// // This software interfaces a Teensy 3.2 with a PS/2 laptop touchpad. // The touchpad is commanded to be in Stream Mode (not remote mode). // This causes the touchpad to send data when ever it detects finger movement. // The ps/2 code uses the USB PJRC Mouse functions at www.pjrc.com/teensy/td_mouse.html // The ps/2 code has a watchdog timer so the code can't hang if a clock edge is missed. // In the Arduino IDE, select Tools, Teensy 3.2. Also under Tools, select Keyboard+Mouse+Joystick // // Revision History // Rev 1.0 - Aug 1, 2020 - Original Release // // The touchpad ps/2 data and clock lines are connected to the following Teensy I/O pins #define TP_DATA 0 #define TP_CLK 1 // Teensy LED will be turned ON to show if errors are detected during initialization or during normal use #define ERROR_LED 13 // // Declare variables that will be used by functions boolean init_error = LOW; // set high if initialization detects an error boolean bit_error = LOW; // set high if main loop detects an error char mstat; // touchpad status 8 bit register = Y overflow, X overflow, Y sign bit, X sign bit, Always 1, Middle Btn, Right Btn, Left Btn char mx; // touchpad x movement = 8 data bits. The sign bit is in the status register to // make a 9 bit 2's complement value. Left to right on the touchpad gives a positive value. char my; // touchpad y movement also 8 bits plus sign bit in status reg. Touchpad movement away from the user gives a positive value. // // Function to set a pin to high impedance (acts like open drain output) void go_z(int pin) { pinMode(pin, INPUT); digitalWrite(pin, HIGH); } // // Function to set a pin as an input with a pullup void go_pu(int pin) { pinMode(pin, INPUT_PULLUP); digitalWrite(pin, HIGH); } // // Function to set a pin to a logic low void go_0(int pin) { pinMode(pin, OUTPUT); digitalWrite(pin, LOW); } // // Function to set a pin to a logic high void go_1(int pin) { pinMode(pin, OUTPUT); digitalWrite(pin, HIGH); } // // *****************Functions for Touchpad*************************** // // Function to send the touchpad a byte of data (command) // void tp_write(char send_data) { unsigned int timeout = 200; // breakout of loop if watchdog over this value in msec elapsedMillis watchdog; // zero the watchdog timer clock char odd_parity = 0; // clear parity bit count // Enable the PS/2 bus by floating the clock and data go_pu(TP_CLK); // go_pu(TP_DATA); // delayMicroseconds(250); // wait before requesting the bus go_0(TP_CLK); // Send the Clock line low to request to transmit data delayMicroseconds(100); // wait for 100 microseconds per bus spec go_0(TP_DATA); // Send the Data line low (the start bit) delayMicroseconds(1); // go_pu(TP_CLK); // Release the Clock line so it is pulled high delayMicroseconds(1); // give some time to let the clock line go high while (digitalRead(TP_CLK) == HIGH) { // loop until the clock goes low if (watchdog >= timeout) { //check for infinite loop because tp did not respond init_error = HIGH; break; // break out of infinite loop } } // send the 8 bits of send_data for (int j=0; j<8; j++) { if (send_data & 1) { //check if lsb is set go_pu(TP_DATA); // send a 1 to TP odd_parity = odd_parity + 1; // keep running total of 1's sent } else { go_0(TP_DATA); // send a 0 to TP } delayMicroseconds(1); // delay to let the clock settle out while (digitalRead(TP_CLK) == LOW) { // loop until the clock goes high if (watchdog >= timeout) { //check for infinite loop init_error = HIGH; break; // break out of infinite loop } } delayMicroseconds(1); // delay to let the clock settle out while (digitalRead(TP_CLK) == HIGH) { // loop until the clock goes low if (watchdog >= timeout) { //check for infinite loop init_error = HIGH; break; // break out of infinite loop } } send_data = send_data >> 1; // shift data right by 1 to prepare for next loop } // send the parity bit if (odd_parity & 1) { //check if lsb of parity is set go_0(TP_DATA); // already odd so send a 0 to TP } else { go_pu(TP_DATA); // send a 1 to TP to make parity odd } delayMicroseconds(1); // delay to let the clock settle out while (digitalRead(TP_CLK) == LOW) { // loop until the clock goes high if (watchdog >= timeout) { //check for infinite loop init_error = HIGH; break; // break out of infinite loop } } delayMicroseconds(1); // delay to let the clock settle out while (digitalRead(TP_CLK) == HIGH) { // loop until the clock goes low if (watchdog >= timeout) { //check for infinite loop init_error = HIGH; break; // break out of infinite loop } } go_pu(TP_DATA); // Release the Data line so it goes high as the stop bit delayMicroseconds(80); // testing shows delay at least 40us while (digitalRead(TP_CLK) == HIGH) { // loop until the clock goes low if (watchdog >= timeout) { //check for infinite loop init_error = HIGH; break; // break out of infinite loop } } delayMicroseconds(1); // wait to let the data settle if (digitalRead(TP_DATA)) { // Ack bit s/b low if good transfer } while ((digitalRead(TP_CLK) == LOW) || (digitalRead(TP_DATA) == LOW)) { // loop if clock or data are low if (watchdog >= timeout) { //check for infinite loop init_error = HIGH; break; // break out of infinite loop } } // Inhibit the bus so the tp only talks when we're listening go_0(TP_CLK); } // // Function to get a byte of data from the touchpad // char tp_read(void) { unsigned int timeout = 200; // breakout of loop if over this value in msec elapsedMillis watchdog; // zero the watchdog timer clock char rcv_data = 0; // initialize to zero char mask = 1; // shift a 1 across the 8 bits to select where to load the data char rcv_parity = 0; // count the ones received go_pu(TP_CLK); // release the clock go_pu(TP_DATA); // release the data delayMicroseconds(5); // delay to let clock go high while (digitalRead(TP_CLK) == HIGH) { // loop until the clock goes low if (watchdog >= timeout) { //check for infinite loop init_error = HIGH; break; // break out of infinite loop } } if (digitalRead(TP_DATA)) { // Start bit s/b low from tp // start bit not correct - put error handler here if desired } delayMicroseconds(1); // delay to let the clock settle out while (digitalRead(TP_CLK) == LOW) { // loop until the clock goes high if (watchdog >= timeout) { //check for infinite loop init_error = HIGH; break; // break out of infinite loop } } for (int k=0; k<8; k++) { delayMicroseconds(1); // delay to let the clock settle out while (digitalRead(TP_CLK) == HIGH) { // loop until the clock goes low if (watchdog >= timeout) { //check for infinite loop init_error = HIGH; break; // break out of infinite loop } } if (digitalRead(TP_DATA)) { // check if data is high rcv_data = rcv_data | mask; // set the appropriate bit in the rcv data rcv_parity++; // increment the parity bit counter } mask = mask << 1; delayMicroseconds(1); // delay to let the clock settle out while (digitalRead(TP_CLK) == LOW) { // loop until the clock goes high if (watchdog >= timeout) { //check for infinite loop init_error = HIGH; break; // break out of infinite loop } } } // receive parity delayMicroseconds(1); // delay to let the clock settle out while (digitalRead(TP_CLK) == HIGH) { // loop until the clock goes low if (watchdog >= timeout) { //check for infinite loop init_error = HIGH; break; // break out of infinite loop } } if (digitalRead(TP_DATA)) { // check if received parity is high rcv_parity++; // increment the parity bit counter } rcv_parity = rcv_parity & 1; // mask off all bits except the lsb if (rcv_parity == 0) { // check for bad (even) parity init_error = HIGH; } delayMicroseconds(1); // delay to let the clock settle out while (digitalRead(TP_CLK) == LOW) { // loop until the clock goes high if (watchdog >= timeout) { //check for infinite loop init_error = HIGH; break; // break out of infinite loop } } // stop bit delayMicroseconds(1); // delay to let the clock settle out while (digitalRead(TP_CLK) == HIGH) { // loop until the clock goes low if (watchdog >= timeout) { //check for infinite loop init_error = HIGH; break; // break out of infinite loop } } if (digitalRead(TP_DATA) == LOW) { // check if stop bit is bad (low) // send bad stop bit to future error handler } delayMicroseconds(1); // delay to let the clock settle out while (digitalRead(TP_CLK) == LOW) { // loop until the clock goes high if (watchdog >= timeout) { //check for infinite loop init_error = HIGH; break; // break out of infinite loop } } // Inhibit the bus so the tp only talks when we're listening go_0(TP_CLK); return rcv_data; // pass the received data back } // // Function to decode 3 bytes of data from the touchpad = status, X Delta, Y Delta // void tp_packet(void) { // ******************************Receive Byte 0 = Status*********************** char rcv_data = 0; // initialize to zero char mask = 1; // shift a 1 across the 8 bits to select where to load the data char rcv_parity = 0; // count the ones received go_pu(TP_CLK); // release the clock go_pu(TP_DATA); // release the data delayMicroseconds(5); // delay to let clock go high while (digitalRead(TP_CLK) == HIGH) { // loop until the clock goes low } if (digitalRead(TP_DATA)) { // Start bit s/b low from tp // start bit not correct - put error handler here if desired } delayMicroseconds(1); // delay to let the clock settle out while (digitalRead(TP_CLK) == LOW) { // loop until the clock goes high } for (int k=0; k<8; k++) { delayMicroseconds(1); // delay to let the clock settle out while (digitalRead(TP_CLK) == HIGH) { // loop until the clock goes low } if (digitalRead(TP_DATA)) { // check if data is high rcv_data = rcv_data | mask; // set the appropriate bit in the rcv data rcv_parity++; // increment the parity bit counter } mask = mask << 1; delayMicroseconds(1); // delay to let the clock settle out while (digitalRead(TP_CLK) == LOW) { // loop until the clock goes high } } // receive parity delayMicroseconds(1); // delay to let the clock settle out while (digitalRead(TP_CLK) == HIGH) { // loop until the clock goes low } if (digitalRead(TP_DATA)) { // check if received parity is high rcv_parity++; // increment the parity bit counter } rcv_parity = rcv_parity & 1; // mask off all bits except the lsb if (rcv_parity == 0) { // check for bad (even) parity bit_error = HIGH; } delayMicroseconds(1); // delay to let the clock settle out while (digitalRead(TP_CLK) == LOW) { // loop until the clock goes high } // stop bit delayMicroseconds(1); // delay to let the clock settle out while (digitalRead(TP_CLK) == HIGH) { // loop until the clock goes low } if (digitalRead(TP_DATA) == LOW) { // check if stop bit is bad (low) bit_error = HIGH; } delayMicroseconds(1); // delay to let the clock settle out while (digitalRead(TP_CLK) == LOW) { // loop until the clock goes high } mstat = rcv_data; // save data result in status byte // ******************************Receive Byte 1 = Delta X************************** rcv_data = 0; // initialize to zero mask = 1; // shift a 1 across the 8 bits to select where to load the data rcv_parity = 0; // count the ones received delayMicroseconds(5); // delay to let the clock stop ringing while (digitalRead(TP_CLK) == HIGH) { // loop until the clock goes low } if (digitalRead(TP_DATA)) { // Start bit s/b low from tp // start bit not correct - put error handler here if desired } delayMicroseconds(1); // delay to let the clock settle out while (digitalRead(TP_CLK) == LOW) { // loop until the clock goes high } for (int k=0; k<8; k++) { delayMicroseconds(1); // delay to let the clock settle out while (digitalRead(TP_CLK) == HIGH) { // loop until the clock goes low } if (digitalRead(TP_DATA)) { // check if data is high rcv_data = rcv_data | mask; // set the appropriate bit in the rcv data rcv_parity++; // increment the parity bit counter } mask = mask << 1; delayMicroseconds(1); // delay to let the clock settle out while (digitalRead(TP_CLK) == LOW) { // loop until the clock goes high } } // receive parity delayMicroseconds(1); // delay to let the clock settle out while (digitalRead(TP_CLK) == HIGH) { // loop until the clock goes low } if (digitalRead(TP_DATA)) { // check if received parity is high rcv_parity++; // increment the parity bit counter } rcv_parity = rcv_parity & 1; // mask off all bits except the lsb if (rcv_parity == 0) { // check for bad (even) parity bit_error = HIGH; } delayMicroseconds(1); // delay to let the clock settle out while (digitalRead(TP_CLK) == LOW) { // loop until the clock goes high } // stop bit delayMicroseconds(1); // delay to let the clock settle out while (digitalRead(TP_CLK) == HIGH) { // loop until the clock goes low } if (digitalRead(TP_DATA) == LOW) { // check if stop bit is bad (low) bit_error = HIGH; } delayMicroseconds(1); // delay to let the clock settle out while (digitalRead(TP_CLK) == LOW) { // loop until the clock goes high } mx = rcv_data; // save data result in delta x byte // Receive Byte 1 = Delta Y // ******************************Receive Byte 2 = Delta Y************************** rcv_data = 0; // initialize to zero mask = 1; // shift a 1 across the 8 bits to select where to load the data rcv_parity = 0; // count the ones received delayMicroseconds(5); // delay to let the clock stop ringing while (digitalRead(TP_CLK) == HIGH) { // loop until the clock goes low } if (digitalRead(TP_DATA)) { // Start bit s/b low from tp // start bit not correct - put error handler here if desired } delayMicroseconds(1); // delay to let the clock settle out while (digitalRead(TP_CLK) == LOW) { // loop until the clock goes high } for (int k=0; k<8; k++) { delayMicroseconds(1); // delay to let the clock settle out while (digitalRead(TP_CLK) == HIGH) { // loop until the clock goes low } if (digitalRead(TP_DATA)) { // check if data is high rcv_data = rcv_data | mask; // set the appropriate bit in the rcv data rcv_parity++; // increment the parity bit counter } mask = mask << 1; delayMicroseconds(1); // delay to let the clock settle out while (digitalRead(TP_CLK) == LOW) { // loop until the clock goes high } } // receive parity delayMicroseconds(1); // delay to let the clock settle out while (digitalRead(TP_CLK) == HIGH) { // loop until the clock goes low } if (digitalRead(TP_DATA)) { // check if received parity is high rcv_parity++; // increment the parity bit counter } rcv_parity = rcv_parity & 1; // mask off all bits except the lsb if (rcv_parity == 0) { // check for bad (even) parity bit_error = HIGH; } delayMicroseconds(1); // delay to let the clock settle out while (digitalRead(TP_CLK) == LOW) { // loop until the clock goes high } // stop bit delayMicroseconds(1); // delay to let the clock settle out while (digitalRead(TP_CLK) == HIGH) { // loop until the clock goes low } if (digitalRead(TP_DATA) == LOW) { // check if stop bit is bad (low) bit_error = HIGH; } delayMicroseconds(1); // delay to let the clock settle out while (digitalRead(TP_CLK) == LOW) { // loop until the clock goes high } my = rcv_data; // save data result in delta y byte // // Inhibit the bus so the tp only talks when we're listening go_0(TP_CLK); } // void touchpad_init() { init_error = LOW; // start with no error go_pu(TP_CLK); // float the clock and data to touchpad go_pu(TP_DATA); // Sending reset command to touchpad tp_write(0xff); if (tp_read() != 0xfa) { // verify correct ack byte init_error = HIGH; } delay(1000); // wait 1 second so tp can run its self diagnostic // verify proper response from tp if (tp_read() != 0xaa) { // verify basic assurance test passed init_error = HIGH; } if (tp_read() != 0x00) { // verify basic assurance test passed init_error = HIGH; } // Send touchpad disable code so that the mode byte can be loaded next tp_write(0xf5); // tp disable if (tp_read() != 0xfa) { // verify correct ack byte init_error = HIGH; } // Load Mode Byte with 00 using the following special sequence from page 38 of Synaptics Interfaceing Guide. // Send set resolution to 0 four times followed by a set sample rate to 0x14 // The resolution and sample rate are not actually changed but instead it loads the mode byte. // #1 set resolution tp_write(0xe8); // set resolution (actually part of setting mode byte) if (tp_read() != 0xfa) { // verify correct ack byte init_error = HIGH; } tp_write(0x00); // to zero if (tp_read() != 0xfa) { // verify correct ack byte init_error = HIGH; } // #2 set resolution (actually part of setting mode byte) tp_write(0xe8); // set resolution if (tp_read() != 0xfa) { // verify correct ack byte init_error = HIGH; } tp_write(0x00); // to zero if (tp_read() != 0xfa) { // verify correct ack byte init_error = HIGH; } // #3 set resolution tp_write(0xe8); // set resolution if (tp_read() != 0xfa) { // verify correct ack byte init_error = HIGH; } tp_write(0x00); // to zero if (tp_read() != 0xfa) { // verify correct ack byte init_error = HIGH; } // #4 set resolution (actually part of setting mode byte) tp_write(0xe8); // set resolution if (tp_read() != 0xfa) { // verify correct ack byte init_error = HIGH; } tp_write(0x00); // to zero if (tp_read() != 0xfa) { // verify correct ack byte init_error = HIGH; } // Set sample rate (actually part of setting mode byte) tp_write(0xf3); // set sample rate if (tp_read() != 0xfa) { // verify correct ack byte init_error = HIGH; } tp_write(0x14); // to 14 hex if (tp_read() != 0xfa) { // verify correct ack byte init_error = HIGH; } // This completes the mode byte load // set the resolution for real tp_write(0xe8); // Sending resolution command if (tp_read() != 0xfa) { // verify correct ack byte init_error = HIGH; } tp_write(0x03); // value of 0x03 = 8 counts/mm resolution (default is 4 counts/mm) if (tp_read() != 0xfa) { // verify correct ack byte init_error = HIGH; } // set the sample rate for real tp_write(0xf3); // Sending sample rate command if (tp_read() != 0xfa) { // verify correct ack byte init_error = HIGH; } tp_write(0x28); // 0x28 = 40 samples per second, the default value used for Synaptics TP if (tp_read() != 0xfa) { // verify correct ack byte init_error = HIGH; } // Load stream mode command so tp will send data whenever it's available tp_write(0xea); // stream mode if (tp_read() != 0xfa) { // verify correct ack byte init_error = HIGH; } // Send touchpad enable code tp_write(0xf4); // tp enable if (tp_read() != 0xfa) { // verify correct ack byte init_error = HIGH; } } // // ************************************Begin Routine********************************************************* void setup() { pinMode(ERROR_LED, OUTPUT); // define teensy I/O 13 as an output touchpad_init(); // reset tp and check that self diagnostic passed. Put tp in stream mode and enable it digitalWrite(ERROR_LED, init_error); //LED off means touchpad passed its power up test, ACKed all communications, and never caused a watchdog timeout delay(5000); // wait 5 seconds to show init_error LED status digitalWrite(ERROR_LED, LOW); // Turn off LED for 1/2 second delay(500); // 1/2 second delay digitalWrite(ERROR_LED, HIGH); // Turn on LED momentarily to indicate code is in main loop delay(500); // 1/2 second delay digitalWrite(ERROR_LED, bit_error); // Turn off LED and switch its function to show bit errors in main loop } // // declare and initialize variables boolean over_flow; // set if x or y movement values are bad due to overflow boolean left_button = 0; // on/off variable for left button = bit 0 of mstat boolean right_button = 0; // on/off variable for right button = bit 1 of mstat boolean old_left_button = 0; // on/off variable for left button status the previous polling cycle boolean old_right_button = 0; // on/off variable for right button status the previous polling cycle boolean button_change = 0; // Active high, shows when a touchpad left or right button has changed since last polling cycle // // ************************************Main Loop*************************************************************** void loop() { // Touchpad is enabled and in stream mode tp_packet(); // this function loops until there is bus activity and then saves data into mstat, mx, and my bytes for USB transmission below. if (((0x80 & mstat) == 0x80) || ((0x40 & mstat) == 0x40)) { // x or y overflow bits set? over_flow = 1; // set the overflow flag } // change the x data from 9 bit to 8 bit 2's complement by throwing away lsb mx = mx & 0x7f; // mask off 8th bit if ((0x10 & mstat) == 0x10) { // move the sign into mx = 0x80 | mx; // the 8th bit position } // change the y data from 9 bit to 8 bit 2's complement by throwing away lsb my = my & 0x7f; // mask off 8th bit if ((0x20 & mstat) == 0x20) { // move the sign into my = 0x80 | my; // the 8th bit position } // Invert the 8 bit value because y movement in ps/2 format is the opposite direction in touchpad.move function my = (~my + 0x01); // invert the y data by taking the 2's complement (invert and add 1) // zero out mx and my if over_flow is detected because the data is garbage if (over_flow) { mx = 0x00; my = 0x00; bit_error = HIGH; // flag an error } // Send the x and y data back via usb if either one is non-zero if ((mx != 0x00) || (my != 0x00)) { Mouse.move(mx,my); } // // pull out the left and right button status bits from the mstat byte if ((0x01 & mstat) == 0x01) { // is bit 1 set left_button = 1; // set the left_button status } else { // clear the left_button status left_button = 0; } if ((0x02 & mstat) == 0x02) { // is bit 2 set right_button = 1; // set the right_button status } else { // clear the right_button status right_button = 0; } // Determine if the left or right touch pad buttons have changed button_change = (left_button ^ old_left_button) | (right_button ^ old_right_button); // Don't send button status if there's no change since last usb button transmission. if (button_change){ Mouse.set_buttons(left_button, 0, right_button); // send button status old_left_button = left_button; // remember new button status for next polling cycle old_right_button = right_button; } // digitalWrite(ERROR_LED, bit_error); // LED is used to show NACK, bad parity, overflow, or bad stop bits. Any error is latched "on" }