so send media if a key exists in the matrix
|
||||
if (media[x][y] == KEY_TP_TOGGLE) {
|
||||
tp_on = !tp_on; // invert the TP on/off control
|
||||
}
|
||||
else if (media[x][y] == KEY_ARROW_LOCK) {
|
||||
arrow_lock = !arrow_lock; // invert the arrow lock control
|
||||
}
|
||||
else {
|
||||
Keyboard.press(media[x][y]); // media key is sent using keyboard press function per PJRC
|
||||
delay(5); // delay 5 milliseconds before releasing to make sure it gets sent over USB
|
||||
Keyboard.release(media[x][y]); // send media key release
|
||||
}
|
||||
}
|
||||
}
|
||||
else if (digitalRead(Col_IO[y]) && (!old_key[x][y])) { //check if key is not pressed, but was previously pressed
|
||||
old_key[x][y] = HIGH; // Save state of key as "not pressed"
|
||||
if (Fn_pressed) { // Fn is not pressed
|
||||
if (keyboard_leds & 1) { // test if Num Lock is turned on
|
||||
clear_slot(numlock[x][y]); //clear slot with key name from numlock matrix
|
||||
send_normals(); // send all slots over USB including the key that just got released
|
||||
}
|
||||
else if (arrow_lock) { // test if Arrow lock is turned on
|
||||
clear_slot(arrowlock[x][y]); //clear slot with key name from arrowlock matrix
|
||||
send_normals(); // send all slots over USB including the key that just got released
|
||||
}
|
||||
else {
|
||||
clear_slot(normal[x][y]); //clear slot with key name from normal matrix
|
||||
send_normals(); // send all slots over USB including the key that just got released
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
// **************end of normal, num lock, and media key section
|
||||
//
|
||||
}
|
||||
go_z(Row_IO[x]); // De-activate Row (send it to hi-z)
|
||||
}
|
||||
//
|
||||
// **********keyboard scan complete
|
||||
//
|
||||
// Control the 4 keyboard LEDs
|
||||
//
|
||||
if (keyboard_leds & 1<<1) { // mask off all bits but D1 and test if set
|
||||
go_1(CAPS_LED); // turn on the LED
|
||||
}
|
||||
else {
|
||||
go_0(CAPS_LED); // turn off the LED
|
||||
}
|
||||
//
|
||||
if (keyboard_leds & 1) { // mask off all bits but D0 and test if set
|
||||
go_1(NUM_LED); // turn on the Num Lock LED
|
||||
}
|
||||
else {
|
||||
go_0(NUM_LED); // turn off the Num Lock LED
|
||||
}
|
||||
//
|
||||
if (keyboard_leds & 1<<2) { // mask off all bits but D2 and test if set
|
||||
go_1(SCRL_LED); // turn on the Scroll Lock LED
|
||||
}
|
||||
else {
|
||||
go_0(SCRL_LED); // turn off the Scroll Lock LED
|
||||
}
|
||||
//
|
||||
if (arrow_lock) {
|
||||
go_1(ARROW_LED); // turn on the Arrow Lock LED
|
||||
}
|
||||
else {
|
||||
go_0(ARROW_LED); // turn off the Arrow Lock LED
|
||||
}
|
||||
//
|
||||
// *******************Touchpad section********************************************************
|
||||
//
|
||||
if ((!touchpad_error) && (tp_on)) { // Did the TP pass its startup check and is the TP currently turned on?
|
||||
//If yes, poll TP for new movement or button data
|
||||
over_flow = 0; // assume no overflow until status is received
|
||||
tp_write(0xeb); // request data from TP
|
||||
if (tp_read() != 0xfa) { // verify correct ack byte
|
||||
// bad ack - pass to future error handler
|
||||
}
|
||||
mstat = tp_read(); // save into status variable
|
||||
mx = tp_read(); // save into x variable
|
||||
my = tp_read(); // save into y variable
|
||||
if (((0x80 & mstat) == 0x80) || ((0x40 & mstat) == 0x40)) { // x or y overflow bits set?
|
||||
over_flow = 1; // set the overflow flag
|
||||
}
|
||||
// change the x data from 9 bit to 8 bit 2's complement
|
||||
mx = mx & 0x7f; // mask off 8th bit
|
||||
if ((0x10 & mstat) == 0x10) { // move the sign into
|
||||
mx = 0x80 | mx; // the 8th bit position
|
||||
}
|
||||
// change the y data from 9 bit to 8 bit 2's complement and then take the 2's complement
|
||||
// because y movement on ps/2 format is opposite of touchpad.move function
|
||||
my = my & 0x7f; // mask off 8th bit
|
||||
if ((0x20 & mstat) == 0x20) { // move the sign into
|
||||
my = 0x80 | my; // the 8th bit position
|
||||
}
|
||||
my = (~my + 0x01); // change the sign of y data by taking the 2's complement (invert and add 1)
|
||||
// zero out mx and my if over_flow is set
|
||||
if (over_flow) {
|
||||
mx = 0x00; // data is garbage so zero it out
|
||||
my = 0x00;
|
||||
}
|
||||
// send the x and y data back via usb if either one is non-zero
|
||||
if ((mx != 0x00) || (my != 0x00)) {
|
||||
Mouse.move(mx,my);
|
||||
}
|
||||
//
|
||||
// send the touchpad left and right button status over usb if no error
|
||||
if ((0x01 & mstat) == 0x01) { // if left button set
|
||||
left_button = 1;
|
||||
}
|
||||
else { // clear left button
|
||||
left_button = 0;
|
||||
}
|
||||
if ((0x02 & mstat) == 0x02) { // if right button set
|
||||
right_button = 1;
|
||||
}
|
||||
else { // clear right button
|
||||
right_button = 0;
|
||||
}
|
||||
// Determine if the left or right touch pad buttons have changed since last polling cycle
|
||||
button_change = (left_button ^ old_left_button) | (right_button ^ old_right_button);
|
||||
// Don't send button status if there's no change since last time.
|
||||
if (button_change){
|
||||
Mouse.set_buttons(left_button, 0, right_button); // send button status
|
||||
}
|
||||
old_left_button = left_button; // remember new button status for next polling cycle
|
||||
old_right_button = right_button;
|
||||
}
|
||||
|
||||
|
||||
delay(25); // The overall keyboard scanning rate is about 30ms
|
||||
}
|
Loading…
Reference in a new issue