cameracv/libs/opencv/modules/dnn/misc/java/test/DnnTensorFlowTest.java

150 lines
4.8 KiB
Java
Raw Permalink Normal View History

2023-05-18 21:39:43 +03:00
package org.opencv.test.dnn;
import java.io.File;
import java.io.FileInputStream;
import java.io.IOException;
import java.util.ArrayList;
import java.util.List;
import org.opencv.core.Core;
import org.opencv.core.Mat;
import org.opencv.core.MatOfFloat;
import org.opencv.core.MatOfByte;
import org.opencv.core.Scalar;
import org.opencv.core.Size;
import org.opencv.dnn.DictValue;
import org.opencv.dnn.Dnn;
import org.opencv.dnn.Layer;
import org.opencv.dnn.Net;
import org.opencv.imgcodecs.Imgcodecs;
import org.opencv.imgproc.Imgproc;
import org.opencv.test.OpenCVTestCase;
public class DnnTensorFlowTest extends OpenCVTestCase {
private final static String ENV_OPENCV_DNN_TEST_DATA_PATH = "OPENCV_DNN_TEST_DATA_PATH";
private final static String ENV_OPENCV_TEST_DATA_PATH = "OPENCV_TEST_DATA_PATH";
String modelFileName = "";
String sourceImageFile = "";
Net net;
private static void normAssert(Mat ref, Mat test) {
final double l1 = 1e-5;
final double lInf = 1e-4;
double normL1 = Core.norm(ref, test, Core.NORM_L1) / ref.total();
double normLInf = Core.norm(ref, test, Core.NORM_INF) / ref.total();
assertTrue(normL1 < l1);
assertTrue(normLInf < lInf);
}
@Override
protected void setUp() throws Exception {
super.setUp();
String envDnnTestDataPath = System.getenv(ENV_OPENCV_DNN_TEST_DATA_PATH);
if(envDnnTestDataPath == null){
isTestCaseEnabled = false;
return;
}
File dnnTestDataPath = new File(envDnnTestDataPath);
modelFileName = new File(dnnTestDataPath, "dnn/tensorflow_inception_graph.pb").toString();
String envTestDataPath = System.getenv(ENV_OPENCV_TEST_DATA_PATH);
if(envTestDataPath == null) throw new Exception(ENV_OPENCV_TEST_DATA_PATH + " has to be defined!");
File testDataPath = new File(envTestDataPath);
File f = new File(testDataPath, "dnn/grace_hopper_227.png");
sourceImageFile = f.toString();
if(!f.exists()) throw new Exception("Test image is missing: " + sourceImageFile);
net = Dnn.readNetFromTensorflow(modelFileName);
}
public void testGetLayerTypes() {
List<String> layertypes = new ArrayList();
net.getLayerTypes(layertypes);
assertFalse("No layer types returned!", layertypes.isEmpty());
}
public void testGetLayer() {
List<String> layernames = net.getLayerNames();
assertFalse("Test net returned no layers!", layernames.isEmpty());
String testLayerName = layernames.get(0);
DictValue layerId = new DictValue(testLayerName);
assertEquals("DictValue did not return the string, which was used in constructor!", testLayerName, layerId.getStringValue());
Layer layer = net.getLayer(layerId);
assertEquals("Layer name does not match the expected value!", testLayerName, layer.get_name());
}
public void checkInceptionNet(Net net)
{
Mat image = Imgcodecs.imread(sourceImageFile);
assertNotNull("Loading image from file failed!", image);
Mat inputBlob = Dnn.blobFromImage(image, 1.0, new Size(224, 224), new Scalar(0), true, true);
assertNotNull("Converting image to blob failed!", inputBlob);
net.setInput(inputBlob, "input");
Mat result = new Mat();
try {
net.setPreferableBackend(Dnn.DNN_BACKEND_OPENCV);
result = net.forward("softmax2");
}
catch (Exception e) {
fail("DNN forward failed: " + e.getMessage());
}
assertNotNull("Net returned no result!", result);
result = result.reshape(1, 1);
Core.MinMaxLocResult minmax = Core.minMaxLoc(result);
assertEquals("Wrong prediction", (int)minmax.maxLoc.x, 866);
Mat top5RefScores = new MatOfFloat(new float[] {
0.63032645f, 0.2561979f, 0.032181446f, 0.015721032f, 0.014785315f
}).reshape(1, 1);
Core.sort(result, result, Core.SORT_DESCENDING);
normAssert(result.colRange(0, 5), top5RefScores);
}
public void testTestNetForward() {
checkInceptionNet(net);
}
public void testReadFromBuffer() {
File modelFile = new File(modelFileName);
byte[] modelBuffer = new byte[ (int)modelFile.length() ];
try {
FileInputStream fis = new FileInputStream(modelFile);
fis.read(modelBuffer);
fis.close();
} catch (IOException e) {
fail("Failed to read a model: " + e.getMessage());
}
net = Dnn.readNetFromTensorflow(new MatOfByte(modelBuffer));
checkInceptionNet(net);
}
public void testGetAvailableTargets() {
List<Integer> targets = Dnn.getAvailableTargets(Dnn.DNN_BACKEND_OPENCV);
assertTrue(targets.contains(Dnn.DNN_TARGET_CPU));
}
}