Add files via upload

This commit is contained in:
Frank Adams 2020-03-24 14:05:32 -07:00 committed by GitHub
parent c321a2b1bb
commit 73bbeb4d5c
No known key found for this signature in database
GPG key ID: 4AEE18F83AFDEB23
3 changed files with 3655 additions and 0 deletions

Binary file not shown.

View file

@ -0,0 +1,809 @@
/* Copyright 2020 Frank Adams
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*/
// This software controls a IBM ThinkPad T43 Laptop Keyboard and PS/2 Trackpoint using a Teensy 3.2 on
// a daughterboard with a 40 pin connector.
// This routine uses the Teensyduino "Micro-Manager Method" to send Normal and Modifier
// keys over USB. Only the volume control multi-media keys are supported by this routine.
// Description of Teensyduino keyboard functions is at www.pjrc.com/teensy/td_keyboard.html
// The ps/2 code uses the USB PJRC Mouse functions at www.pjrc.com/teensy/td_mouse.html
// The ps/2 code has a watchdog timer so the code can't hang if a clock edge is missed.
// In the Arduino IDE, select Tools, Teensy LC. Also under Tools, select Keyboard+Mouse+Joystick
//
// Revision History
// Rev 1.0 - March 23, 2020 - Original Release
// Rev 1.1 - March 24, 2020 - Added Num pad keys
//
// Trackpoint signals
#define TP_DATA 18 // ps/2 data to trackpoint
#define TP_CLK 19 // ps/2 clock to trackpoint
#define TP_RESET 0 // active high trackpoint reset at power up
// Keyboard LEDs
#define CAPS_LED 28 // Wire these 3 I/O's to the anode side of LED's
#define NUM_LED 29 // Wire the cathode side thru a dropping resistor
#define SCRL_LED 30 // to ground.
#define BLINK_LED 13 // The LED on the Teensy is programmed to blink
// Keyboard Fn key (aka HOTKEY)
#define HOTKEY 8 // Fn key plus side
#define HOTKEY_RTN 23 // Fn key minus side (always driven low in this routine)
// sync signal for measuring scan frequency
#define SYNC 27
// Set the keyboard row & column size
const byte rows_max = 16; // sets the number of rows in the matrix
const byte cols_max = 8; // sets the number of columns in the matrix
//
// Load the normal key matrix with the Teensyduino key names described at www.pjrc.com/teensy/td_keyboard.html
// A zero indicates no normal key at that location.
int normal[rows_max][cols_max] = {
{0,0,0,0,0,0,0,0},
{0,0,KEY_PRINTSCREEN,KEY_SCROLL_LOCK,0,0,0,0},
{0,0,0,0,0,0,0,0},
{KEY_LEFT,KEY_PAUSE,KEY_END,0,0,KEY_HOME,KEY_UP,0},
{0,KEY_Z,KEY_1,KEY_Q,KEY_TAB,KEY_TILDE,KEY_ESC,KEY_A},
{0,0,KEY_PAGE_DOWN,0,0,KEY_PAGE_UP,0,0},
{KEY_RIGHT,0,KEY_F12,0,0,KEY_INSERT,0,0},
{KEY_DOWN,0,KEY_F11,0,0,KEY_DELETE,0,0},
{KEY_SLASH,0,KEY_0,KEY_P,KEY_LEFT_BRACE,KEY_MINUS,KEY_QUOTE,KEY_SEMICOLON},
{0,KEY_C,KEY_3,KEY_E,KEY_F3,KEY_F2,KEY_F4,KEY_D},
{0,KEY_PERIOD,KEY_9,KEY_O,KEY_F7,KEY_F8,0,KEY_L},
{KEY_B,KEY_V,KEY_4,KEY_R,KEY_T,KEY_5,KEY_G,KEY_F},
{0,KEY_X,KEY_2,KEY_W,KEY_CAPS_LOCK,KEY_F1,0,KEY_S},
{KEY_SPACE,KEY_ENTER,KEY_F10,0,KEY_BACKSPACE,KEY_F9,KEY_F5,KEY_BACKSLASH},
{0,KEY_COMMA,KEY_8,KEY_I,KEY_RIGHT_BRACE,KEY_EQUAL,KEY_F6,KEY_K},
{KEY_N,KEY_M,KEY_7,KEY_U,KEY_Y,KEY_6,KEY_H,KEY_J}
};
// Load the num lock key matrix which is the same as the normal matrix except for the number pad keys
// A zero indicates no key at that location.
int numlock[rows_max][cols_max] = {
{0,0,0,0,0,0,0,0},
{0,0,KEY_PRINTSCREEN,KEY_SCROLL_LOCK,0,0,0,0},
{0,0,0,0,0,0,0,0},
{KEY_LEFT,KEY_PAUSE,KEY_END,0,0,KEY_HOME,KEY_UP,0},
{0,KEY_Z,KEY_1,KEY_Q,KEY_TAB,KEY_TILDE,KEY_ESC,KEY_A},
{0,0,KEY_PAGE_DOWN,0,0,KEY_PAGE_UP,0,0},
{KEY_RIGHT,0,KEY_F12,0,0,KEY_INSERT,0,0},
{KEY_DOWN,0,KEY_F11,0,0,KEY_DELETE,KEY_MENU,0},
{KEYPAD_PLUS,0,KEYPAD_SLASH,KEYPAD_ASTERIX,KEY_LEFT_BRACE,KEY_MINUS,KEY_QUOTE,KEYPAD_MINUS},
{0,KEY_C,KEY_3,KEY_E,KEY_F3,KEY_F2,KEY_F4,KEY_D},
{0,KEYPAD_PERIOD,KEYPAD_9,KEYPAD_6,KEY_F7,KEY_F8,0,KEYPAD_3},
{KEY_B,KEY_V,KEY_4,KEY_R,KEY_T,KEY_5,KEY_G,KEY_F},
{0,KEY_X,KEY_2,KEY_W,KEY_CAPS_LOCK,KEY_F1,0,KEY_S},
{KEY_SPACE,KEY_ENTER,KEY_F10,0,KEY_BACKSPACE,KEY_F9,KEY_F5,KEY_BACKSLASH},
{0,KEY_COMMA,KEYPAD_8,KEYPAD_5,KEY_RIGHT_BRACE,KEY_EQUAL,KEY_F6,KEYPAD_2},
{KEY_N,KEYPAD_0,KEYPAD_7,KEYPAD_4,KEY_Y,KEY_6,KEY_H,KEYPAD_1}
};
// Load the modifier key matrix with key names at the correct row-column location.
// A zero indicates no modifier key at that location.
int modifier[rows_max][cols_max] = {
{0,MODIFIERKEY_RIGHT_CTRL,0,0,0,MODIFIERKEY_LEFT_CTRL,0,0},
{MODIFIERKEY_RIGHT_ALT,0,0,0,0,0,MODIFIERKEY_LEFT_ALT,0},
{0,MODIFIERKEY_RIGHT_SHIFT,0,0,MODIFIERKEY_LEFT_SHIFT,0,0,0},
{0,0,0,0,0,0,0,0},
{0,0,0,0,0,0,0,0},
{0,0,0,0,0,0,0,0},
{0,0,0,0,0,0,0,0},
{0,0,0,0,0,0,MODIFIERKEY_GUI,0},
{0,0,0,0,0,0,0,0},
{0,0,0,0,0,0,0,0},
{0,0,0,0,0,0,0,0},
{0,0,0,0,0,0,0,0},
{0,0,0,0,0,0,0,0},
{0,0,0,0,0,0,0,0},
{0,0,0,0,0,0,0,0},
{0,0,0,0,0,0,0,0}
};
// Load the media key matrix with key names at the correct row-column location.
// A zero indicates no media key at that location.
int media[rows_max][cols_max] = {
{0,0,0,0,0,0,0,0},
{0,0,0,0,0,0,0,0},
{0,0,0,0,0,0,0,0},
{0,0,0,0,0,0,0,0},
{0,0,0,0,0,0,0,0},
{0,0,0,0,0,0,0,0},
{0,0,0,0,0,0,0,0},
{0,0,0,KEY_MEDIA_VOLUME_INC,KEY_MEDIA_VOLUME_DEC,0,0,KEY_MEDIA_MUTE},
{0,0,0,0,0,0,0,0},
{0,0,0,0,0,0,0,0},
{0,0,0,0,0,0,0,0},
{0,0,0,0,0,0,0,0},
{0,0,0,0,0,0,0,0},
{0,0,0,0,0,0,0,0},
{0,0,0,0,0,0,0,0},
{0,0,0,0,0,0,0,0}
};
// Initialize the old_key matrix with one's.
// 1 = key not pressed, 0 = key is pressed
boolean old_key[rows_max][cols_max] = {
{1,1,1,1,1,1,1,1},
{1,1,1,1,1,1,1,1},
{1,1,1,1,1,1,1,1},
{1,1,1,1,1,1,1,1},
{1,1,1,1,1,1,1,1},
{1,1,1,1,1,1,1,1},
{1,1,1,1,1,1,1,1},
{1,1,1,1,1,1,1,1},
{1,1,1,1,1,1,1,1},
{1,1,1,1,1,1,1,1},
{1,1,1,1,1,1,1,1},
{1,1,1,1,1,1,1,1},
{1,1,1,1,1,1,1,1},
{1,1,1,1,1,1,1,1},
{1,1,1,1,1,1,1,1},
{1,1,1,1,1,1,1,1}
};
//
// Define the Teensy 3.2 I/O numbers
//
// Row FPC pin #
// Teensy I/O # 22,01,21,02,20,03,04,05,06,24,07,25,33,26,32,31
int Row_IO[rows_max] = {22,1,21,2,20,3,4,5,6,24,7,25,33,26,32,31}; // Teensy 3.2 I/O numbers for rows
//
// Column FPC pin #
// Teensy I/O # 14,15,16,12,11,10,09,17
int Col_IO[cols_max] = {14,15,16,12,11,10,9,17}; // Teensy 3.2 I/O numbers for columns
//
// Declare variables that will be used by functions
boolean trackpoint_error = LOW; // sent high when track point routine times out
boolean slots_full = LOW; // Goes high when slots 1 thru 6 contain normal keys
// slot 1 thru slot 6 hold the normal key values to be sent over USB.
int slot1 = 0; //value of 0 means the slot is empty and can be used.
int slot2 = 0;
int slot3 = 0;
int slot4 = 0;
int slot5 = 0;
int slot6 = 0;
//
int mod_shift_l = 0; // These variables are sent over USB as modifier keys.
int mod_shift_r = 0; // Each is either set to 0 or MODIFIER_ ...
int mod_ctrl_l = 0;
int mod_ctrl_r = 0;
int mod_alt_l = 0;
int mod_alt_r = 0;
int mod_gui = 0;
//
// **************Functions common to keyboard and trackpoint**************************
//
// Function to set a pin to high impedance (acts like open drain output)
void go_z(int pin)
{
pinMode(pin, INPUT);
digitalWrite(pin, HIGH);
}
//
// Function to set a pin as an input with a pullup
void go_pu(int pin)
{
pinMode(pin, INPUT_PULLUP);
digitalWrite(pin, HIGH);
}
//
// Function to send a pin to a logic low
void go_0(int pin)
{
pinMode(pin, OUTPUT);
digitalWrite(pin, LOW);
}
//
// Function to send a pin to a logic high
void go_1(int pin)
{
pinMode(pin, OUTPUT);
digitalWrite(pin, HIGH);
}
//
// *****************Functions for Trackpoint***************************
//
// Function to send the trackpoint a byte of data (command)
//
void tp_write(char send_data)
{
unsigned int timeout = 200; // breakout of loop if over this value in msec
elapsedMillis watchdog; // zero the watchdog timer clock
char odd_parity = 0; // clear parity bit count
// Enable the bus by floating the clock and data
go_z(TP_CLK); //
go_z(TP_DATA); //
delayMicroseconds(250); // wait before requesting the bus
go_0(TP_CLK); // Send the Clock line low to request to transmit data
delayMicroseconds(100); // wait for 100 microseconds per bus spec
go_0(TP_DATA); // Send the Data line low (the start bit)
delayMicroseconds(1); //
go_z(TP_CLK); // Release the Clock line so it is pulled high
delayMicroseconds(1); // give some time to let the clock line go high
while (digitalRead(TP_CLK) == HIGH) { // loop until the clock goes low
if (watchdog >= timeout) { //check for infinite loop
trackpoint_error = HIGH; // set error flag
break; // break out of infinite loop
}
}
// send the 8 bits of send_data
for (int j=0; j<8; j++) {
if (send_data & 1) { //check if lsb is set
go_z(TP_DATA); // send a 1 to TP
odd_parity = odd_parity + 1; // keep running total of 1's sent
}
else {
go_0(TP_DATA); // send a 0 to TP
}
delayMicroseconds(1); // delay to let the clock settle out
while (digitalRead(TP_CLK) == LOW) { // loop until the clock goes high
if (watchdog >= timeout) { //check for infinite loop
trackpoint_error = HIGH; // set error flag
break; // break out of infinite loop
}
}
delayMicroseconds(1); // delay to let the clock settle out
while (digitalRead(TP_CLK) == HIGH) { // loop until the clock goes low
if (watchdog >= timeout) { //check for infinite loop
trackpoint_error = HIGH; // set error flag
break; // break out of infinite loop
}
}
send_data = send_data >> 1; // shift data right by 1 to prepare for next loop
}
// send the parity bit
if (odd_parity & 1) { //check if lsb of parity is set
go_0(TP_DATA); // already odd so send a 0 to TP
}
else {
go_z(TP_DATA); // send a 1 to TP to make parity odd
}
delayMicroseconds(1); // delay to let the clock settle out
while (digitalRead(TP_CLK) == LOW) { // loop until the clock goes high
if (watchdog >= timeout) { //check for infinite loop
trackpoint_error = HIGH; // set error flag
break; // break out of infinite loop
}
}
delayMicroseconds(1); // delay to let the clock settle out
while (digitalRead(TP_CLK) == HIGH) { // loop until the clock goes low
if (watchdog >= timeout) { //check for infinite loop
trackpoint_error = HIGH; // set error flag
break; // break out of infinite loop
}
}
go_z(TP_DATA); // Release the Data line so it goes high as the stop bit
delayMicroseconds(80); // testing shows delay at least 40us
while (digitalRead(TP_CLK) == HIGH) { // loop until the clock goes low
if (watchdog >= timeout) { //check for infinite loop
trackpoint_error = HIGH; // set error flag
break; // break out of infinite loop
}
}
delayMicroseconds(1); // wait to let the data settle
if (digitalRead(TP_DATA)) { // Ack bit s/b low if good transfer
trackpoint_error = HIGH; //bad ack bit so set the error flag
}
while ((digitalRead(TP_CLK) == LOW) || (digitalRead(TP_DATA) == LOW)) { // loop if clock or data are low
if (watchdog >= timeout) { //check for infinite loop
trackpoint_error = HIGH; // set error flag
break; // break out of infinite loop
}
}
// Inhibit the bus so the tp only talks when we're listening
go_0(TP_CLK);
}
//
// Function to get a byte of data from the trackpoint
//
char tp_read(void)
{
unsigned int timeout = 200; // breakout of loop if over this value in msec
elapsedMillis watchdog; // zero the watchdog timer clock
char rcv_data = 0; // initialize to zero
char mask = 1; // shift a 1 across the 8 bits to select where to load the data
char rcv_parity = 0; // count the ones received
go_z(TP_CLK); // release the clock
go_z(TP_DATA); // release the data
delayMicroseconds(5); // delay to let clock go high
while (digitalRead(TP_CLK) == HIGH) { // loop until the clock goes low
if (watchdog >= timeout) { //check for infinite loop
trackpoint_error = HIGH; // set error flag
break; // break out of infinite loop
}
}
if (digitalRead(TP_DATA)) { // Start bit s/b low from tp
trackpoint_error = HIGH; // No start bit so set the error flag
}
delayMicroseconds(1); // delay to let the clock settle out
while (digitalRead(TP_CLK) == LOW) { // loop until the clock goes high
if (watchdog >= timeout) { //check for infinite loop
trackpoint_error = HIGH; // set error flag
break; // break out of infinite loop
}
}
for (int k=0; k<8; k++) {
delayMicroseconds(1); // delay to let the clock settle out
while (digitalRead(TP_CLK) == HIGH) { // loop until the clock goes low
if (watchdog >= timeout) { //check for infinite loop
trackpoint_error = HIGH; // set error flag
break; // break out of infinite loop
}
}
if (digitalRead(TP_DATA)) { // check if data is high
rcv_data = rcv_data | mask; // set the appropriate bit in the rcv data
rcv_parity++; // increment the parity bit counter
}
mask = mask << 1;
delayMicroseconds(1); // delay to let the clock settle out
while (digitalRead(TP_CLK) == LOW) { // loop until the clock goes high
if (watchdog >= timeout) { //check for infinite loop
trackpoint_error = HIGH; // set error flag
break; // break out of infinite loop
}
}
}
// receive parity
delayMicroseconds(1); // delay to let the clock settle out
while (digitalRead(TP_CLK) == HIGH) { // loop until the clock goes low
if (watchdog >= timeout) { //check for infinite loop
trackpoint_error = HIGH; // set error flag
break; // break out of infinite loop
}
}
if (digitalRead(TP_DATA)) { // check if received parity is high
rcv_parity++; // increment the parity bit counter
}
rcv_parity = rcv_parity & 1; // mask off all bits except the lsb
if (rcv_parity == 0) { // check for bad (even) parity
trackpoint_error = HIGH; //bad parity so set the error flag
}
delayMicroseconds(1); // delay to let the clock settle out
while (digitalRead(TP_CLK) == LOW) { // loop until the clock goes high
if (watchdog >= timeout) { //check for infinite loop
trackpoint_error = HIGH; // set error flag
break; // break out of infinite loop
}
}
// stop bit
delayMicroseconds(1); // delay to let the clock settle out
while (digitalRead(TP_CLK) == HIGH) { // loop until the clock goes low
if (watchdog >= timeout) { //check for infinite loop
trackpoint_error = HIGH; // set error flag
break; // break out of infinite loop
}
}
if (digitalRead(TP_DATA) == LOW) { // check if stop bit is bad (low)
trackpoint_error = HIGH; //bad stop bit so set the error flag
}
delayMicroseconds(1); // delay to let the clock settle out
while (digitalRead(TP_CLK) == LOW) { // loop until the clock goes high
if (watchdog >= timeout) { //check for infinite loop
trackpoint_error = HIGH; // set error flag
break; // break out of infinite loop
}
}
// Inhibit the bus so the tp only talks when we're listening
go_0(TP_CLK);
return rcv_data; // pass the received data back
}
//
void trackpoint_init()
{
trackpoint_error = LOW; // start with no error
go_z(TP_CLK); // float the clock and data to trackpoint
go_z(TP_DATA);
// Trackpoint Reset signal is active high. Start it off low to let power stabilize
go_0(TP_RESET); // drive low
delay(1000); // wait 1 second
go_1(TP_RESET); // drive High to activate Reset signal to trackpoint
delay(1000); // wait 1 second to give it a good long reset
go_0(TP_RESET); // drive Reset back to the inactive (low) state
delay(1000); // wait 1 second before proceeding so trackpoint is ready
// Sending reset command to trackpoint
tp_write(0xff);
if (tp_read() != 0xfa) { // verify correct ack byte
trackpoint_error = HIGH;
}
delayMicroseconds(100); // give the tp time to run its self diagnostic
// verify proper response from tp
if (tp_read() != 0xaa) { // verify basic assurance test passed
trackpoint_error = HIGH;
}
if (tp_read() != 0x00) { // verify correct device id
trackpoint_error = HIGH;
}
// Sending remote mode code so the trackpoint will send data only when polled
tp_write(0xf0); // remote mode
if (tp_read() != 0xfa) { // verify correct ack byte
trackpoint_error = HIGH;
}
if (trackpoint_error == HIGH) { // check for any errors from tp
delayMicroseconds(300); // wait before trying to initialize tp one last time
tp_write(0xff); // send tp reset code
tp_read(); // read but don't look at response from tp
// Read ack byte
tp_read(); // read but don't look at response from tp
tp_read(); // read but don't look at response from tp
// Sending remote mode code so the trackpoint will send data only when polled
tp_write(0xf0); // remote mode
tp_read(); // read but don't look at response from tp
delayMicroseconds(100);
}
}
//
// *****************Functions for Keyboard*****************************
// Function to load the key name into the first available slot
void load_slot(int key) {
if (!slot1) {
slot1 = key;
}
else if (!slot2) {
slot2 = key;
}
else if (!slot3) {
slot3 = key;
}
else if (!slot4) {
slot4 = key;
}
else if (!slot5) {
slot5 = key;
}
else if (!slot6) {
slot6 = key;
}
if (!slot1 || !slot2 || !slot3 || !slot4 || !slot5 || !slot6) {
slots_full = LOW; // slots are not full
}
else {
slots_full = HIGH; // slots are full
}
}
//
// Function to clear the slot that contains the key name
void clear_slot(int key) {
if (slot1 == key) {
slot1 = 0;
}
else if (slot2 == key) {
slot2 = 0;
}
else if (slot3 == key) {
slot3 = 0;
}
else if (slot4 == key) {
slot4 = 0;
}
else if (slot5 == key) {
slot5 = 0;
}
else if (slot6 == key) {
slot6 = 0;
}
if (!slot1 || !slot2 || !slot3 || !slot4 || !slot5 || !slot6) {
slots_full = LOW; // slots are not full
}
else {
slots_full = HIGH; // slots are full
}
}
//
// Function to load the modifier key name into the appropriate mod variable
void load_mod(int m_key) {
if (m_key == MODIFIERKEY_LEFT_SHIFT) {
mod_shift_l = m_key;
}
else if (m_key == MODIFIERKEY_RIGHT_SHIFT) {
mod_shift_r = m_key;
}
else if (m_key == MODIFIERKEY_LEFT_CTRL) {
mod_ctrl_l = m_key;
}
else if (m_key == MODIFIERKEY_RIGHT_CTRL) {
mod_ctrl_r = m_key;
}
else if (m_key == MODIFIERKEY_LEFT_ALT) {
mod_alt_l = m_key;
}
else if (m_key == MODIFIERKEY_RIGHT_ALT) {
mod_alt_r = m_key;
}
else if (m_key == MODIFIERKEY_GUI) {
mod_gui = m_key;
}
}
//
// Function to load 0 into the appropriate mod variable
void clear_mod(int m_key) {
if (m_key == MODIFIERKEY_LEFT_SHIFT) {
mod_shift_l = 0;
}
else if (m_key == MODIFIERKEY_RIGHT_SHIFT) {
mod_shift_r = 0;
}
else if (m_key == MODIFIERKEY_LEFT_CTRL) {
mod_ctrl_l = 0;
}
else if (m_key == MODIFIERKEY_RIGHT_CTRL) {
mod_ctrl_r = 0;
}
else if (m_key == MODIFIERKEY_LEFT_ALT) {
mod_alt_l = 0;
}
else if (m_key == MODIFIERKEY_RIGHT_ALT) {
mod_alt_r = 0;
}
else if (m_key == MODIFIERKEY_GUI) {
mod_gui = 0;
}
}
//
// Function to send the modifier keys over usb
void send_mod() {
Keyboard.set_modifier(mod_shift_l | mod_shift_r | mod_ctrl_l | mod_ctrl_r | mod_alt_l | mod_alt_r | mod_gui);
Keyboard.send_now();
}
//
// Function to send the normal keys in the 6 slots over usb
void send_normals() {
Keyboard.set_key1(slot1);
Keyboard.set_key2(slot2);
Keyboard.set_key3(slot3);
Keyboard.set_key4(slot4);
Keyboard.set_key5(slot5);
Keyboard.set_key6(slot6);
Keyboard.send_now();
}
//
//************************************Setup*******************************************
void setup() {
// ************trackpoint setup
trackpoint_init(); // reset trackpoint, then set it's resolution and put it in remote mode
if (trackpoint_error) {
trackpoint_init(); // try one more time to initialize the trackpoint
}
// ************keyboard setup
for (int a = 0; a < cols_max; a++) { // loop thru all column pins
go_pu(Col_IO[a]); // set each column pin as an input with a pullup
}
//
for (int b = 0; b < rows_max; b++) { // loop thru all row pins
go_z(Row_IO[b]); // set each row pin as a floating output
}
//
go_0(HOTKEY_RTN); // Always drive the Hotkey return side low
go_pu(HOTKEY); // Pull up the Hotkey plus side for reading
//
pinMode(BLINK_LED, OUTPUT); // I/O 13 drives the LED on the Teensy
pinMode(SYNC, OUTPUT); // I/O 27 drives a scope for frequency measurement
}
//
// *******declare and initialize trackpoint variables
char mstat; // trackpoint status reg = Y overflow, X overflow, Y sign bit, X sign bit, Always 1, Middle Btn, Right Btn, Left Btn
char mx; // trackpoint x movement = 8 data bits. The sign bit is in the status register to
// make a 9 bit 2's complement value. Left to right on the trackpoint gives a positive value.
char my; // trackpoint y movement also 8 bits plus sign. trackpoint movement away from the user gives a positive value.
boolean over_flow; // set if x or y movement values are bad due to overflow
boolean left_button = 0; // on/off variable for left button = bit 0 of mstat
boolean right_button = 0; // on/off variable for right button = bit 1 of mstat
boolean middle_button = 0; // on/off variable for middle button = bit 2 of mstat
boolean old_left_button = 0; // on/off variable for left button status the previous polling cycle
boolean old_right_button = 0; // on/off variable for right button status the previous polling cycle
boolean old_middle_button = 0; // on/off variable for middle button status the previous polling cycle
boolean button_change = 0; // Active high, shows when any trackpoint button has changed since last polling cycle
// **********declare and initialize keyboard variables
boolean Fn_pressed = HIGH; // Initialize Fn key to HIGH = "not pressed"
extern volatile uint8_t keyboard_leds; // 8 bits sent from Host to Teensy that give keyboard LED status.
char blink_count = 0; // Blink loop counter
boolean blinky = LOW; // Blink LED state
boolean sync_sig = LOW; // sync pulse to measure scan frequency
//
//*********************************Main Loop*******************************************
//
void loop() {
// *************Keyboard Main**************
// Read the Fn key (aka Hotkey) which is not part of the key matrix
if (!digitalRead(HOTKEY)) {
Fn_pressed = LOW; // Fn key is pressed (active low)
}
else {
Fn_pressed = HIGH; // Fn key is not pressed
}
//
// Scan keyboard matrix with an outer loop that drives each row low and an inner loop that reads every column (with pull ups).
// The routine looks at each key's present state (by reading the column input pin) and also the previous state from the last scan
// that was 30msec ago. The status of a key that was just pressed or just released is sent over USB and the state is saved in the old_key matrix.
// The keyboard keys will read as logic low if they are pressed (negative logic).
// The old_key matrix also uses negative logic (low=pressed).
//
for (int x = 0; x < rows_max; x++) { // loop thru the rows
go_0(Row_IO[x]); // Activate Row (send it low)
delayMicroseconds(10); // give the row time to go low and settle out
for (int y = 0; y < cols_max; y++) { // loop thru the columns
// **********Modifier keys
if (modifier[x][y] != 0) { // check if modifier key exists at this location in the array (a non-zero value)
if (!digitalRead(Col_IO[y]) && (old_key[x][y])) { // Read column to see if key is low (pressed) and was previously not pressed
load_mod(modifier[x][y]); // function reads which modifier key is pressed and loads it into the appropriate mod_... variable
send_mod(); // function sends the state of all modifier keys over usb including the one that just got pressed
old_key[x][y] = LOW; // Save state of key as "pressed"
}
else if (digitalRead(Col_IO[y]) && (!old_key[x][y])) { //check if key is not pressed and was previously pressed
clear_mod(modifier[x][y]); // function reads which modifier key was released and loads 0 into the appropriate mod_... variable
send_mod(); // function sends all mod's over usb including the one that just released
old_key[x][y] = HIGH; // Save state of key as "not pressed"
}
}
// ***********end of modifier section
//
// ***********Normal keys section
else if (normal[x][y] != 0) { // check if normal key exists at this location in the array (a non-zero value)
if (!digitalRead(Col_IO[y]) && (old_key[x][y]) && (!slots_full)) { // check if key pressed and not previously pressed and slots not full
old_key[x][y] = LOW; // Save state of key as "pressed"
if ((normal[x][y] == KEY_SCROLL_LOCK) && (!Fn_pressed)) { // check for special case of Num Lock Key
load_slot(KEY_NUM_LOCK); // update first available slot with Num Lock instead of Scroll Lock
send_normals(); // send all slots over USB including the Num Lock Key that just got pressed
}
else if (keyboard_leds & 1) { // test if Num Lock is turned on
load_slot(numlock[x][y]); //update first available slot with key name from numlock matrix
send_normals(); // send all slots over USB including the key that just got pressed
}
else {
load_slot(normal[x][y]); //update first available slot with normal key name
send_normals(); // send all slots over USB including the key that just got pressed
}
}
else if (digitalRead(Col_IO[y]) && (!old_key[x][y])) { //check if key is not pressed, but was previously pressed
old_key[x][y] = HIGH; // Save state of key as "not pressed"
if ((normal[x][y] == KEY_SCROLL_LOCK) && (!Fn_pressed)) { // check for special case of Num Lock Key
clear_slot(KEY_NUM_LOCK); // clear the slot that contains Num Lock
send_normals(); // send all slots over USB including the Num Lock key
}
else if (keyboard_leds & 1) { // test if Num Lock is turned on
clear_slot(numlock[x][y]); //clear slot with key name from numlock matrix
send_normals(); // send all slots over USB including the key that just got released
}
else {
clear_slot(normal[x][y]); //clear the slot that contains the normal key name
send_normals(); // send all slots over USB including the key that was just released
}
}
}
// **************end of normal section
//
// *************Volume key section. Note PJRC states that volume up, down, & mute should be sent with Keyboard.press function.
else if (media[x][y] != 0) { // check if any volume control key exists at this location in the array (a non-zero value)
if (!digitalRead(Col_IO[y]) && (old_key[x][y])) { // check if key is pressed and was not previously pressed
old_key[x][y] = LOW; // Save state of key as "pressed"
Keyboard.press(media[x][y]); // send volume key press
}
else if (digitalRead(Col_IO[y]) && (!old_key[x][y])) { //check if key is not pressed, but was previously pressed
old_key[x][y] = HIGH; // Save state of key as "not pressed"
Keyboard.release(media[x][y]); // send volume key release
}
}
// ***************end of volume section
}
go_z(Row_IO[x]); // De-activate Row (send it to hi-z)
}
//
// **********keyboard scan complete
//
// ****************************Trackpoint Routine*********************************
//
// poll the trackpoint for new movement data
over_flow = 0; // assume no overflow until status is received
trackpoint_error = LOW; // start with no error
tp_write(0xeb); // request data
if (tp_read() != 0xfa) { // verify correct ack byte
trackpoint_error = HIGH;
}
mstat = tp_read(); // save into status variable
mx = tp_read(); // save into x variable
my = tp_read(); // save into y variable
if (((0x80 & mstat) == 0x80) || ((0x40 & mstat) == 0x40)) { // x or y overflow bits set?
over_flow = 1; // set the overflow flag
}
// change the x data from 9 bit to 8 bit 2's complement
mx = mx >> 1; // convert to 7 bits of data by dividing by 2
mx = mx & 0x7f; // don't allow sign extension
if ((0x10 & mstat) == 0x10) { // move the sign into
mx = 0x80 | mx; // the 8th bit position
}
// change the y data from 9 bit to 8 bit 2's complement and then take the 2's complement
// because y movement on ps/2 format is opposite of touchpad.move function
my = my >> 1; // convert to 7 bits of data by dividing by 2
my = my & 0x7f; // don't allow sign extension
if ((0x20 & mstat) == 0x20) { // move the sign into
my = 0x80 | my; // the 8th bit position
}
my = (~my + 0x01); // change the sign of y data by taking the 2's complement (invert and add 1)
// zero out mx and my if over_flow or trackpoint_error is set
if ((over_flow) || (trackpoint_error)) {
mx = 0x00; // data is garbage so zero it out
my = 0x00;
}
// send the x and y data back via usb if either one is non-zero
if ((mx != 0x00) || (my != 0x00)) {
Mouse.move(mx,my);
}
//
// send the trackpoint left and right button status over usb if no error
if (!trackpoint_error) {
if ((0x01 & mstat) == 0x01) { // if left button set
left_button = 1;
}
else { // clear left button
left_button = 0;
}
if ((0x02 & mstat) == 0x02) { // if right button set
right_button = 1;
}
else { // clear right button
right_button = 0;
}
if ((0x04 & mstat) == 0x04) { // if middle button set
middle_button = 1;
}
else { // clear middle button
middle_button = 0;
}
// Determine if any buttons have changed since last polling cycle
button_change = ((left_button ^ old_left_button) | (right_button ^ old_right_button) | (middle_button ^ old_middle_button));
// Don't send button status if there's no change since last time.
if (button_change) {
Mouse.set_buttons(left_button, middle_button, right_button); // send button status
}
old_left_button = left_button; // remember new button status for next polling cycle
old_right_button = right_button;
old_middle_button = middle_button;
}
// **************************************End of trackpoint routine***********************************
//
// *******keyboard LEDs
// Turn on or off the LEDs for Num Lock, Caps Lock, and Scroll Lock based on bit 0, 1, and 2 from the keyboard_leds
// variable controlled by the USB host computer
//
if (keyboard_leds & 1) { // mask off all bits but D0 and test if set
go_1(NUM_LED); // turn on the Num Lock LED
}
else {
go_0(NUM_LED); // turn off the Num Lock LED
}
//
//
if (keyboard_leds & 1<<1) { // mask off all bits but D1 and test if set
go_1(CAPS_LED); // turn on the Caps Lock LED
}
else {
go_0(CAPS_LED); // turn off the Caps Lock LED
}
//
//
if (keyboard_leds & 1<<2) { // mask off all bits but D2 and test if set
go_1(SCRL_LED); // turn on the Scroll Lock LED
}
else {
go_0(SCRL_LED); // turn off the Scroll Lock LED
}
//
// Blink LED on Teensy to show a heart beat
//
if (blink_count == 0x17) {
digitalWrite(BLINK_LED, blinky);
blinky = !blinky;
blink_count = 0;
}
else {
blink_count = blink_count + 1;
}
//
// Provide a sync pulse to measure the scan frequency
//
sync_sig = !sync_sig; // toggle the sync signal
digitalWrite(SYNC, sync_sig);
//
// ****************End of main loop
//
delay(24); // The overall keyboard/trackpoint scanning rate was measured at 30ms
}

2846
IBM T43 Files/T43.kicad_pcb Normal file

File diff suppressed because it is too large Load diff