Add files via upload

This commit is contained in:
thedalles77 2018-10-14 17:38:21 -07:00 committed by GitHub
parent 612321907a
commit fbb3377d10
No known key found for this signature in database
GPG key ID: 4AEE18F83AFDEB23
2 changed files with 735 additions and 0 deletions

View file

@ -0,0 +1,363 @@
//
// This software is in the public domain.
// It will determine how a laptop keyboard matrix is wired using a Teensy 3.2 on an FPC daughterboard.
// Open an editor on a computer and load or create a file that lists every key
// on the laptop keyboard that will be tested. Connect the FPC cable of the test keyboard
// to the Teensy/FPC board. Connect a USB cable from the Teensy to the computer.
// Wait a few seconds for the computer to see the Teensy as a keyboard. If numbers are reported on the screen
// before any keys are pressed, these pin numbers are shorted together and must be fixed.
// Press each key one by one on the test keyboard as listed on the editor screen. When a key
// is pressed on the test keyboard, the program detects which two pins on the FPC connector
// were connected. Those two pin numbers are sent over USB (separated by a TAB) and displayed
// on the editor. After sending the numbers, a DOWN ARROW is sent over USB to prepare for
// the next key. Once all keys on the test keyboard have been pressed, the file in
// the editor can be saved to create a row-column matrix.
//
// If your keyboard has diodes, you must pay attention to the order of the two pins that are reported by the Teensy. The code performs
// a bottom up test first, followed by a top down test so that one of the two tests will forward bias the diode.
// The first pin reported over USB is the cathode side and the second pin is the anode side. The diode direction must be taken into
// account when programming the TMK or Teensyduino keyboard routine.
//
// Revision History
// Rev 1.00 - Sep 27, 2018 - Original Release
//
//
// Load an array with the Teensy 3.2 I/O numbers that correspond to FPC pins 1 thru 34.
int con_pin[] = {23, 0, 22, 1, 21, 2, 20, 3, 19, 4, 18, 5, 17, 6, 24, 7, 25, 8, 33, 9, 26, 10, 27, 11, 28, 12, 32, 31, 30, 29, 16, 15, 14, 13};
//
// Define maximum and minimum pin numbers that will be tested.
// max_pin is usually set to the FPC connector size. min_pin is usually set to 1. The routine will start testing at pin 1 and go up to the max pin size.
// The max and min pin values can be adjusted to exclude testing the FPC traces at the edges if they are reported as shorted. An example would be if pin 1
// and pin 34 are both grounds. They will be reported as tied together but they are not needed by the key matrix. In this case, set the
// min_pin to 2 and the max_pin to 33.
//
int max_pin = 33; // the keyboard FPC connector pin count. If set to 34, unsolder the LED or the code won't work
int min_pin = 1; // the first pin to be tested on the FPC connector (usually pin 1)
//
// load the key codes used in sending usb numbers, tab, and down arrow
int key_1 = KEY_1;
int key_2 = KEY_2;
int key_3 = KEY_3;
int key_4 = KEY_4;
int key_5 = KEY_5;
int key_6 = KEY_6;
int key_7 = KEY_7;
int key_8 = KEY_8;
int key_9 = KEY_9;
int key_0 = KEY_0;
int key_tab = KEY_TAB;
int key_down = KEY_DOWN;
//
// Function to set a pin as an input with a pullup so it's high unless grounded by a key press
void go_z(int pin)
{
pinMode(pin, INPUT_PULLUP);
digitalWrite(pin, HIGH);
}
// Function to set a pin as an output and drive it to a logic low (0 volts)
void go_0(int pin)
{
pinMode(pin, OUTPUT);
digitalWrite(pin, LOW);
}
// Function to send numbers over USB for display on an editor
void usb_num(int num) // the numbers 0 thru 33 are sent over usb as 1 thru 34
{
switch (num) {
case 0:
Keyboard.set_key1(key_1);
Keyboard.send_now();
break;
case 1:
Keyboard.set_key1(key_2);
Keyboard.send_now();
break;
case 2:
Keyboard.set_key1(key_3);
Keyboard.send_now();
break;
case 3:
Keyboard.set_key1(key_4);
Keyboard.send_now();
break;
case 4:
Keyboard.set_key1(key_5);
Keyboard.send_now();
break;
case 5:
Keyboard.set_key1(key_6);
Keyboard.send_now();
break;
case 6:
Keyboard.set_key1(key_7);
Keyboard.send_now();
break;
case 7:
Keyboard.set_key1(key_8);
Keyboard.send_now();
break;
case 8:
Keyboard.set_key1(key_9);
Keyboard.send_now();
break;
case 9:
Keyboard.set_key1(key_1);
Keyboard.send_now();
delay(20);
Keyboard.set_key2(key_0);
Keyboard.send_now();
break;
case 10:
Keyboard.set_key1(key_1);
Keyboard.send_now();
delay(50);
Keyboard.set_key1(0);
Keyboard.send_now();
delay(50);
Keyboard.set_key2(key_1);
Keyboard.send_now();
break;
case 11:
Keyboard.set_key1(key_1);
Keyboard.send_now();
delay(20);
Keyboard.set_key2(key_2);
Keyboard.send_now();
break;
case 12:
Keyboard.set_key1(key_1);
Keyboard.send_now();
delay(20);
Keyboard.set_key2(key_3);
Keyboard.send_now();
break;
case 13:
Keyboard.set_key1(key_1);
Keyboard.send_now();
delay(20);
Keyboard.set_key2(key_4);
Keyboard.send_now();
break;
case 14:
Keyboard.set_key1(key_1);
Keyboard.send_now();
delay(20);
Keyboard.set_key2(key_5);
Keyboard.send_now();
break;
case 15:
Keyboard.set_key1(key_1);
Keyboard.send_now();
delay(20);
Keyboard.set_key2(key_6);
Keyboard.send_now();
break;
case 16:
Keyboard.set_key1(key_1);
Keyboard.send_now();
delay(20);
Keyboard.set_key2(key_7);
Keyboard.send_now();
break;
case 17:
Keyboard.set_key1(key_1);
Keyboard.send_now();
delay(20);
Keyboard.set_key2(key_8);
Keyboard.send_now();
break;
case 18:
Keyboard.set_key1(key_1);
Keyboard.send_now();
delay(20);
Keyboard.set_key2(key_9);
Keyboard.send_now();
break;
case 19:
Keyboard.set_key1(key_2);
Keyboard.send_now();
delay(20);
Keyboard.set_key2(key_0);
Keyboard.send_now();
break;
case 20:
Keyboard.set_key1(key_2);
Keyboard.send_now();
delay(20);
Keyboard.set_key2(key_1);
Keyboard.send_now();
break;
case 21:
Keyboard.set_key1(key_2);
Keyboard.send_now();
delay(50);
Keyboard.set_key1(0);
Keyboard.send_now();
delay(50);
Keyboard.set_key2(key_2);
Keyboard.send_now();
break;
case 22:
Keyboard.set_key1(key_2);
Keyboard.send_now();
delay(20);
Keyboard.set_key2(key_3);
Keyboard.send_now();
break;
case 23:
Keyboard.set_key1(key_2);
Keyboard.send_now();
delay(20);
Keyboard.set_key2(key_4);
Keyboard.send_now();
break;
case 24:
Keyboard.set_key1(key_2);
Keyboard.send_now();
delay(20);
Keyboard.set_key2(key_5);
Keyboard.send_now();
break;
case 25:
Keyboard.set_key1(key_2);
Keyboard.send_now();
delay(20);
Keyboard.set_key2(key_6);
Keyboard.send_now();
break;
case 26:
Keyboard.set_key1(key_2);
Keyboard.send_now();
delay(20);
Keyboard.set_key2(key_7);
Keyboard.send_now();
break;
case 27:
Keyboard.set_key1(key_2);
Keyboard.send_now();
delay(20);
Keyboard.set_key2(key_8);
Keyboard.send_now();
break;
case 28:
Keyboard.set_key1(key_2);
Keyboard.send_now();
delay(20);
Keyboard.set_key2(key_9);
Keyboard.send_now();
break;
case 29:
Keyboard.set_key1(key_3);
Keyboard.send_now();
delay(20);
Keyboard.set_key2(key_0);
Keyboard.send_now();
break;
case 30:
Keyboard.set_key1(key_3);
Keyboard.send_now();
delay(20);
Keyboard.set_key2(key_1);
Keyboard.send_now();
break;
case 31:
Keyboard.set_key1(key_3);
Keyboard.send_now();
delay(20);
Keyboard.set_key2(key_2);
Keyboard.send_now();
break;
case 32:
Keyboard.set_key1(key_3);
Keyboard.send_now();
delay(50);
Keyboard.set_key1(0);
Keyboard.send_now();
delay(50);
Keyboard.set_key2(key_3);
Keyboard.send_now();
break;
case 33:
Keyboard.set_key1(key_3);
Keyboard.send_now();
delay(20);
Keyboard.set_key2(key_4);
Keyboard.send_now();
break;
}
delay(20);
Keyboard.set_key1(0); // clear out the key slots
Keyboard.set_key2(0);
Keyboard.send_now();
delay(20);
Keyboard.set_key1(key_tab); // Tab over to position for next number
Keyboard.send_now();
delay(20);
Keyboard.set_key1(0); // clear out the tab from the slot
Keyboard.send_now();
delay(20);
}
// Function to send a down arrow over usb to position for the next key
void down_arrow(void) {
Keyboard.set_key1(key_down); // send a down arrow
Keyboard.send_now();
delay(20);
Keyboard.set_key1(0); // release the down arrow
Keyboard.send_now();
}
// --------------------------------------------------Setup-----------------------------------
void setup() {
for (int k = 0; k < max_pin; k++) { // loop thru all connector pins
go_z(con_pin[k]); // set each pin as an input with a pullup
}
delay(15000); // Wait for the host to connect to the Teensy as a keyboard. If 2 pins are shorted,
// you want the host to be ready to receive the pin numbers.
}
//
// -------------------------------------------Main Loop--------------------------------------
//
void loop() {
//
// ***********Bottom up Test************
//
for (int i=0; i<max_pin-1; i++) { // outer loop pin
go_0(con_pin[i]); // make the outer loop pin an output and send this pin low
for (int j=i+1; j<max_pin; j++) { // inner loop pin
delayMicroseconds(10); // give time to let the signals settle out
if (!digitalRead(con_pin[j])) { // check for connection between inner and outer pins
usb_num(i); // send outer loop pin number over usb
usb_num(j); // send inner loop pin number over usb
down_arrow(); // send a down arrow over usb
while(!digitalRead(con_pin[j])) { // wait until key is released
; // if 2 pins are shorted, the code will hang here
}
}
}
go_z(con_pin[i]); // return the outer loop pin to float with pullup
}
//
// *********Top down Test***********
//
for (int p=max_pin-1; p>min_pin-1; p--) { // outer loop pin
go_0(con_pin[p]); // make the outer loop pin an output and send this pin low
for (int r=p-1; r>=min_pin-1; r--) { // inner loop pin
delayMicroseconds(10); // give time to let the signals settle out
if (!digitalRead(con_pin[r])) { // check for connection between inner and outer pins
usb_num(p); // send outer loop pin number over usb
usb_num(r); // send inner loop pin number over usb
down_arrow(); // send a down arrow over usb
while(!digitalRead(con_pin[r])) { // wait until key is released
;
}
}
}
go_z(con_pin[p]); // return the outer loop pin to float with pullup
}
//
delay(25); // overall keyboard scan rate is about 30 milliseconds
//
}

View file

@ -0,0 +1,372 @@
//
// This software is in the public domain.
// It will determine how a laptop keyboard matrix is wired using a Teensy LC on an FPC daughterboard.
// Open an editor on a computer and load or create a file that lists every key
// on the laptop keyboard that will be tested. Connect the FPC cable of the test keyboard
// to the Teensy/FPC board. Connect a USB cable from the Teensy to the computer.
// Wait 20 seconds for the computer to see the Teensy as a keyboard. If numbers are reported on the screen
// before any keys are pressed, these pin numbers are shorted together and must be fixed.
// Press each key one by one on the test keyboard as listed on the editor screen. When a key
// is pressed on the test keyboard, the program detects which two pins on the FPC connector
// were connected. Those two pin numbers are sent over USB (separated by a TAB) and displayed
// on the editor. After sending the numbers, a DOWN ARROW is sent over USB to prepare for
// the next key. Once all keys on the test keyboard have been pressed, the file in
// the editor can be saved to create a row-column matrix.
//
// If your keyboard has diodes, you must pay attention to the order of the two pins that are reported by the Teensy. The code performs
// a bottom up test first, followed by a top down test so that one of the two tests will forward bias the diode.
// The first pin reported over USB is the cathode side and the second pin is the anode side. The diode direction must be taken into
// account when programming the TMK or Teensyduino keyboard routine.
//
// Revision History
// Rev 1.00 - Oct 8, 2018 - Original Release
//
//
// Load an array with the Teensy LC I/O numbers that correspond to FPC pins 1 thru 26.
int con_pin[] = {23, 0, 22, 1, 24, 2, 21, 3, 25, 4, 20, 5, 19, 6, 18, 7, 17, 8, 16, 9, 15, 10, 14, 11, 26, 12}; // I/O 13 is for the LED
//
// Define maximum and minimum pin numbers that will be tested.
//
int max_pin = 26; // the keyboard fpc connector pin count
int min_pin = 1; // the first pin to be tested on the FPC connector (usually pin 1)
//
// load the key codes used in sending usb numbers, tab, and down arrow
int key_1 = KEY_1;
int key_2 = KEY_2;
int key_3 = KEY_3;
int key_4 = KEY_4;
int key_5 = KEY_5;
int key_6 = KEY_6;
int key_7 = KEY_7;
int key_8 = KEY_8;
int key_9 = KEY_9;
int key_0 = KEY_0;
int key_tab = KEY_TAB;
int key_down = KEY_DOWN;
//
// Function to set a pin as an input with a pullup so it's high unless grounded by a key press
void go_z(int pin)
{
pinMode(pin, INPUT_PULLUP);
digitalWrite(pin, HIGH);
}
// Function to set a pin as an output and drive it to a logic low (0 volts)
void go_0(int pin)
{
pinMode(pin, OUTPUT);
digitalWrite(pin, LOW);
}
// Function to send numbers over USB for display on an editor
void usb_num(int num) // the numbers 0 thru 33 are sent over usb as 1 thru 34
{
switch (num) {
case 0:
Keyboard.set_key1(key_1);
Keyboard.send_now();
break;
case 1:
Keyboard.set_key1(key_2);
Keyboard.send_now();
break;
case 2:
Keyboard.set_key1(key_3);
Keyboard.send_now();
break;
case 3:
Keyboard.set_key1(key_4);
Keyboard.send_now();
break;
case 4:
Keyboard.set_key1(key_5);
Keyboard.send_now();
break;
case 5:
Keyboard.set_key1(key_6);
Keyboard.send_now();
break;
case 6:
Keyboard.set_key1(key_7);
Keyboard.send_now();
break;
case 7:
Keyboard.set_key1(key_8);
Keyboard.send_now();
break;
case 8:
Keyboard.set_key1(key_9);
Keyboard.send_now();
break;
case 9:
Keyboard.set_key1(key_1);
Keyboard.send_now();
delay(20);
Keyboard.set_key2(key_0);
Keyboard.send_now();
break;
case 10:
Keyboard.set_key1(key_1);
Keyboard.send_now();
delay(50);
Keyboard.set_key1(0);
Keyboard.send_now();
delay(50);
Keyboard.set_key2(key_1);
Keyboard.send_now();
break;
case 11:
Keyboard.set_key1(key_1);
Keyboard.send_now();
delay(20);
Keyboard.set_key2(key_2);
Keyboard.send_now();
break;
case 12:
Keyboard.set_key1(key_1);
Keyboard.send_now();
delay(20);
Keyboard.set_key2(key_3);
Keyboard.send_now();
break;
case 13:
Keyboard.set_key1(key_1);
Keyboard.send_now();
delay(20);
Keyboard.set_key2(key_4);
Keyboard.send_now();
break;
case 14:
Keyboard.set_key1(key_1);
Keyboard.send_now();
delay(20);
Keyboard.set_key2(key_5);
Keyboard.send_now();
break;
case 15:
Keyboard.set_key1(key_1);
Keyboard.send_now();
delay(20);
Keyboard.set_key2(key_6);
Keyboard.send_now();
break;
case 16:
Keyboard.set_key1(key_1);
Keyboard.send_now();
delay(20);
Keyboard.set_key2(key_7);
Keyboard.send_now();
break;
case 17:
Keyboard.set_key1(key_1);
Keyboard.send_now();
delay(20);
Keyboard.set_key2(key_8);
Keyboard.send_now();
break;
case 18:
Keyboard.set_key1(key_1);
Keyboard.send_now();
delay(20);
Keyboard.set_key2(key_9);
Keyboard.send_now();
break;
case 19:
Keyboard.set_key1(key_2);
Keyboard.send_now();
delay(20);
Keyboard.set_key2(key_0);
Keyboard.send_now();
break;
case 20:
Keyboard.set_key1(key_2);
Keyboard.send_now();
delay(20);
Keyboard.set_key2(key_1);
Keyboard.send_now();
break;
case 21:
Keyboard.set_key1(key_2);
Keyboard.send_now();
delay(50);
Keyboard.set_key1(0);
Keyboard.send_now();
delay(50);
Keyboard.set_key2(key_2);
Keyboard.send_now();
break;
case 22:
Keyboard.set_key1(key_2);
Keyboard.send_now();
delay(20);
Keyboard.set_key2(key_3);
Keyboard.send_now();
break;
case 23:
Keyboard.set_key1(key_2);
Keyboard.send_now();
delay(20);
Keyboard.set_key2(key_4);
Keyboard.send_now();
break;
case 24:
Keyboard.set_key1(key_2);
Keyboard.send_now();
delay(20);
Keyboard.set_key2(key_5);
Keyboard.send_now();
break;
case 25:
Keyboard.set_key1(key_2);
Keyboard.send_now();
delay(20);
Keyboard.set_key2(key_6);
Keyboard.send_now();
break;
case 26:
Keyboard.set_key1(key_2);
Keyboard.send_now();
delay(20);
Keyboard.set_key2(key_7);
Keyboard.send_now();
break;
case 27:
Keyboard.set_key1(key_2);
Keyboard.send_now();
delay(20);
Keyboard.set_key2(key_8);
Keyboard.send_now();
break;
case 28:
Keyboard.set_key1(key_2);
Keyboard.send_now();
delay(20);
Keyboard.set_key2(key_9);
Keyboard.send_now();
break;
case 29:
Keyboard.set_key1(key_3);
Keyboard.send_now();
delay(20);
Keyboard.set_key2(key_0);
Keyboard.send_now();
break;
case 30:
Keyboard.set_key1(key_3);
Keyboard.send_now();
delay(20);
Keyboard.set_key2(key_1);
Keyboard.send_now();
break;
case 31:
Keyboard.set_key1(key_3);
Keyboard.send_now();
delay(20);
Keyboard.set_key2(key_2);
Keyboard.send_now();
break;
case 32:
Keyboard.set_key1(key_3);
Keyboard.send_now();
delay(50);
Keyboard.set_key1(0);
Keyboard.send_now();
delay(50);
Keyboard.set_key2(key_3);
Keyboard.send_now();
break;
case 33:
Keyboard.set_key1(key_3);
Keyboard.send_now();
delay(20);
Keyboard.set_key2(key_4);
Keyboard.send_now();
break;
}
delay(20);
Keyboard.set_key1(0); // clear out the key slots
Keyboard.set_key2(0);
Keyboard.send_now();
delay(20);
Keyboard.set_key1(key_tab); // Tab over to position for next number
Keyboard.send_now();
delay(20);
Keyboard.set_key1(0); // clear out the tab from the slot
Keyboard.send_now();
delay(20);
}
// Function to send a down arrow over usb to position for the next key
void down_arrow(void) {
Keyboard.set_key1(key_down); // send a down arrow
Keyboard.send_now();
delay(20);
Keyboard.set_key1(0); // clear the down arrow
Keyboard.send_now();
}
// --------------------------------------------------Setup-----------------------------------
void setup() {
for (int k = 0; k < max_pin; k++) { // loop thru all connector pins
go_z(con_pin[k]); // set each pin as an input with a pullup
}
delay(15000); // Wait for the host to connect to the Teensy as a keyboard. If 2 pibs are shorted
// you want the host to be ready to receive the pin numbers.
}
//
int blink_count = 0; // loop counter
boolean blinky = LOW; // Blink LED state
// -------------------------------------------Main Loop--------------------------------------
//
void loop() {
//
// ***********Bottom up Test************
//
for (int i=0; i<max_pin-1; i++) { // outer loop pin
go_0(con_pin[i]); // make the outer loop pin an output and send this pin low
for (int j=i+1; j<max_pin; j++) { // inner loop pin
delayMicroseconds(10); // give time to let the signals settle out
if (!digitalRead(con_pin[j])) { // check for connection between inner and outer pins
usb_num(i); // send outer loop pin number over usb
usb_num(j); // send inner loop pin number over usb
down_arrow(); // send a down arrow over usb
while(!digitalRead(con_pin[j])) { // wait until key is released
; // if 2 pins are shorted, the code will hang here waiting for their release
}
}
}
go_z(con_pin[i]); // return the outer loop pin to float with pullup
}
//
// *********Top down Test***********
//
for (int p=max_pin-1; p>min_pin-1; p--) { // outer loop pin
go_0(con_pin[p]); // make the outer loop pin an output and send this pin low
for (int r=p-1; r>=min_pin-1; r--) { // inner loop pin
delayMicroseconds(10); // give time to let the signals settle out
if (!digitalRead(con_pin[r])) { // check for connection between inner and outer pins
usb_num(p); // send outer loop pin number over usb
usb_num(r); // send inner loop pin number over usb
down_arrow(); // send a down arrow over usb
while(!digitalRead(con_pin[r])) { // wait until key is released
;
}
}
}
go_z(con_pin[p]); // return the outer loop pin to float with pullup
}
//
// Blink the LED to show the Teensy is alive
//
if (blink_count == 0x0a) {
pinMode(13, OUTPUT);
digitalWrite(13, blinky);
blinky = !blinky;
blink_count = 0;
}
else {
blink_count++;
}
delay(25); // overall keyboard scan rate is about 30 milliseconds
//
}