960 lines
39 KiB
C++
960 lines
39 KiB
C++
/* Copyright 2022 Frank Adams
|
|
Licensed under the Apache License, Version 2.0 (the "License");
|
|
you may not use this file except in compliance with the License.
|
|
You may obtain a copy of the License at
|
|
http://www.apache.org/licenses/LICENSE-2.0
|
|
Unless required by applicable law or agreed to in writing, software
|
|
distributed under the License is distributed on an "AS IS" BASIS,
|
|
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
See the License for the specific language governing permissions and
|
|
limitations under the License.
|
|
*/
|
|
// This software creates a USB keyboard and touchpad.
|
|
// The touchpad is PS/2 and the code uses "stream mode" instead of "remote mode".
|
|
//
|
|
// define the pins on the Teensy used for the touchpad ps2 bus
|
|
#define TP_DATA 11 // Touchpad ps/2 data connected to Teensy I/O pin
|
|
#define TP_CLK 12 // Touchpad ps/2 clock connected to Teensy I/O pin
|
|
#define CAPS_LOCK_N 8 // driven low to turn on the CAPS LED
|
|
#define NUM_LOCK_N 13 // driven low to turn on the NUM LED (Note the LED on the Teensy 3.2 is also connected to this I/O and has opposite polarity)
|
|
//
|
|
#define MODIFIERKEY_FN 0x8f // give the Fn key a HID code so it can be handled like any other key
|
|
//
|
|
const byte rows_max = 15; // sets the number of rows in the keyboard matrix
|
|
const byte cols_max = 8; // sets the number of columns in the keyboard matrix
|
|
//
|
|
// Load the normal key matrix with the Teensyduino key names described at www.pjrc.com/teensy/td_keyboard.html
|
|
// A zero indicates no normal key at that location.
|
|
//
|
|
int normal[rows_max][cols_max] = {
|
|
{KEY_END,KEY_RIGHT,0,KEY_PRINTSCREEN,KEY_DELETE,KEY_HOME,KEY_PAGE_UP,KEY_PAGE_DOWN},
|
|
{KEY_QUOTE,KEY_ENTER,KEY_PAUSE,0,KEY_EQUAL,KEY_BACKSPACE,KEY_RIGHT_BRACE,KEY_BACKSLASH},
|
|
{KEY_SLASH,KEY_UP,KEY_MINUS,KEY_F12,KEY_0,KEY_P,KEY_LEFT_BRACE,KEY_SEMICOLON},
|
|
{0,0,0,0,0,0,0,0},
|
|
{0,0,KEY_F8,KEY_F9,0,0,KEY_MENU,KEY_LEFT},
|
|
{KEY_COMMA,KEY_INSERT,KEY_F7,KEY_F6,KEY_F5,KEY_8,KEY_I,KEY_K},
|
|
{0,0,0,0,0,0,0,0},
|
|
{KEY_PERIOD,KEY_DOWN,0,KEY_F11,KEY_F10,KEY_9,KEY_O,KEY_L},
|
|
{KEY_M,KEY_N,KEY_H,KEY_Y,KEY_6,KEY_7,KEY_U,KEY_J},
|
|
{KEY_V,KEY_B,KEY_G,KEY_T,KEY_5,KEY_4,KEY_R,KEY_F},
|
|
{KEY_X,KEY_Z,KEY_F2,KEY_F1,KEY_ESC,KEY_2,KEY_W,KEY_S},
|
|
{KEY_C,KEY_SPACE,KEY_F3,KEY_F4,KEY_CAPS_LOCK,KEY_3,KEY_E,KEY_D},
|
|
{0,0,0,0,0,0,0,0},
|
|
{0,0,0,KEY_TAB,KEY_TILDE,KEY_1,KEY_Q,KEY_A},
|
|
{0,0,0,0,0,0,0,0}
|
|
};
|
|
// Load the numlock key matrix with key names at the correct row-column location.
|
|
// This matrix is the same as the normal matrix except for the number pad keys
|
|
// A zero indicates no numlock key at that location.
|
|
int numlock[rows_max][cols_max] = {
|
|
{KEY_END,KEY_RIGHT,0,KEY_PRINTSCREEN,KEY_DELETE,KEY_HOME,KEY_PAGE_UP,KEY_PAGE_DOWN},
|
|
{KEY_QUOTE,KEY_ENTER,KEY_PAUSE,0,KEY_EQUAL,KEY_BACKSPACE,KEY_RIGHT_BRACE,KEY_BACKSLASH},
|
|
{KEYPAD_SLASH,KEY_UP,KEY_MINUS,KEY_F12,KEYPAD_ASTERIX,KEYPAD_MINUS,KEY_LEFT_BRACE,KEYPAD_PLUS},
|
|
{0,0,0,0,0,0,0,0},
|
|
{0,0,KEY_F8,KEY_F9,0,0,KEY_MENU,KEY_LEFT},
|
|
{KEY_COMMA,KEY_INSERT,KEY_F7,KEY_F6,KEY_F5,KEYPAD_8,KEYPAD_5,KEYPAD_2},
|
|
{0,0,0,0,0,0,0,0},
|
|
{KEYPAD_PERIOD,KEY_DOWN,0,KEY_F11,KEY_F10,KEYPAD_9,KEYPAD_6,KEYPAD_3},
|
|
{KEYPAD_0,KEY_N,KEY_H,KEY_Y,KEY_6,KEYPAD_7,KEYPAD_4,KEYPAD_1},
|
|
{KEY_V,KEY_B,KEY_G,KEY_T,KEY_5,KEY_4,KEY_R,KEY_F},
|
|
{KEY_X,KEY_Z,KEY_F2,KEY_F1,KEY_ESC,KEY_2,KEY_W,KEY_S},
|
|
{KEY_C,KEY_SPACE,KEY_F3,KEY_F4,KEY_CAPS_LOCK,KEY_3,KEY_E,KEY_D},
|
|
{0,0,0,0,0,0,0,0},
|
|
{0,0,0,KEY_TAB,KEY_TILDE,KEY_1,KEY_Q,KEY_A},
|
|
{0,0,0,0,0,0,0,0}
|
|
};
|
|
// Load the modifier key matrix with key names at the correct row-column location.
|
|
// A zero indicates no modifier key at that location.
|
|
int modifier[rows_max][cols_max] = {
|
|
{0,0,0,0,0,0,0,0},
|
|
{0,0,0,0,0,0,0,0},
|
|
{0,0,0,0,0,0,0,0},
|
|
{0,MODIFIERKEY_LEFT_CTRL,0,0,MODIFIERKEY_RIGHT_CTRL,0,0,0},
|
|
{0,0,0,0,0,0,0,0},
|
|
{0,0,0,0,0,0,0,0},
|
|
{MODIFIERKEY_RIGHT_SHIFT,MODIFIERKEY_LEFT_SHIFT,0,0,0,0,0,0},
|
|
{0,0,0,0,0,0,0,0},
|
|
{0,0,0,0,0,0,0,0},
|
|
{0,0,0,0,0,0,0,0},
|
|
{0,0,0,0,0,0,0,0},
|
|
{0,0,0,0,0,0,0,0},
|
|
{MODIFIERKEY_RIGHT_ALT,MODIFIERKEY_LEFT_ALT,0,0,0,0,0,0},
|
|
{0,0,MODIFIERKEY_FN,0,0,0,0,0},
|
|
{0,MODIFIERKEY_GUI,0,0,0,0,0,0}
|
|
};
|
|
// Load the media key matrix with Fn key names at the correct row-column location.
|
|
// A zero indicates no media key at that location.
|
|
int media[rows_max][cols_max] = {
|
|
{0,0,0,0,KEY_SCROLL_LOCK,0,0,0},
|
|
{0,0,0,0,0,0,0,0},
|
|
{0,0,0,0,0,0,0,0},
|
|
{0,0,0,0,0,0,0,0},
|
|
{0,0,0,0,0,0,0,0},
|
|
{0,KEY_NUM_LOCK,0,0,0,0,0,0},
|
|
{0,0,0,0,0,0,0,0},
|
|
{0,0,0,0,KEY_MEDIA_MUTE,0,0,0},
|
|
{0,0,0,0,0,0,0,0},
|
|
{0,0,0,0,0,0,0,0},
|
|
{0,0,0,0,0,0,0,0},
|
|
{0,0,KEY_MEDIA_VOLUME_DEC,KEY_MEDIA_VOLUME_INC,0,0,0,0},
|
|
{0,0,0,0,0,0,0,0},
|
|
{0,0,0,0,0,0,0,0},
|
|
{0,0,0,0,0,0,0,0}
|
|
};
|
|
// Initialize the old_key matrix with one's (no keys pressed).
|
|
// 1 = key not pressed, 0 = key is pressed
|
|
boolean old_key[rows_max][cols_max] = {
|
|
{1,1,1,1,1,1,1,1},
|
|
{1,1,1,1,1,1,1,1},
|
|
{1,1,1,1,1,1,1,1},
|
|
{1,1,1,1,1,1,1,1},
|
|
{1,1,1,1,1,1,1,1},
|
|
{1,1,1,1,1,1,1,1},
|
|
{1,1,1,1,1,1,1,1},
|
|
{1,1,1,1,1,1,1,1},
|
|
{1,1,1,1,1,1,1,1},
|
|
{1,1,1,1,1,1,1,1},
|
|
{1,1,1,1,1,1,1,1},
|
|
{1,1,1,1,1,1,1,1},
|
|
{1,1,1,1,1,1,1,1},
|
|
{1,1,1,1,1,1,1,1},
|
|
{1,1,1,1,1,1,1,1}
|
|
};
|
|
//
|
|
// Define the Teensy 3.2 I/O numbers that are connected to the keyboard FPC connector pins
|
|
// Row FPC pin # 09,10,11,12,13,14,15,16,17,18,19,20,21,22,23
|
|
// Teensy I/O # 18,33,19,20,21,22,23,24,25,26,27,28,07,06,05
|
|
int Row_IO[rows_max] = {18,33,19,20,21,22,23,24,25,26,27,28,7,6,5}; // Teensy 3.2 I/O numbers for rows 0 thru 14
|
|
//
|
|
// Column FPC pin # 01,02,03,04,05,06,07,08
|
|
// Teensy I/O # 14,29,15,30,16,31,17,32
|
|
int Col_IO[cols_max] = {14,29,15,30,16,31,17,32}; // Teensy 3.2 I/O numbers for columns 0 thru 7
|
|
//
|
|
// Declare global variables that will be used by functions
|
|
//
|
|
boolean slots_full = LOW; // Goes high when USB slots 1 thru 6 contain normal keys
|
|
boolean touchpad_error = LOW; // set high if the touchpad fails to give the correct power-up response
|
|
char mstat; // touchpad status 8 bit register = Y overflow, X overflow, Y sign bit, X sign bit, Always 1, Middle Btn, Right Btn, Left Btn
|
|
char mx; // touchpad x movement = 8 data bits. The sign bit is in the status register to
|
|
// make a 9 bit 2's complement value. Left to right on the touchpad gives a positive value.
|
|
char my; // touchpad y movement also 8 bits plus sign bit in status reg. Touchpad movement away from the user gives a positive value.
|
|
//
|
|
// slot 1 thru slot 6 hold the normal key values to be sent over USB.
|
|
int slot1 = 0; //value of 0 means the slot is empty and can be used.
|
|
int slot2 = 0;
|
|
int slot3 = 0;
|
|
int slot4 = 0;
|
|
int slot5 = 0;
|
|
int slot6 = 0;
|
|
//
|
|
int mod_shift_l = 0; // These variables are sent over USB as modifier keys.
|
|
int mod_shift_r = 0; // Each is either set to 0 or MODIFIER_ ...
|
|
int mod_ctrl_l = 0;
|
|
int mod_ctrl_r = 0;
|
|
int mod_alt_l = 0;
|
|
int mod_alt_r = 0;
|
|
int mod_gui = 0;
|
|
//
|
|
// ********************Common Functions**********************************************
|
|
//
|
|
// Function to set a pin to high impedance (acts like open drain output)
|
|
void go_z(int pin)
|
|
{
|
|
pinMode(pin, INPUT);
|
|
digitalWrite(pin, HIGH);
|
|
}
|
|
//
|
|
// Function to set a pin as an input with a pullup
|
|
void go_pu(int pin)
|
|
{
|
|
pinMode(pin, INPUT_PULLUP);
|
|
digitalWrite(pin, HIGH);
|
|
}
|
|
//
|
|
// Function to send a pin to a logic low
|
|
void go_0(int pin)
|
|
{
|
|
pinMode(pin, OUTPUT);
|
|
digitalWrite(pin, LOW);
|
|
}
|
|
//
|
|
// Function to send a pin to a logic high
|
|
void go_1(int pin)
|
|
{
|
|
pinMode(pin, OUTPUT);
|
|
digitalWrite(pin, HIGH);
|
|
}
|
|
//
|
|
// ********************Functions for keyboard scanning*******************************
|
|
//
|
|
// Function to load the key name into the first available slot
|
|
void load_slot(int key) {
|
|
if (!slot1) { // check if slot 1 is empty
|
|
slot1 = key; // and load it with the key name
|
|
}
|
|
else if (!slot2) { // otherwise go thru all the other slots looking for an empty to load
|
|
slot2 = key;
|
|
}
|
|
else if (!slot3) {
|
|
slot3 = key;
|
|
}
|
|
else if (!slot4) {
|
|
slot4 = key;
|
|
}
|
|
else if (!slot5) {
|
|
slot5 = key;
|
|
}
|
|
else if (!slot6) {
|
|
slot6 = key;
|
|
}
|
|
if (!slot1 || !slot2 || !slot3 || !slot4 || !slot5 || !slot6) { // are any slots empty?
|
|
slots_full = LOW; // slots are not full
|
|
}
|
|
else {
|
|
slots_full = HIGH; // slots are full
|
|
}
|
|
}
|
|
//
|
|
// Function to clear the slot that contains the key name
|
|
void clear_slot(int key) {
|
|
if (slot1 == key) { // check if slot 1 contains the key that needs to be cleared
|
|
slot1 = 0; // and clear it
|
|
}
|
|
else if (slot2 == key) { // otherwise keep checking the other slots for a match
|
|
slot2 = 0;
|
|
}
|
|
else if (slot3 == key) {
|
|
slot3 = 0;
|
|
}
|
|
else if (slot4 == key) {
|
|
slot4 = 0;
|
|
}
|
|
else if (slot5 == key) {
|
|
slot5 = 0;
|
|
}
|
|
else if (slot6 == key) {
|
|
slot6 = 0;
|
|
}
|
|
if (!slot1 || !slot2 || !slot3 || !slot4 || !slot5 || !slot6) { // are any slots empty?
|
|
slots_full = LOW; // slots are not full
|
|
}
|
|
else {
|
|
slots_full = HIGH; // slots are full
|
|
}
|
|
}
|
|
//
|
|
// Function to load the modifier key name into the appropriate mod variable
|
|
void load_mod(int m_key) {
|
|
if (m_key == MODIFIERKEY_LEFT_SHIFT) { // Figure out which modifier key was pushed
|
|
mod_shift_l = m_key; // and load it into 1 of 7 possible variables
|
|
}
|
|
else if (m_key == MODIFIERKEY_RIGHT_SHIFT) {
|
|
mod_shift_r = m_key;
|
|
}
|
|
else if (m_key == MODIFIERKEY_LEFT_CTRL) {
|
|
mod_ctrl_l = m_key;
|
|
}
|
|
else if (m_key == MODIFIERKEY_RIGHT_CTRL) {
|
|
mod_ctrl_r = m_key;
|
|
}
|
|
else if (m_key == MODIFIERKEY_LEFT_ALT) {
|
|
mod_alt_l = m_key;
|
|
}
|
|
else if (m_key == MODIFIERKEY_RIGHT_ALT) {
|
|
mod_alt_r = m_key;
|
|
}
|
|
else if (m_key == MODIFIERKEY_GUI) {
|
|
mod_gui = m_key;
|
|
}
|
|
}
|
|
//
|
|
// Function to load 0 into the appropriate mod variable
|
|
void clear_mod(int m_key) {
|
|
if (m_key == MODIFIERKEY_LEFT_SHIFT) { // Figure out which modifier key was released
|
|
mod_shift_l = 0; // and clear the matching variable
|
|
}
|
|
else if (m_key == MODIFIERKEY_RIGHT_SHIFT) {
|
|
mod_shift_r = 0;
|
|
}
|
|
else if (m_key == MODIFIERKEY_LEFT_CTRL) {
|
|
mod_ctrl_l = 0;
|
|
}
|
|
else if (m_key == MODIFIERKEY_RIGHT_CTRL) {
|
|
mod_ctrl_r = 0;
|
|
}
|
|
else if (m_key == MODIFIERKEY_LEFT_ALT) {
|
|
mod_alt_l = 0;
|
|
}
|
|
else if (m_key == MODIFIERKEY_RIGHT_ALT) {
|
|
mod_alt_r = 0;
|
|
}
|
|
else if (m_key == MODIFIERKEY_GUI) {
|
|
mod_gui = 0;
|
|
}
|
|
}
|
|
//
|
|
// Function to send the modifier keys over usb
|
|
void send_mod() {
|
|
Keyboard.set_modifier(mod_shift_l | mod_shift_r | mod_ctrl_l | mod_ctrl_r | mod_alt_l | mod_alt_r | mod_gui);
|
|
Keyboard.send_now(); // sends all modifier values including the one that just changed (and all normal slots)
|
|
}
|
|
//
|
|
// Function to send the normal keys in the 6 slots over usb
|
|
void send_normals() {
|
|
Keyboard.set_key1(slot1); // load each slot into the cooresponding key number
|
|
Keyboard.set_key2(slot2);
|
|
Keyboard.set_key3(slot3);
|
|
Keyboard.set_key4(slot4);
|
|
Keyboard.set_key5(slot5);
|
|
Keyboard.set_key6(slot6);
|
|
Keyboard.send_now(); // sends all slots including the one that just changed (and all modifier values)
|
|
}
|
|
//
|
|
// *****************Functions for Touchpad***************************
|
|
//
|
|
// Function to send the touchpad a byte of data (command)
|
|
//
|
|
void tp_write(char send_data)
|
|
{
|
|
unsigned int timeout = 200; // break out of loop if watchdog over this value in msec
|
|
elapsedMillis watchdog; // zero the watchdog timer clock
|
|
char odd_parity = 0; // clear parity bit count
|
|
// Enable the PS/2 bus by floating the clock and data
|
|
go_pu(TP_CLK); //
|
|
go_pu(TP_DATA); //
|
|
delayMicroseconds(250); // wait before requesting the bus
|
|
go_0(TP_CLK); // Send the Clock line low to request to transmit data
|
|
delayMicroseconds(100); // wait for 100 microseconds per bus spec
|
|
go_0(TP_DATA); // Send the Data line low (the start bit)
|
|
delayMicroseconds(1); //
|
|
go_pu(TP_CLK); // Release the Clock line so it is pulled high
|
|
delayMicroseconds(1); // give some time to let the clock line go high
|
|
while (digitalRead(TP_CLK) == HIGH) { // loop until the clock goes low
|
|
if (watchdog >= timeout) { //check for infinite loop because tp did not respond
|
|
touchpad_error = HIGH;
|
|
break; // break out of infinite loop
|
|
}
|
|
}
|
|
// send the 8 bits of send_data
|
|
for (int j=0; j<8; j++) {
|
|
if (send_data & 1) { //check if lsb is set
|
|
go_pu(TP_DATA); // send a 1 to TP
|
|
odd_parity = odd_parity + 1; // keep running total of 1's sent
|
|
}
|
|
else {
|
|
go_0(TP_DATA); // send a 0 to TP
|
|
}
|
|
delayMicroseconds(1); // delay to let the clock settle out
|
|
while (digitalRead(TP_CLK) == LOW) { // loop until the clock goes high
|
|
if (watchdog >= timeout) { //check for infinite loop
|
|
touchpad_error = HIGH;
|
|
break; // break out of infinite loop
|
|
}
|
|
}
|
|
delayMicroseconds(1); // delay to let the clock settle out
|
|
while (digitalRead(TP_CLK) == HIGH) { // loop until the clock goes low
|
|
if (watchdog >= timeout) { //check for infinite loop
|
|
touchpad_error = HIGH;
|
|
break; // break out of infinite loop
|
|
}
|
|
}
|
|
send_data = send_data >> 1; // shift data right by 1 to prepare for next loop
|
|
}
|
|
// send the parity bit
|
|
if (odd_parity & 1) { //check if lsb of parity is set
|
|
go_0(TP_DATA); // already odd so send a 0 to TP
|
|
}
|
|
else {
|
|
go_pu(TP_DATA); // send a 1 to TP to make parity odd
|
|
}
|
|
delayMicroseconds(1); // delay to let the clock settle out
|
|
while (digitalRead(TP_CLK) == LOW) { // loop until the clock goes high
|
|
if (watchdog >= timeout) { //check for infinite loop
|
|
touchpad_error = HIGH;
|
|
break; // break out of infinite loop
|
|
}
|
|
}
|
|
delayMicroseconds(1); // delay to let the clock settle out
|
|
while (digitalRead(TP_CLK) == HIGH) { // loop until the clock goes low
|
|
if (watchdog >= timeout) { //check for infinite loop
|
|
touchpad_error = HIGH;
|
|
break; // break out of infinite loop
|
|
}
|
|
}
|
|
go_pu(TP_DATA); // Release the Data line so it goes high as the stop bit
|
|
delayMicroseconds(80); // testing shows delay at least 40us
|
|
while (digitalRead(TP_CLK) == HIGH) { // loop until the clock goes low
|
|
if (watchdog >= timeout) { //check for infinite loop
|
|
touchpad_error = HIGH;
|
|
break; // break out of infinite loop
|
|
}
|
|
}
|
|
delayMicroseconds(1); // wait to let the data settle
|
|
if (digitalRead(TP_DATA)) { // Ack bit s/b low if good transfer
|
|
}
|
|
while ((digitalRead(TP_CLK) == LOW) || (digitalRead(TP_DATA) == LOW)) { // loop if clock or data are low
|
|
if (watchdog >= timeout) { //check for infinite loop
|
|
touchpad_error = HIGH;
|
|
break; // break out of infinite loop
|
|
}
|
|
}
|
|
// Inhibit the bus so the tp only talks when the Teensy is listening
|
|
go_0(TP_CLK);
|
|
}
|
|
//
|
|
// Function to get a byte of data from the touchpad
|
|
//
|
|
char tp_read(void)
|
|
{
|
|
unsigned int timeout = 200; // break out of loop if over this value in msec
|
|
elapsedMillis watchdog; // zero the watchdog timer clock
|
|
char rcv_data = 0; // initialize to zero
|
|
char mask = 1; // shift a 1 across the 8 bits to select where to load the data
|
|
char rcv_parity = 0; // count the ones received
|
|
go_pu(TP_CLK); // release the clock
|
|
go_pu(TP_DATA); // release the data
|
|
delayMicroseconds(5); // delay to let clock go high
|
|
while (digitalRead(TP_CLK) == HIGH) { // loop until the clock goes low
|
|
if (watchdog >= timeout) { //check for infinite loop
|
|
touchpad_error = HIGH;
|
|
break; // break out of infinite loop
|
|
}
|
|
}
|
|
if (digitalRead(TP_DATA)) { // Start bit s/b low from tp
|
|
// start bit not correct - put error handler here if desired
|
|
}
|
|
delayMicroseconds(1); // delay to let the clock settle out
|
|
while (digitalRead(TP_CLK) == LOW) { // loop until the clock goes high
|
|
if (watchdog >= timeout) { //check for infinite loop
|
|
touchpad_error = HIGH;
|
|
break; // break out of infinite loop
|
|
}
|
|
}
|
|
for (int k=0; k<8; k++) {
|
|
delayMicroseconds(1); // delay to let the clock settle out
|
|
while (digitalRead(TP_CLK) == HIGH) { // loop until the clock goes low
|
|
if (watchdog >= timeout) { //check for infinite loop
|
|
touchpad_error = HIGH;
|
|
break; // break out of infinite loop
|
|
}
|
|
}
|
|
if (digitalRead(TP_DATA)) { // check if data is high
|
|
rcv_data = rcv_data | mask; // set the appropriate bit in the rcv data
|
|
rcv_parity++; // increment the parity bit counter
|
|
}
|
|
mask = mask << 1;
|
|
delayMicroseconds(1); // delay to let the clock settle out
|
|
while (digitalRead(TP_CLK) == LOW) { // loop until the clock goes high
|
|
if (watchdog >= timeout) { //check for infinite loop
|
|
touchpad_error = HIGH;
|
|
break; // break out of infinite loop
|
|
}
|
|
}
|
|
}
|
|
// receive parity
|
|
delayMicroseconds(1); // delay to let the clock settle out
|
|
while (digitalRead(TP_CLK) == HIGH) { // loop until the clock goes low
|
|
if (watchdog >= timeout) { //check for infinite loop
|
|
touchpad_error = HIGH;
|
|
break; // break out of infinite loop
|
|
}
|
|
}
|
|
if (digitalRead(TP_DATA)) { // check if received parity is high
|
|
rcv_parity++; // increment the parity bit counter
|
|
}
|
|
rcv_parity = rcv_parity & 1; // mask off all bits except the lsb
|
|
if (rcv_parity == 0) { // check for bad (even) parity
|
|
touchpad_error = HIGH;
|
|
}
|
|
delayMicroseconds(1); // delay to let the clock settle out
|
|
while (digitalRead(TP_CLK) == LOW) { // loop until the clock goes high
|
|
if (watchdog >= timeout) { //check for infinite loop
|
|
touchpad_error = HIGH;
|
|
break; // break out of infinite loop
|
|
}
|
|
}
|
|
// stop bit
|
|
delayMicroseconds(1); // delay to let the clock settle out
|
|
while (digitalRead(TP_CLK) == HIGH) { // loop until the clock goes low
|
|
if (watchdog >= timeout) { //check for infinite loop
|
|
touchpad_error = HIGH;
|
|
break; // break out of infinite loop
|
|
}
|
|
}
|
|
if (digitalRead(TP_DATA) == LOW) { // check if stop bit is bad (low)
|
|
// send bad stop bit to future error handler
|
|
}
|
|
delayMicroseconds(1); // delay to let the clock settle out
|
|
while (digitalRead(TP_CLK) == LOW) { // loop until the clock goes high
|
|
if (watchdog >= timeout) { //check for infinite loop
|
|
touchpad_error = HIGH;
|
|
break; // break out of infinite loop
|
|
}
|
|
}
|
|
// Inhibit the bus so the tp only talks when the Teensy is listening
|
|
go_0(TP_CLK);
|
|
return rcv_data; // pass the received data back
|
|
}
|
|
//
|
|
// Function to decode 3 bytes of data from the touchpad = status, X Delta, Y Delta
|
|
//
|
|
char tp_packet(void)
|
|
{
|
|
// ******************************Receive Byte 0 = Status***********************
|
|
char rcv_data = 0; // initialize to zero
|
|
char mask = 1; // shift a 1 across the 8 bits to select where to load the data
|
|
char rcv_parity = 0; // count the ones received
|
|
//
|
|
unsigned int time_leftover = 24; // breakout of tp loop if timer is over this value in msec
|
|
elapsedMillis tp_timer; // zero the tp timer clock
|
|
//
|
|
go_pu(TP_CLK); // release the clock
|
|
go_pu(TP_DATA); // release the data
|
|
delayMicroseconds(5); // delay to let clock go high
|
|
while (digitalRead(TP_CLK) == HIGH) { // loop until the clock goes low
|
|
if (tp_timer >= time_leftover) { //check if ready for next keyboard scan due to no tp activity
|
|
go_0(TP_CLK); // Inhibit the bus so the tp won't try to send data
|
|
return 1; // go back to main routine with a 1 signifying no tp data was received
|
|
}
|
|
}
|
|
if (digitalRead(TP_DATA)) { // Start bit s/b low from tp
|
|
// start bit not correct - put error handler here if desired
|
|
}
|
|
delayMicroseconds(1); // delay to let the clock settle out
|
|
while (digitalRead(TP_CLK) == LOW) { // loop until the clock goes high
|
|
}
|
|
for (int k=0; k<8; k++) {
|
|
delayMicroseconds(1); // delay to let the clock settle out
|
|
while (digitalRead(TP_CLK) == HIGH) { // loop until the clock goes low
|
|
}
|
|
if (digitalRead(TP_DATA)) { // check if data is high
|
|
rcv_data = rcv_data | mask; // set the appropriate bit in the rcv data
|
|
rcv_parity++; // increment the parity bit counter
|
|
}
|
|
mask = mask << 1;
|
|
delayMicroseconds(1); // delay to let the clock settle out
|
|
while (digitalRead(TP_CLK) == LOW) { // loop until the clock goes high
|
|
}
|
|
}
|
|
// receive parity
|
|
delayMicroseconds(1); // delay to let the clock settle out
|
|
while (digitalRead(TP_CLK) == HIGH) { // loop until the clock goes low
|
|
}
|
|
if (digitalRead(TP_DATA)) { // check if received parity is high
|
|
rcv_parity++; // increment the parity bit counter
|
|
}
|
|
rcv_parity = rcv_parity & 1; // mask off all bits except the lsb
|
|
if (rcv_parity == 0) { // check for bad (even) parity
|
|
// parity bit not correct - put error handler here if desired
|
|
}
|
|
delayMicroseconds(1); // delay to let the clock settle out
|
|
while (digitalRead(TP_CLK) == LOW) { // loop until the clock goes high
|
|
}
|
|
// stop bit
|
|
delayMicroseconds(1); // delay to let the clock settle out
|
|
while (digitalRead(TP_CLK) == HIGH) { // loop until the clock goes low
|
|
}
|
|
if (digitalRead(TP_DATA) == LOW) { // check if stop bit is bad (low)
|
|
// stop bit not correct - put error handler here if desired
|
|
}
|
|
delayMicroseconds(1); // delay to let the clock settle out
|
|
while (digitalRead(TP_CLK) == LOW) { // loop until the clock goes high
|
|
}
|
|
mstat = rcv_data; // save data result in status byte
|
|
// ******************************Receive Byte 1 = Delta X**************************
|
|
rcv_data = 0; // initialize to zero
|
|
mask = 1; // shift a 1 across the 8 bits to select where to load the data
|
|
rcv_parity = 0; // count the ones received
|
|
delayMicroseconds(5); // delay to let the clock stop ringing
|
|
while (digitalRead(TP_CLK) == HIGH) { // loop until the clock goes low
|
|
}
|
|
if (digitalRead(TP_DATA)) { // Start bit s/b low from tp
|
|
// start bit not correct - put error handler here if desired
|
|
}
|
|
delayMicroseconds(1); // delay to let the clock settle out
|
|
while (digitalRead(TP_CLK) == LOW) { // loop until the clock goes high
|
|
}
|
|
for (int k=0; k<8; k++) {
|
|
delayMicroseconds(1); // delay to let the clock settle out
|
|
while (digitalRead(TP_CLK) == HIGH) { // loop until the clock goes low
|
|
}
|
|
if (digitalRead(TP_DATA)) { // check if data is high
|
|
rcv_data = rcv_data | mask; // set the appropriate bit in the rcv data
|
|
rcv_parity++; // increment the parity bit counter
|
|
}
|
|
mask = mask << 1;
|
|
delayMicroseconds(1); // delay to let the clock settle out
|
|
while (digitalRead(TP_CLK) == LOW) { // loop until the clock goes high
|
|
}
|
|
}
|
|
// receive parity
|
|
delayMicroseconds(1); // delay to let the clock settle out
|
|
while (digitalRead(TP_CLK) == HIGH) { // loop until the clock goes low
|
|
}
|
|
if (digitalRead(TP_DATA)) { // check if received parity is high
|
|
rcv_parity++; // increment the parity bit counter
|
|
}
|
|
rcv_parity = rcv_parity & 1; // mask off all bits except the lsb
|
|
if (rcv_parity == 0) { // check for bad (even) parity
|
|
// parity bit not correct - put error handler here if desired
|
|
}
|
|
delayMicroseconds(1); // delay to let the clock settle out
|
|
while (digitalRead(TP_CLK) == LOW) { // loop until the clock goes high
|
|
}
|
|
// stop bit
|
|
delayMicroseconds(1); // delay to let the clock settle out
|
|
while (digitalRead(TP_CLK) == HIGH) { // loop until the clock goes low
|
|
}
|
|
if (digitalRead(TP_DATA) == LOW) { // check if stop bit is bad (low)
|
|
// stop bit not correct - put error handler here if desired
|
|
}
|
|
delayMicroseconds(1); // delay to let the clock settle out
|
|
while (digitalRead(TP_CLK) == LOW) { // loop until the clock goes high
|
|
}
|
|
mx = rcv_data; // save data result in delta x byte
|
|
// Receive Byte 1 = Delta Y
|
|
// ******************************Receive Byte 2 = Delta Y**************************
|
|
rcv_data = 0; // initialize to zero
|
|
mask = 1; // shift a 1 across the 8 bits to select where to load the data
|
|
rcv_parity = 0; // count the ones received
|
|
delayMicroseconds(5); // delay to let the clock stop ringing
|
|
while (digitalRead(TP_CLK) == HIGH) { // loop until the clock goes low
|
|
}
|
|
if (digitalRead(TP_DATA)) { // Start bit s/b low from tp
|
|
// start bit not correct - put error handler here if desired
|
|
}
|
|
delayMicroseconds(1); // delay to let the clock settle out
|
|
while (digitalRead(TP_CLK) == LOW) { // loop until the clock goes high
|
|
}
|
|
for (int k=0; k<8; k++) {
|
|
delayMicroseconds(1); // delay to let the clock settle out
|
|
while (digitalRead(TP_CLK) == HIGH) { // loop until the clock goes low
|
|
}
|
|
if (digitalRead(TP_DATA)) { // check if data is high
|
|
rcv_data = rcv_data | mask; // set the appropriate bit in the rcv data
|
|
rcv_parity++; // increment the parity bit counter
|
|
}
|
|
mask = mask << 1;
|
|
delayMicroseconds(1); // delay to let the clock settle out
|
|
while (digitalRead(TP_CLK) == LOW) { // loop until the clock goes high
|
|
}
|
|
}
|
|
// receive parity
|
|
delayMicroseconds(1); // delay to let the clock settle out
|
|
while (digitalRead(TP_CLK) == HIGH) { // loop until the clock goes low
|
|
}
|
|
if (digitalRead(TP_DATA)) { // check if received parity is high
|
|
rcv_parity++; // increment the parity bit counter
|
|
}
|
|
rcv_parity = rcv_parity & 1; // mask off all bits except the lsb
|
|
if (rcv_parity == 0) { // check for bad (even) parity
|
|
// parity bit not correct - put error handler here if desired
|
|
}
|
|
delayMicroseconds(1); // delay to let the clock settle out
|
|
while (digitalRead(TP_CLK) == LOW) { // loop until the clock goes high
|
|
}
|
|
// stop bit
|
|
delayMicroseconds(1); // delay to let the clock settle out
|
|
while (digitalRead(TP_CLK) == HIGH) { // loop until the clock goes low
|
|
}
|
|
if (digitalRead(TP_DATA) == LOW) { // check if stop bit is bad (low)
|
|
// stop bit not correct - put error handler here if desired
|
|
}
|
|
delayMicroseconds(1); // delay to let the clock settle out
|
|
while (digitalRead(TP_CLK) == LOW) { // loop until the clock goes high
|
|
}
|
|
my = rcv_data; // save data result in delta y byte
|
|
//
|
|
// Inhibit the bus so the tp only talks when we're listening
|
|
go_0(TP_CLK);
|
|
|
|
return 0;
|
|
}
|
|
//
|
|
void touchpad_init()
|
|
{
|
|
touchpad_error = LOW; // start with no error
|
|
go_pu(TP_CLK); // float the clock and data to touchpad
|
|
go_pu(TP_DATA);
|
|
// Sending reset command to touchpad
|
|
tp_write(0xff);
|
|
if (tp_read() != 0xfa) { // verify correct ack byte
|
|
touchpad_error = HIGH;
|
|
}
|
|
delay(1000); // wait 1 second so tp can run its self diagnostic
|
|
// verify proper response from tp
|
|
if (tp_read() != 0xaa) { // verify basic assurance test passed
|
|
touchpad_error = HIGH;
|
|
}
|
|
if (tp_read() != 0x00) { // verify basic assurance test passed
|
|
touchpad_error = HIGH;
|
|
}
|
|
// Send touchpad disable code so that the mode byte can be loaded next
|
|
tp_write(0xf5); // tp disable
|
|
if (tp_read() != 0xfa) { // verify correct ack byte
|
|
touchpad_error = HIGH;
|
|
}
|
|
// Load Mode Byte with 00 using the following special sequence from page 38 of Synaptics Interfaceing Guide.
|
|
// Send set resolution to 0 four times followed by a set sample rate to 0x14
|
|
// The resolution and sample rate are not actually changed but instead it loads the mode byte.
|
|
// #1 set resolution
|
|
tp_write(0xe8); // set resolution (actually part of setting mode byte)
|
|
if (tp_read() != 0xfa) { // verify correct ack byte
|
|
touchpad_error = HIGH;
|
|
}
|
|
tp_write(0x00); // to zero
|
|
if (tp_read() != 0xfa) { // verify correct ack byte
|
|
touchpad_error = HIGH;
|
|
}
|
|
// #2 set resolution (actually part of setting mode byte)
|
|
tp_write(0xe8); // set resolution
|
|
if (tp_read() != 0xfa) { // verify correct ack byte
|
|
touchpad_error = HIGH;
|
|
}
|
|
tp_write(0x00); // to zero
|
|
if (tp_read() != 0xfa) { // verify correct ack byte
|
|
touchpad_error = HIGH;
|
|
}
|
|
// #3 set resolution
|
|
tp_write(0xe8); // set resolution
|
|
if (tp_read() != 0xfa) { // verify correct ack byte
|
|
touchpad_error = HIGH;
|
|
}
|
|
tp_write(0x00); // to zero
|
|
if (tp_read() != 0xfa) { // verify correct ack byte
|
|
touchpad_error = HIGH;
|
|
}
|
|
// #4 set resolution (actually part of setting mode byte)
|
|
tp_write(0xe8); // set resolution
|
|
if (tp_read() != 0xfa) { // verify correct ack byte
|
|
touchpad_error = HIGH;
|
|
}
|
|
tp_write(0x00); // to zero
|
|
if (tp_read() != 0xfa) { // verify correct ack byte
|
|
touchpad_error = HIGH;
|
|
}
|
|
// Set sample rate (actually part of setting mode byte)
|
|
tp_write(0xf3); // set sample rate
|
|
if (tp_read() != 0xfa) { // verify correct ack byte
|
|
touchpad_error = HIGH;
|
|
}
|
|
tp_write(0x14); // to 14 hex
|
|
if (tp_read() != 0xfa) { // verify correct ack byte
|
|
touchpad_error = HIGH;
|
|
}
|
|
// This completes the mode byte load
|
|
// set the resolution for real
|
|
tp_write(0xe8); // Sending resolution command
|
|
if (tp_read() != 0xfa) { // verify correct ack byte
|
|
touchpad_error = HIGH;
|
|
}
|
|
tp_write(0x03); // value of 0x03 = 8 counts/mm resolution (default is 4 counts/mm)
|
|
if (tp_read() != 0xfa) { // verify correct ack byte
|
|
touchpad_error = HIGH;
|
|
}
|
|
// set the sample rate for real
|
|
tp_write(0xf3); // Sending sample rate command
|
|
if (tp_read() != 0xfa) { // verify correct ack byte
|
|
touchpad_error = HIGH;
|
|
}
|
|
tp_write(0x28); // 0x28 = 40 samples per second, the default value used for Synaptics TP
|
|
if (tp_read() != 0xfa) { // verify correct ack byte
|
|
touchpad_error = HIGH;
|
|
}
|
|
// Load stream mode command so tp will send data whenever it's available
|
|
tp_write(0xea); // stream mode
|
|
if (tp_read() != 0xfa) { // verify correct ack byte
|
|
touchpad_error = HIGH;
|
|
}
|
|
// Send touchpad enable code
|
|
tp_write(0xf4); // tp enable
|
|
if (tp_read() != 0xfa) { // verify correct ack byte
|
|
touchpad_error = HIGH;
|
|
}
|
|
}
|
|
//
|
|
//----------------------------------Setup before main loop-------------------------------------------
|
|
//
|
|
void setup() {
|
|
for (int a = 0; a < cols_max; a++) { // loop thru all keyboard column pins
|
|
go_pu(Col_IO[a]); // set each column pin as an input with a pullup
|
|
}
|
|
//
|
|
for (int b = 0; b < rows_max; b++) { // loop thru all keyboard row pins
|
|
go_z(Row_IO[b]); // set each row pin as a floating output
|
|
}
|
|
touchpad_init(); // reset tp and check that self diagnostic passed. Put tp in stream mode and enable it
|
|
//
|
|
}
|
|
//
|
|
boolean Fn_pressed = HIGH; // Active low, shows when the Fn key is pressed
|
|
extern volatile uint8_t keyboard_leds; // 8 bits sent from Host to Teensy that give keyboard LED status.
|
|
// declare and initialize touchpad variables
|
|
boolean over_flow; // Active high, set if x or y movement values are bad due to overflow
|
|
boolean left_button = 0; // Active high, on/off variable for left button is set if bit 0 of mstat is set
|
|
boolean right_button = 0; // Active high, on/off variable for right button is set if bit 1 of mstat is set
|
|
boolean old_left_button = 0; // Active high, on/off variable for left button status from the previous polling cycle
|
|
boolean old_right_button = 0; // Active high, on/off variable for right button status from the previous polling cycle
|
|
boolean button_change = 0; // Active high, shows when a touchpad left or right button has changed since the last polling cycle
|
|
//
|
|
//---------------------------------Main Loop---------------------------------------------
|
|
//
|
|
void loop() {
|
|
// Scan keyboard matrix with an outer loop that drives each row low and an inner loop that reads every column (with pull ups).
|
|
// The routine looks at each key's present state (by reading the column input pin) and also the previous state from the last scan
|
|
// that was 30msec ago. The status of a key that was just pressed or just released is sent over USB and the state is saved in the old_key matrix.
|
|
// The keyboard keys will read as logic low if they are pressed (negative logic).
|
|
// The old_key matrix also uses negative logic (low=pressed).
|
|
//
|
|
for (int x = 0; x < rows_max; x++) { // loop thru the rows
|
|
go_0(Row_IO[x]); // Activate Row (send it low)
|
|
delayMicroseconds(10); // give the row time to go low and settle out
|
|
for (int y = 0; y < cols_max; y++) { // loop thru the columns
|
|
//
|
|
// **********Modifier keys including the Fn special case
|
|
if (modifier[x][y] != 0) { // check if modifier key exists at this location in the array (a non-zero value)
|
|
if (!digitalRead(Col_IO[y]) && (old_key[x][y])) { // Read column to see if key is low (pressed) and was previously not pressed
|
|
if (modifier[x][y] != MODIFIERKEY_FN) { // Exclude Fn modifier key because Fn is not sent to USB host
|
|
load_mod(modifier[x][y]); // function reads which modifier key is pressed and loads it into the appropriate mod_... variable
|
|
send_mod(); // function sends the state of all modifier keys over usb including the one that just got pressed
|
|
old_key[x][y] = LOW; // Save state of key as "pressed"
|
|
}
|
|
else { // keep track of Fn key being pressed
|
|
Fn_pressed = LOW; // Fn status variable is active low
|
|
old_key[x][y] = LOW; // old_key state is "pressed" (active low)
|
|
}
|
|
}
|
|
else if (digitalRead(Col_IO[y]) && (!old_key[x][y])) { //check if key is not pressed and was previously pressed
|
|
if (modifier[x][y] != MODIFIERKEY_FN) { // Exclude Fn modifier key
|
|
clear_mod(modifier[x][y]); // function reads which modifier key was released and loads 0 into the appropriate mod_... variable
|
|
send_mod(); // function sends all mod's over usb including the one that was just released
|
|
old_key[x][y] = HIGH; // Save state of key as "not pressed"
|
|
}
|
|
else { // keep track of Fn key being released
|
|
Fn_pressed = HIGH; // Fn is no longer active
|
|
old_key[x][y] = HIGH; // old_key state is "not pressed"
|
|
}
|
|
}
|
|
}
|
|
// ***********end of modifier section
|
|
//
|
|
// ***********Normal keys, num lock, and media keys in this section
|
|
else if ((normal[x][y] != 0) || (media[x][y] != 0)) { // check if normal or media key exists at this location in the array
|
|
if (!digitalRead(Col_IO[y]) && (old_key[x][y]) && (!slots_full)) { // check if key pressed and not previously pressed and slots not full
|
|
old_key[x][y] = LOW; // Save state of key as "pressed"
|
|
if (Fn_pressed) { // Fn is not pressed and normal or num lock key needs to be sent
|
|
if (keyboard_leds & 1) { // test if Num Lock is turned on
|
|
load_slot(numlock[x][y]); //update first available slot with key name from numlock matrix
|
|
send_normals(); // send all slots over USB including the key that just got pressed
|
|
}
|
|
else { // Num Lock is not turned on so send normal key
|
|
load_slot(normal[x][y]); //update first available slot with normal key name
|
|
send_normals(); // send all slots over USB including the key that just got pressed
|
|
}
|
|
}
|
|
else if (media[x][y] != 0) { // Fn is pressed so send media if a key exists in the matrix
|
|
Keyboard.press(media[x][y]); // media key is sent using keyboard.press function per PJRC instructions
|
|
delay(5); // delay 5 milliseconds before releasing to make sure it gets sent over USB
|
|
Keyboard.release(media[x][y]); // send media key release
|
|
}
|
|
}
|
|
// Key release
|
|
else if (digitalRead(Col_IO[y]) && (!old_key[x][y])) { //check if key is not pressed, but was previously pressed
|
|
old_key[x][y] = HIGH; // Save state of key as "not pressed"
|
|
if (Fn_pressed) { // only clear the slot if the Fn key is not pressed
|
|
if (keyboard_leds & 1) { // test if Num Lock is turned on
|
|
clear_slot(numlock[x][y]); //clear slot with key name from numlock matrix
|
|
send_normals(); // send all slots over USB including the key that just got released
|
|
}
|
|
else {
|
|
clear_slot(normal[x][y]); //clear the slot that contains the normal key name
|
|
send_normals(); // send all slots over USB including the key that was just released
|
|
}
|
|
}
|
|
}
|
|
}
|
|
// **************end of normal, media, and backlight section
|
|
//
|
|
} // end of column loop
|
|
go_z(Row_IO[x]); // De-activate the current Row (send it to hi-z) so the next row can be activated
|
|
} // end of row loop
|
|
//
|
|
// **********Keyboard scan complete
|
|
//
|
|
// ***********Touchpad Section
|
|
//
|
|
if (touchpad_error == LOW) { // Only proceed if the touchpad was initialized correctly and passed its self test
|
|
//
|
|
if (tp_packet() == 0x00) { // tp_packet returned zero so data was received in mstat, mx, and my variables
|
|
if (((0x80 & mstat) == 0x80) || ((0x40 & mstat) == 0x40)) { // x or y overflow bits set?
|
|
over_flow = 1; // set the overflow flag
|
|
}
|
|
// change the x data from 9 bit to 8 bit 2's complement
|
|
mx = mx & 0x7f; // mask off 8th bit
|
|
if ((0x10 & mstat) == 0x10) { // move the sign into
|
|
mx = 0x80 | mx; // the 8th bit position
|
|
}
|
|
// change the y data from 9 bit to 8 bit 2's complement and then take the 2's complement
|
|
// because y movement on ps/2 format is opposite of touchpad.move function
|
|
my = my & 0x7f; // mask off 8th bit
|
|
if ((0x20 & mstat) == 0x20) { // move the sign into
|
|
my = 0x80 | my; // the 8th bit position
|
|
}
|
|
my = (~my + 0x01); // change the sign of y data by taking the 2's complement (invert and add 1)
|
|
// zero out mx and my if over_flow is set
|
|
if (over_flow) {
|
|
mx = 0x00; // data is bad due to the overflow so zero it out
|
|
my = 0x00;
|
|
}
|
|
// send the x and y data back via usb if either one is non-zero
|
|
if ((mx != 0x00) || (my != 0x00)) {
|
|
Mouse.move(mx,my);
|
|
}
|
|
//
|
|
// read the left and right button bits in the PS/2 status byte from the touchpad
|
|
if ((0x01 & mstat) == 0x01) { // if left button is set in the status byte
|
|
left_button = 1; // set the left button variable
|
|
}
|
|
else { // otherwise clear the left button variable
|
|
left_button = 0;
|
|
}
|
|
if ((0x02 & mstat) == 0x02) { // if right button is set in the status byte
|
|
right_button = 1; // set the right button variable
|
|
}
|
|
else { // otherwise clear right button variable
|
|
right_button = 0;
|
|
}
|
|
// Determine if the left or right touchpad buttons have changed since last polling cycle using xor
|
|
button_change = (left_button ^ old_left_button) | (right_button ^ old_right_button);
|
|
// Don't send button status if there's no change since last time.
|
|
if (button_change){
|
|
Mouse.set_buttons(left_button, 0, right_button); // send left, middle, and right button status
|
|
}
|
|
old_left_button = left_button; // remember button status for next polling cycle
|
|
old_right_button = right_button;
|
|
}
|
|
}
|
|
//
|
|
// End of touchpad routine
|
|
//
|
|
// Turn on or off the LEDs for Num Lock and Caps Lock based on bits 0 and 1 from the
|
|
// keyboard_leds variable returned by the host computer over USB. Sending the I/O pin low turns on the
|
|
// LED.
|
|
//
|
|
if (keyboard_leds & 1) { // mask off all bits but D0 and test if set
|
|
go_0(NUM_LOCK_N); // turn on the Num Lock LED
|
|
}
|
|
else {
|
|
go_1(NUM_LOCK_N); // turn off the Num Lock LED
|
|
}
|
|
//
|
|
//
|
|
if (keyboard_leds & 1<<1) { // mask off all bits but D1 and test if set
|
|
go_0(CAPS_LOCK_N); // turn on the Caps Lock LED
|
|
}
|
|
else {
|
|
go_1(CAPS_LOCK_N); // turn off the Caps Lock LED
|
|
}
|
|
//
|
|
// repeat loop at 30msec scan rate
|
|
}
|