diff --git a/Example_Keyboards/Apple_iBook_Keyboard_and_Touchpad_B/Apple_iBook_Keyboard_and_Touchpad_B.ino b/Example_Keyboards/Apple_iBook_Keyboard_and_Touchpad_B/Apple_iBook_Keyboard_and_Touchpad_B.ino new file mode 100644 index 0000000..911fff8 --- /dev/null +++ b/Example_Keyboards/Apple_iBook_Keyboard_and_Touchpad_B/Apple_iBook_Keyboard_and_Touchpad_B.ino @@ -0,0 +1,703 @@ +/* Copyright 2019 Frank Adams + Licensed under the Apache License, Version 2.0 (the "License"); + you may not use this file except in compliance with the License. + You may obtain a copy of the License at + http://www.apache.org/licenses/LICENSE-2.0 + Unless required by applicable law or agreed to in writing, software + distributed under the License is distributed on an "AS IS" BASIS, + WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. + See the License for the specific language governing permissions and + limitations under the License. +*/ +// This software implements an Apple iBook clamshell Keyboard Controller and PS/2 Touchpad Controller +// using a Teensy 3.2 on a daughterboard with a two row forty pin female vertical socket with a 1.27mm pitch. +// The touchpad replaces the original serial touchpad of the iBook with one from a Dell Inspiron 2500 PP02L Laptop. +// The touchpad part number is TM41PDD233. This routine uses the Teensyduino "Micro-Manager Method" to send Normal and Modifier +// keys over USB. Multi-media keys are sent with keyboard press and release functions. +// Description of Teensyduino keyboard functions is at www.pjrc.com/teensy/td_keyboard.html +// The PS/2 code has a watchdog timer so the code doesn't hang if the Teensy is interrupted by USB traffic. +// +// In the Arduino IDE, select Tools, Teensy 3.2. Also under Tools, select Keyboard+Mouse+Joystick +// +// Revision History +// Rev 1.0 - Sept 21, 2021 - Original Release +// +// +#define MODIFIERKEY_FN 0x8f // give Fn key a HID code +#define CAPS_LED 21 // Caps lock LED on keyboard shows bit 1 in keyboard_led variable +#define SCRL_LED 20 // Scroll lock LED on keyboard shows bit 2 in keyboard_leds variable +#define NUM_LED 19 // Num lock LED on keyboard shows bit 0 in keyboard_leds variable +#define HEARTBEAT_LED 13 // LED on Teensy blinks to show its alive +// +#define TP_DATA 17 // Touchpad ps/2 data connected to Teensy I/O pin 14 +#define TP_CLK 18 // Touchpad ps/2 clock connected to Teensy I/O pin 23 +// +// +const byte rows_max = 15; // sets the number of rows in the matrix +const byte cols_max = 11; // sets the number of columns in the matrix +// +// Load the normal key matrix with the Teensyduino key names described at www.pjrc.com/teensy/td_keyboard.html +// A zero indicates no normal key at that location. +// +int normal[rows_max][cols_max] = { + {0,0,0,0,0,0,0,0,0,0,0}, + {KEY_9,KEY_8,KEY_1,KEY_0,KEY_7,KEY_6,KEY_5,0,KEY_4,KEY_3,KEY_2}, + {KEY_O,KEY_I,KEY_Q,KEY_P,KEY_U,KEY_Y,KEY_T,0,KEY_R,KEY_E,KEY_W}, + {KEY_L,KEY_K,KEY_A,KEY_SEMICOLON,KEY_J,KEY_H,KEY_G,0,KEY_F,KEY_D,KEY_S}, + {KEY_PERIOD,KEY_COMMA,KEY_Z,KEY_SLASH,KEY_M,KEY_N,KEY_B,0,KEY_V,KEY_C,KEY_X}, + {0,0,0,0,0,0,0,0,0,0,0}, + {KEY_DOWN,KEY_LEFT,KEY_BACKSPACE,KEY_RIGHT_BRACE,0,KEY_SPACE,KEY_QUOTE,0,0,0,KEY_TAB}, + {0,0,0,0,0,0,0,0,0,0,0}, + {0,0,0,0,0,0,0,0,0,0,0}, + {KEY_UP,KEY_RIGHT,KEY_F12,KEY_EQUAL,0,0,KEY_LEFT_BRACE,0,KEY_CAPS_LOCK,0,KEY_TILDE}, + {KEY_F9,KEY_F8,KEY_F1,KEY_F10,KEY_F7,KEY_F6,KEY_F5,0,KEY_F4,KEY_F3,KEY_F2}, + {KEY_BACKSLASH,0,KEY_F11,KEY_ENTER,0,0,KEY_MINUS,0,0,0,KEY_ESC}, + {0,0,0,0,0,0,0,0,0,0,0}, + {0,0,0,0,0,0,0,0,0,0,0}, + {0,0,0,0,0,0,0,0,0,0,0} +}; +// Load the modifier key matrix with key names at the correct row-column location. +// A zero indicates no modifier key at that location. +int modifier[rows_max][cols_max] = { + {0,0,0,0,0,0,0,MODIFIERKEY_RIGHT_SHIFT,0,0,0}, + {0,0,0,0,0,0,0,0,0,0,0}, + {0,0,0,0,0,0,0,0,0,0,0}, + {0,0,0,0,0,0,0,0,0,0,0}, + {0,0,0,0,0,0,0,0,0,0,0}, + {0,0,0,0,0,0,0,MODIFIERKEY_RIGHT_ALT,0,0,0}, + {0,0,0,0,0,0,0,0,0,0,0}, + {0,0,0,0,0,0,0,MODIFIERKEY_LEFT_SHIFT,0,0,0}, + {0,0,0,0,0,0,0,MODIFIERKEY_LEFT_CTRL,0,0,0}, + {0,0,0,0,0,0,0,0,0,0,0}, + {0,0,0,0,0,0,0,0,0,0,0}, + {0,0,0,0,0,0,0,0,0,0,0}, + {0,0,0,0,0,0,0,MODIFIERKEY_GUI,0,0,0}, + {0,0,0,0,0,0,0,MODIFIERKEY_LEFT_ALT,0,0,0}, + {0,0,0,0,0,0,0,MODIFIERKEY_FN,0,0,0} + +}; +// Load the media key matrix with Fn key names at the correct row-column location. +// Notice the volume controls need the Fn key pressed. +// A zero indicates no media key at that location. +int media[rows_max][cols_max] = { + {0,0,0,0,0,0,0,0,0,0,0}, + {KEYPAD_9,KEYPAD_8,0,KEYPAD_SLASH,KEYPAD_7,0,0,0,0,0,0}, + {KEYPAD_6,KEYPAD_5,0,KEYPAD_ASTERIX,KEYPAD_4,0,0,0,0,0,0}, + {KEYPAD_3,KEYPAD_2,0,KEYPAD_MINUS,KEYPAD_1,0,0,0,0,0,0}, + {KEYPAD_PERIOD,0,0,KEYPAD_PLUS,KEYPAD_0,0,0,0,0,0,0}, + {0,0,0,0,0,0,0,0,0,0,0}, + {KEY_PAGE_DOWN,KEY_HOME,0,0,0,0,0,0,0,0,0}, + {0,0,0,0,0,0,0,0,0,0,0}, + {0,0,0,0,0,0,0,0,0,0,0}, + {KEY_PAGE_UP,KEY_END,0,0,0,0,0,0,0,0,0}, + {0,0,0,0,0,0,KEY_NUM_LOCK,0,0,0,0}, + {0,0,0,KEYPAD_ENTER,0,0,0,0,0,0,0}, + {0,0,0,0,0,0,0,0,0,0,0}, + {0,0,0,0,0,0,0,0,0,0,0}, + {0,0,0,0,0,0,0,0,0,0,0} + +}; +// Initialize the old_key matrix with one's. +// 1 = key not pressed, 0 = key is pressed +boolean old_key[rows_max][cols_max] = { + {1,1,1,1,1,1,1,1,1,1,1}, + {1,1,1,1,1,1,1,1,1,1,1}, + {1,1,1,1,1,1,1,1,1,1,1}, + {1,1,1,1,1,1,1,1,1,1,1}, + {1,1,1,1,1,1,1,1,1,1,1}, + {1,1,1,1,1,1,1,1,1,1,1}, + {1,1,1,1,1,1,1,1,1,1,1}, + {1,1,1,1,1,1,1,1,1,1,1}, + {1,1,1,1,1,1,1,1,1,1,1}, + {1,1,1,1,1,1,1,1,1,1,1}, + {1,1,1,1,1,1,1,1,1,1,1}, + {1,1,1,1,1,1,1,1,1,1,1}, + {1,1,1,1,1,1,1,1,1,1,1}, + {1,1,1,1,1,1,1,1,1,1,1}, + {1,1,1,1,1,1,1,1,1,1,1} +}; +// +// Define the Teensy 3.2 I/O numbers (translated from the FPC pin #) +// Row FPC pin # 06,07,08,09,10,11,12,13,14,15,16,17,18,19,20 +// Teensy I/O # 01,02,03,04,05,06,07,08,09,10,11,12,14,15,16 +int Row_IO[rows_max] = {1,2,3,4,5,6,7,8,9,10,11,12,14,15,16}; // Teensy 3.2 I/O numbers for rows +// +// Column FPC pin # 21,01,24,25,26,27,28,29,32,33,34 +// Teensy I/O # 24,00,25,26,27,28,29,30,31,32,33 +int Col_IO[cols_max] = {24,0,33,32,26,31,29,28,30,27,25}; // Teensy 3.2 I/O numbers for columns + +// Declare variables that will be used by functions +boolean touchpad_error = LOW; // set high if the touchpad failes to give the correct response +boolean slots_full = LOW; // Goes high when slots 1 thru 6 contain normal keys +// slot 1 thru slot 6 hold the normal key values to be sent over USB. +int slot1 = 0; //value of 0 means the slot is empty and can be used. +int slot2 = 0; +int slot3 = 0; +int slot4 = 0; +int slot5 = 0; +int slot6 = 0; +// +int mod_shift_l = 0; // These variables are sent over USB as modifier keys. +int mod_shift_r = 0; // Each is either set to 0 or MODIFIER_ ... +int mod_ctrl_l = 0; +int mod_ctrl_r = 0; +int mod_alt_l = 0; +int mod_alt_r = 0; +int mod_gui = 0; +// +// Function to load the key name into the first available slot +void load_slot(int key) { + if (!slot1) { + slot1 = key; + } + else if (!slot2) { + slot2 = key; + } + else if (!slot3) { + slot3 = key; + } + else if (!slot4) { + slot4 = key; + } + else if (!slot5) { + slot5 = key; + } + else if (!slot6) { + slot6 = key; + } + if (!slot1 || !slot2 || !slot3 || !slot4 || !slot5 || !slot6) { + slots_full = LOW; // slots are not full + } + else { + slots_full = HIGH; // slots are full + } +} +// +// Function to clear the slot that contains the key name +void clear_slot(int key) { + if (slot1 == key) { + slot1 = 0; + } + else if (slot2 == key) { + slot2 = 0; + } + else if (slot3 == key) { + slot3 = 0; + } + else if (slot4 == key) { + slot4 = 0; + } + else if (slot5 == key) { + slot5 = 0; + } + else if (slot6 == key) { + slot6 = 0; + } + slots_full = LOW; +} +// +// Function to load the modifier key name into the appropriate mod variable +void load_mod(int m_key) { + if (m_key == MODIFIERKEY_LEFT_SHIFT) { + mod_shift_l = m_key; + } + else if (m_key == MODIFIERKEY_RIGHT_SHIFT) { + mod_shift_r = m_key; + } + else if (m_key == MODIFIERKEY_LEFT_CTRL) { + mod_ctrl_l = m_key; + } + else if (m_key == MODIFIERKEY_RIGHT_CTRL) { + mod_ctrl_r = m_key; + } + else if (m_key == MODIFIERKEY_LEFT_ALT) { + mod_alt_l = m_key; + } + else if (m_key == MODIFIERKEY_RIGHT_ALT) { + mod_alt_r = m_key; + } + else if (m_key == MODIFIERKEY_GUI) { + mod_gui = m_key; + } +} +// +// Function to load 0 into the appropriate mod variable +void clear_mod(int m_key) { + if (m_key == MODIFIERKEY_LEFT_SHIFT) { + mod_shift_l = 0; + } + else if (m_key == MODIFIERKEY_RIGHT_SHIFT) { + mod_shift_r = 0; + } + else if (m_key == MODIFIERKEY_LEFT_CTRL) { + mod_ctrl_l = 0; + } + else if (m_key == MODIFIERKEY_RIGHT_CTRL) { + mod_ctrl_r = 0; + } + else if (m_key == MODIFIERKEY_LEFT_ALT) { + mod_alt_l = 0; + } + else if (m_key == MODIFIERKEY_RIGHT_ALT) { + mod_alt_r = 0; + } + else if (m_key == MODIFIERKEY_GUI) { + mod_gui = 0; + } +} +// +// Function to send the modifier keys over usb +void send_mod() { + Keyboard.set_modifier(mod_shift_l | mod_shift_r | mod_ctrl_l | mod_ctrl_r | mod_alt_l | mod_alt_r | mod_gui); + Keyboard.send_now(); +} +// +// Function to send the normal keys in the 6 slots over usb +void send_normals() { + Keyboard.set_key1(slot1); + Keyboard.set_key2(slot2); + Keyboard.set_key3(slot3); + Keyboard.set_key4(slot4); + Keyboard.set_key5(slot5); + Keyboard.set_key6(slot6); + Keyboard.send_now(); +} +// +// Function to set a pin to high impedance (acts like open drain output) +void go_z(int pin) +{ + pinMode(pin, INPUT); + digitalWrite(pin, HIGH); +} +// +// Function to set a pin as an input with a pullup +void go_pu(int pin) +{ + pinMode(pin, INPUT_PULLUP); + digitalWrite(pin, HIGH); +} +// +// Function to send a pin to a logic low +void go_0(int pin) +{ + pinMode(pin, OUTPUT); + digitalWrite(pin, LOW); +} +// +// Function to send a pin to a logic high +void go_1(int pin) +{ + pinMode(pin, OUTPUT); + digitalWrite(pin, HIGH); +} +// +// *****************Functions for Touchpad*************************** +// +// Function to send the touchpad a byte of data (command) +// +void tp_write(char send_data) +{ + unsigned int timeout = 200; // breakout of loop if over this value in msec + elapsedMillis watchdog; // zero the watchdog timer clock + char odd_parity = 0; // clear parity bit count +// Enable the bus by floating the clock and data + go_pu(TP_CLK); // + go_pu(TP_DATA); // + delayMicroseconds(250); // wait before requesting the bus + go_0(TP_CLK); // Send the Clock line low to request to transmit data + delayMicroseconds(100); // wait for 100 microseconds per bus spec + go_0(TP_DATA); // Send the Data line low (the start bit) + delayMicroseconds(1); // + go_pu(TP_CLK); // Release the Clock line so it is pulled high + delayMicroseconds(1); // give some time to let the clock line go high + while (digitalRead(TP_CLK) == HIGH) { // loop until the clock goes low + if (watchdog >= timeout) { //check for infinite loop +// touchpad_error = HIGH; // set error flag + break; // break out of infinite loop + } + } +// send the 8 bits of send_data + for (int j=0; j<8; j++) { + if (send_data & 1) { //check if lsb is set + go_pu(TP_DATA); // send a 1 to TP + odd_parity = odd_parity + 1; // keep running total of 1's sent + } + else { + go_0(TP_DATA); // send a 0 to TP + } + delayMicroseconds(1); // delay to let the clock settle out + while (digitalRead(TP_CLK) == LOW) { // loop until the clock goes high + if (watchdog >= timeout) { //check for infinite loop + break; // break out of infinite loop + } + } + delayMicroseconds(1); // delay to let the clock settle out + while (digitalRead(TP_CLK) == HIGH) { // loop until the clock goes low + if (watchdog >= timeout) { //check for infinite loop + break; // break out of infinite loop + } + } + send_data = send_data >> 1; // shift data right by 1 to prepare for next loop + } +// send the parity bit + if (odd_parity & 1) { //check if lsb of parity is set + go_0(TP_DATA); // already odd so send a 0 to TP + } + else { + go_pu(TP_DATA); // send a 1 to TP to make parity odd + } + delayMicroseconds(1); // delay to let the clock settle out + while (digitalRead(TP_CLK) == LOW) { // loop until the clock goes high + if (watchdog >= timeout) { //check for infinite loop + break; // break out of infinite loop + } + } + delayMicroseconds(1); // delay to let the clock settle out + while (digitalRead(TP_CLK) == HIGH) { // loop until the clock goes low + if (watchdog >= timeout) { //check for infinite loop + break; // break out of infinite loop + } + } + go_pu(TP_DATA); // Release the Data line so it goes high as the stop bit + delayMicroseconds(80); // testing shows delay at least 40us + while (digitalRead(TP_CLK) == HIGH) { // loop until the clock goes low + if (watchdog >= timeout) { //check for infinite loop + break; // break out of infinite loop + } + } + delayMicroseconds(1); // wait to let the data settle + if (digitalRead(TP_DATA)) { // Ack bit s/b low if good transfer + } + while ((digitalRead(TP_CLK) == LOW) || (digitalRead(TP_DATA) == LOW)) { // loop if clock or data are low + if (watchdog >= timeout) { //check for infinite loop + break; // break out of infinite loop + } + } +// Inhibit the bus so the tp only talks when we're listening + go_0(TP_CLK); +} +// +// Function to get a byte of data from the touchpad +// +char tp_read(void) +{ + unsigned int timeout = 200; // breakout of loop if over this value in msec + elapsedMillis watchdog; // zero the watchdog timer clock + char rcv_data = 0; // initialize to zero + char mask = 1; // shift a 1 across the 8 bits to select where to load the data + char rcv_parity = 0; // count the ones received + go_pu(TP_CLK); // release the clock + go_pu(TP_DATA); // release the data + delayMicroseconds(5); // delay to let clock go high + while (digitalRead(TP_CLK) == HIGH) { // loop until the clock goes low + if (watchdog >= timeout) { //check for infinite loop + break; // break out of infinite loop + } + } + if (digitalRead(TP_DATA)) { // Start bit s/b low from tp + // start bit not correct - put error handler here if desired + } + delayMicroseconds(1); // delay to let the clock settle out + while (digitalRead(TP_CLK) == LOW) { // loop until the clock goes high + if (watchdog >= timeout) { //check for infinite loop + break; // break out of infinite loop + } + } + for (int k=0; k<8; k++) { + delayMicroseconds(1); // delay to let the clock settle out + while (digitalRead(TP_CLK) == HIGH) { // loop until the clock goes low + if (watchdog >= timeout) { //check for infinite loop + break; // break out of infinite loop + } + } + if (digitalRead(TP_DATA)) { // check if data is high + rcv_data = rcv_data | mask; // set the appropriate bit in the rcv data + rcv_parity++; // increment the parity bit counter + } + mask = mask << 1; + delayMicroseconds(1); // delay to let the clock settle out + while (digitalRead(TP_CLK) == LOW) { // loop until the clock goes high + if (watchdog >= timeout) { //check for infinite loop + break; // break out of infinite loop + } + } + } +// receive parity + delayMicroseconds(1); // delay to let the clock settle out + while (digitalRead(TP_CLK) == HIGH) { // loop until the clock goes low + if (watchdog >= timeout) { //check for infinite loop + break; // break out of infinite loop + } + } + if (digitalRead(TP_DATA)) { // check if received parity is high + rcv_parity++; // increment the parity bit counter + } + rcv_parity = rcv_parity & 1; // mask off all bits except the lsb + if (rcv_parity == 0) { // check for bad (even) parity + // bad parity - pass to future error handler + } + delayMicroseconds(1); // delay to let the clock settle out + while (digitalRead(TP_CLK) == LOW) { // loop until the clock goes high + if (watchdog >= timeout) { //check for infinite loop + break; // break out of infinite loop + } + } +// stop bit + delayMicroseconds(1); // delay to let the clock settle out + while (digitalRead(TP_CLK) == HIGH) { // loop until the clock goes low + if (watchdog >= timeout) { //check for infinite loop + break; // break out of infinite loop + } + } + if (digitalRead(TP_DATA) == LOW) { // check if stop bit is bad (low) + // send bad stop bit to future error handler + } + delayMicroseconds(1); // delay to let the clock settle out + while (digitalRead(TP_CLK) == LOW) { // loop until the clock goes high + if (watchdog >= timeout) { //check for infinite loop + break; // break out of infinite loop + } + } +// Inhibit the bus so the tp only talks when we're listening + go_0(TP_CLK); + return rcv_data; // pass the received data back +} +// +void touchpad_init() +{ + touchpad_error = LOW; // start with no error + go_pu(TP_CLK); // float the clock and data to touchpad + go_pu(TP_DATA); + // Sending reset command to touchpad + tp_write(0xff); + if (tp_read() != 0xfa) { // verify correct ack byte + touchpad_error = HIGH; + } + delay(350); // wait 350ms so tp can run its self diagnostic + // verify proper response from tp + if (tp_read() != 0xaa) { // verify basic assurance test passed + touchpad_error = HIGH; + } + if (tp_read() != 0x00) { // verify basic assurance test passed + touchpad_error = HIGH; + } + // increase resolution from 4 counts/mm to 8 counts/mm + tp_write(0xe8); // Sending resolution command + if (tp_read() != 0xfa) { // verify correct ack byte + touchpad_error = HIGH; + } + tp_write(0x03); // value of 03 = 8 counts/mm resolution (default is 4 counts/mm) + if (tp_read() != 0xfa) { // verify correct ack byte + touchpad_error = HIGH; + } + // Sending remote mode code so the touchpad will send data only when polled + tp_write(0xf0); // remote mode + if (tp_read() != 0xfa) { // verify correct ack byte + touchpad_error = HIGH; + } +} +//----------------------------------Setup------------------------------------------- +void setup() { + pinMode(HEARTBEAT_LED, OUTPUT); + go_1(NUM_LED); // Turn off all LEDs + go_1(CAPS_LED); + go_1(SCRL_LED); + for (int a = 0; a < cols_max; a++) { // loop thru all column pins + go_pu(Col_IO[a]); // set each column pin as an input with a pullup + } +// + for (int b = 0; b < rows_max; b++) { // loop thru all row pins + go_z(Row_IO[b]); // set each row pin as a floating output + } + touchpad_init(); // reset touchpad, set resolution and put it in remote mode. Set touchpad_error if bad response from tp +} +// +boolean Fn_pressed = HIGH; // Initialize Fn key to HIGH = "not pressed" +extern volatile uint8_t keyboard_leds; // 8 bits sent from Host to Teensy that give keyboard caps, num, and scroll lock LED status. +char blink_count = 0; // Blink loop counter +boolean blinky = HIGH; // Blink LED state +// +// declare and initialize touchpad variables + char mstat; // touchpad status reg = Y overflow, X overflow, Y sign bit, X sign bit, Always 1, Middle Btn, Right Btn, Left Btn + char mx; // touchpad x movement = 8 data bits. The sign bit is in the status register to + // make a 9 bit 2's complement value. Left to right on the touchpad gives a positive value. + char my; // touchpad y movement also 8 bits plus sign. Touchpad movement away from the user gives a positive value. + boolean over_flow; // set if x or y movement values are bad due to overflow + boolean left_button = 0; // on/off variable for left button = bit 0 of mstat + boolean right_button = 0; // on/off variable for right button = bit 1 of mstat + boolean old_left_button = 0; // on/off variable for left button status the previous polling cycle + boolean old_right_button = 0; // on/off variable for right button status the previous polling cycle + boolean button_change = 0; // Active high, shows when a touchpad left or right button has changed since last polling cycle + +//---------------------------------Main Loop--------------------------------------------- +// +void loop() { +// Scan keyboard matrix with an outer loop that drives each row low and an inner loop that reads every column (with pull ups). +// The routine looks at each key's present state (by reading the column input pin) and also the previous state from the last scan +// that was 30msec ago. The status of a key that was just pressed or just released is sent over USB and the state is saved in the old_key matrix. +// The keyboard keys will read as logic low if they are pressed (negative logic). +// The old_key matrix also uses negative logic (low=pressed). +// + for (int x = 0; x < rows_max; x++) { // loop thru the rows + go_0(Row_IO[x]); // Activate Row (send it low) + delayMicroseconds(10); // give the row time to go low and settle out + for (int y = 0; y < cols_max; y++) { // loop thru the columns +// **********Modifier keys including the Fn special case + if (modifier[x][y] != 0) { // check if modifier key exists at this location in the array (a non-zero value) + if (!digitalRead(Col_IO[y]) && (old_key[x][y])) { // Read column to see if key is low (pressed) and was previously not pressed + if (modifier[x][y] != MODIFIERKEY_FN) { // Exclude Fn modifier key + load_mod(modifier[x][y]); // function reads which modifier key is pressed and loads it into the appropriate mod_... variable + send_mod(); // function sends the state of all modifier keys over usb including the one that just got pressed + old_key[x][y] = LOW; // Save state of key as "pressed" + } + else { + Fn_pressed = LOW; // Fn status variable is active low + old_key[x][y] = LOW; // old_key state is "pressed" (active low) + } + } + else if (digitalRead(Col_IO[y]) && (!old_key[x][y])) { //check if key is not pressed and was previously pressed + if (modifier[x][y] != MODIFIERKEY_FN) { // Exclude Fn modifier key + clear_mod(modifier[x][y]); // function reads which modifier key was released and loads 0 into the appropriate mod_... variable + send_mod(); // function sends all mod's over usb including the one that just released + old_key[x][y] = HIGH; // Save state of key as "not pressed" + } + else { + Fn_pressed = HIGH; // Fn is no longer active + old_key[x][y] = HIGH; // old_key state is "not pressed" + } + } + } +// ***********end of modifier section +// +// ***********Normal keys and media keys in this section + else if ((normal[x][y] != 0) || (media[x][y] != 0)) { // check if normal or media key exists at this location in the array + if (!digitalRead(Col_IO[y]) && (old_key[x][y])) { // check if key is pressed and was not previously pressed + old_key[x][y] = LOW; // Save state of key as "pressed" + if (Fn_pressed) { // Fn_pressed is active low so it is not pressed and normal key needs to be sent + load_slot(normal[x][y]); //update first available slot with normal key name + send_normals(); // send all slots over USB including the key that just got pressed + } + else if (media[x][y] != 0) { // Fn is pressed so send media if a key exists in the matrix + Keyboard.press(media[x][y]); // media key is sent using keyboard press function per PJRC + delay(5); // delay 5 milliseconds before releasing to make sure it gets sent over USB + Keyboard.release(media[x][y]); // send media key release + } + } + else if (digitalRead(Col_IO[y]) && (!old_key[x][y])) { //check if key is not pressed, but was previously pressed + old_key[x][y] = HIGH; // Save state of key as "not pressed" + if (Fn_pressed) { // Fn is not pressed + clear_slot(normal[x][y]); //clear the slot that contains the normal key name + send_normals(); // send all slots over USB including the key that was just released + } + } + } +// **************end of normal and media key section +// + } + go_z(Row_IO[x]); // De-activate Row (send it to hi-z) + } +// +// Turn on or off the LEDs for Num Lock, Caps Lock, and Scroll Lock based on bit 0, 1, and 2 from the keyboard_leds +// variable controlled by the USB host computer +// + if (keyboard_leds & 1) { // mask off all bits but D0 and test if set + go_0(NUM_LED); // turn on the Num Lock LED + } + else { + go_1(NUM_LED); // turn off the Num Lock LED + } +// +// + if (keyboard_leds & 1<<1) { // mask off all bits but D1 and test if set + go_0(CAPS_LED); // turn on the Caps Lock LED + } + else { + go_1(CAPS_LED); // turn off the Caps Lock LED + } +// +// + if (keyboard_leds & 1<<2) { // mask off all bits but D2 and test if set + go_0(SCRL_LED); // turn on the Scroll Lock LED + } + else { + go_1(SCRL_LED); // turn off the Scroll Lock LED + } +// +// **********Keyboard scan complete +// +// ***********Touchpad Section +// + if (touchpad_error == LOW) { // check if touchpad is present +// +// poll the touchpad for new movement data + over_flow = 0; // assume no overflow until status is received + tp_write(0xeb); // request data + if (tp_read() != 0xfa) { // verify correct ack byte + // bad ack - pass to future error handler + } + mstat = tp_read(); // save into status variable + mx = tp_read(); // save into x variable + my = tp_read(); // save into y variable + if (((0x80 & mstat) == 0x80) || ((0x40 & mstat) == 0x40)) { // x or y overflow bits set? + over_flow = 1; // set the overflow flag + } +// change the x data from 9 bit to 8 bit 2's complement + mx = mx & 0x7f; // mask off 8th bit + if ((0x10 & mstat) == 0x10) { // move the sign into + mx = 0x80 | mx; // the 8th bit position + } +// change the y data from 9 bit to 8 bit 2's complement and then take the 2's complement +// because y movement on ps/2 format is opposite of touchpad.move function + my = my & 0x7f; // mask off 8th bit + if ((0x20 & mstat) == 0x20) { // move the sign into + my = 0x80 | my; // the 8th bit position + } + my = (~my + 0x01); // change the sign of y data by taking the 2's complement (invert and add 1) +// zero out mx and my if over_flow is set + if (over_flow) { + mx = 0x00; // data is garbage so zero it out + my = 0x00; + } +// send the x and y data back via usb if either one is non-zero + if ((mx != 0x00) || (my != 0x00)) { + Mouse.move(mx,my); + } +// +// send the touchpad left and right button status over usb if no error + if ((0x01 & mstat) == 0x01) { // if left button set + left_button = 1; + } + else { // clear left button + left_button = 0; + } + if ((0x02 & mstat) == 0x02) { // if right button set + right_button = 1; + } + else { // clear right button + right_button = 0; + } +// Determine if the left or right touchpad buttons have changed since last polling cycle + button_change = (left_button ^ old_left_button) | (right_button ^ old_right_button); +// Don't send button status if there's no change since last time. + if (button_change){ + Mouse.set_buttons(left_button, 0, right_button); // send button status + } + old_left_button = left_button; // remember new button status for next polling cycle + old_right_button = right_button; + } +// +// End of touchpad routine +// +// Blink LED on Teensy to show a heart beat +// + if (blink_count == 0x17) { + digitalWrite(HEARTBEAT_LED, blinky); + blinky = !blinky; + blink_count = 0; + } + else { + blink_count = blink_count + 1; + } +// + delay(22); // The overall keyboard scanning rate is about 30ms +}