cameracv/libs/opencv/modules/imgproc/test/test_houghcircles.cpp

322 lines
12 KiB
C++
Raw Permalink Normal View History

2023-05-18 21:39:43 +03:00
/*M///////////////////////////////////////////////////////////////////////////////////////
//
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
//
// By downloading, copying, installing or using the software you agree to this license.
// If you do not agree to this license, do not download, install,
// copy or use the software.
//
//
// License Agreement
// For Open Source Computer Vision Library
//
// Copyright (C) 2000-2008, Intel Corporation, all rights reserved.
// Copyright (C) 2009, Willow Garage Inc., all rights reserved.
// Copyright (C) 2014, Itseez, Inc, all rights reserved.
// Third party copyrights are property of their respective owners.
//
// Redistribution and use in source and binary forms, with or without modification,
// are permitted provided that the following conditions are met:
//
// * Redistribution's of source code must retain the above copyright notice,
// this list of conditions and the following disclaimer.
//
// * Redistribution's in binary form must reproduce the above copyright notice,
// this list of conditions and the following disclaimer in the documentation
// and/or other materials provided with the distribution.
//
// * The name of the copyright holders may not be used to endorse or promote products
// derived from this software without specific prior written permission.
//
// This software is provided by the copyright holders and contributors "as is" and
// any express or implied warranties, including, but not limited to, the implied
// warranties of merchantability and fitness for a particular purpose are disclaimed.
// In no event shall the Intel Corporation or contributors be liable for any direct,
// indirect, incidental, special, exemplary, or consequential damages
// (including, but not limited to, procurement of substitute goods or services;
// loss of use, data, or profits; or business interruption) however caused
// and on any theory of liability, whether in contract, strict liability,
// or tort (including negligence or otherwise) arising in any way out of
// the use of this software, even if advised of the possibility of such damage.
//
//M*/
#include "test_precomp.hpp"
namespace opencv_test { namespace {
#ifndef DEBUG_IMAGES
#define DEBUG_IMAGES 0
#endif
//#define GENERATE_DATA // generate data in debug mode via CPU code path (without IPP / OpenCL and other accelerators)
using namespace cv;
using namespace std;
static string getTestCaseName(const string& picture_name, double minDist, double edgeThreshold, double accumThreshold, int minRadius, int maxRadius)
{
string results_name = cv::format("circles_%s_%.0f_%.0f_%.0f_%d_%d",
picture_name.c_str(), minDist, edgeThreshold, accumThreshold, minRadius, maxRadius);
string temp(results_name);
size_t pos = temp.find_first_of("\\/.");
while (pos != string::npos) {
temp.replace(pos, 1, "_");
pos = temp.find_first_of("\\/.");
}
return temp;
}
#if DEBUG_IMAGES
static void highlightCircles(const string& imagePath, const vector<Vec3f>& circles, const string& outputImagePath)
{
Mat imgDebug = imread(imagePath, IMREAD_COLOR);
const Scalar yellow(0, 255, 255);
for (vector<Vec3f>::const_iterator iter = circles.begin(); iter != circles.end(); ++iter)
{
const Vec3f& circle = *iter;
float x = circle[0];
float y = circle[1];
float r = max(circle[2], 2.0f);
cv::circle(imgDebug, Point(int(x), int(y)), int(r), yellow);
}
imwrite(outputImagePath, imgDebug);
}
#endif
typedef tuple<string, double, double, double, int, int> Image_MinDist_EdgeThreshold_AccumThreshold_MinRadius_MaxRadius_t;
class HoughCirclesTestFixture : public testing::TestWithParam<Image_MinDist_EdgeThreshold_AccumThreshold_MinRadius_MaxRadius_t>
{
string picture_name;
double minDist;
double edgeThreshold;
double accumThreshold;
int minRadius;
int maxRadius;
public:
HoughCirclesTestFixture()
{
picture_name = get<0>(GetParam());
minDist = get<1>(GetParam());
edgeThreshold = get<2>(GetParam());
accumThreshold = get<3>(GetParam());
minRadius = get<4>(GetParam());
maxRadius = get<5>(GetParam());
}
HoughCirclesTestFixture(const string& picture, double minD, double edge, double accum, int minR, int maxR) :
picture_name(picture), minDist(minD), edgeThreshold(edge), accumThreshold(accum), minRadius(minR), maxRadius(maxR)
{
}
template <typename CircleType>
void run_test(const char* xml_name)
{
string test_case_name = getTestCaseName(picture_name, minDist, edgeThreshold, accumThreshold, minRadius, maxRadius);
string filename = cvtest::TS::ptr()->get_data_path() + picture_name;
Mat src = imread(filename, IMREAD_GRAYSCALE);
EXPECT_FALSE(src.empty()) << "Invalid test image: " << filename;
GaussianBlur(src, src, Size(9, 9), 2, 2);
vector<CircleType> circles;
const double dp = 1.0;
HoughCircles(src, circles, CV_HOUGH_GRADIENT, dp, minDist, edgeThreshold, accumThreshold, minRadius, maxRadius);
string imgProc = string(cvtest::TS::ptr()->get_data_path()) + "imgproc/";
#if DEBUG_IMAGES
highlightCircles(filename, circles, imgProc + test_case_name + ".png");
#endif
string xml = imgProc + xml_name;
#ifdef GENERATE_DATA
{
FileStorage fs(xml, FileStorage::READ);
ASSERT_TRUE(!fs.isOpened() || fs[test_case_name].empty());
}
{
FileStorage fs(xml, FileStorage::APPEND);
EXPECT_TRUE(fs.isOpened()) << "Cannot open sanity data file: " << xml;
fs << test_case_name << circles;
}
#else
FileStorage fs(xml, FileStorage::READ);
FileNode node = fs[test_case_name];
ASSERT_FALSE(node.empty()) << "Missing test data: " << test_case_name << std::endl << "XML: " << xml;
vector<CircleType> exp_circles;
read(fs[test_case_name], exp_circles, vector<CircleType>());
fs.release();
EXPECT_EQ(exp_circles.size(), circles.size());
#endif
}
};
TEST_P(HoughCirclesTestFixture, regression)
{
run_test<Vec3f>("HoughCircles.xml");
}
TEST_P(HoughCirclesTestFixture, regression4f)
{
run_test<Vec4f>("HoughCircles4f.xml");
}
INSTANTIATE_TEST_CASE_P(ImgProc, HoughCirclesTestFixture, testing::Combine(
// picture_name:
testing::Values("imgproc/stuff.jpg"),
// minDist:
testing::Values(20),
// edgeThreshold:
testing::Values(20),
// accumThreshold:
testing::Values(30),
// minRadius:
testing::Values(20),
// maxRadius:
testing::Values(200)
));
class HoughCirclesTest : public testing::TestWithParam<HoughModes>
{
protected:
HoughModes method;
public:
HoughCirclesTest() { method = GetParam(); }
};
TEST_P(HoughCirclesTest, DefaultMaxRadius)
{
string picture_name = "imgproc/stuff.jpg";
string filename = cvtest::TS::ptr()->get_data_path() + picture_name;
Mat src = imread(filename, IMREAD_GRAYSCALE);
EXPECT_FALSE(src.empty()) << "Invalid test image: " << filename;
GaussianBlur(src, src, Size(9, 9), 2, 2);
double dp = 1.0;
double minDist = 20.0;
double edgeThreshold = 20.0;
double param2 = method == HOUGH_GRADIENT_ALT ? 0.9 : 30.;
int minRadius = method == HOUGH_GRADIENT_ALT ? 10 : 20;
int maxRadius = 0;
vector<Vec3f> circles;
vector<Vec4f> circles4f;
HoughCircles(src, circles, method, dp, minDist, edgeThreshold, param2, minRadius, maxRadius);
HoughCircles(src, circles4f, method, dp, minDist, edgeThreshold, param2, minRadius, maxRadius);
#if DEBUG_IMAGES
string imgProc = string(cvtest::TS::ptr()->get_data_path()) + "imgproc/";
highlightCircles(filename, circles, imgProc + "HoughCirclesTest_DefaultMaxRadius.png");
#endif
int maxDimension = std::max(src.rows, src.cols);
if(method == HOUGH_GRADIENT_ALT)
{
EXPECT_EQ(circles.size(), size_t(3)) << "Should find 3 circles";
}
else
{
EXPECT_GT(circles.size(), size_t(0)) << "Should find at least some circles";
}
for (size_t i = 0; i < circles.size(); ++i)
{
EXPECT_GE(circles[i][2], minRadius) << "Radius should be >= minRadius";
EXPECT_LE(circles[i][2], maxDimension) << "Radius should be <= max image dimension";
}
}
TEST_P(HoughCirclesTest, CentersOnly)
{
string picture_name = "imgproc/stuff.jpg";
string filename = cvtest::TS::ptr()->get_data_path() + picture_name;
Mat src = imread(filename, IMREAD_GRAYSCALE);
EXPECT_FALSE(src.empty()) << "Invalid test image: " << filename;
GaussianBlur(src, src, Size(9, 9), 2, 2);
double dp = 1.0;
double minDist = 20.0;
double edgeThreshold = 20.0;
double param2 = method == HOUGH_GRADIENT_ALT ? 0.9 : 30.;
int minRadius = method == HOUGH_GRADIENT_ALT ? 10 : 20;
int maxRadius = -1;
vector<Vec3f> circles;
vector<Vec4f> circles4f;
HoughCircles(src, circles, method, dp, minDist, edgeThreshold, param2, minRadius, maxRadius);
HoughCircles(src, circles4f, method, dp, minDist, edgeThreshold, param2, minRadius, maxRadius);
#if DEBUG_IMAGES
string imgProc = string(cvtest::TS::ptr()->get_data_path()) + "imgproc/";
highlightCircles(filename, circles, imgProc + "HoughCirclesTest_DefaultMaxRadius.png");
#endif
if(method == HOUGH_GRADIENT_ALT)
{
EXPECT_EQ(circles.size(), size_t(3)) << "Should find 3 circles";
}
else
{
EXPECT_GT(circles.size(), size_t(0)) << "Should find at least some circles";
}
for (size_t i = 0; i < circles.size(); ++i)
{
if( method == HOUGH_GRADIENT )
{
EXPECT_EQ(circles[i][2], 0.0f) << "Did not ask for radius";
}
EXPECT_EQ(circles[i][0], circles4f[i][0]);
EXPECT_EQ(circles[i][1], circles4f[i][1]);
EXPECT_EQ(circles[i][2], circles4f[i][2]);
}
}
TEST_P(HoughCirclesTest, ManySmallCircles)
{
string picture_name = "imgproc/beads.jpg";
string filename = cvtest::TS::ptr()->get_data_path() + picture_name;
Mat src = imread(filename, IMREAD_GRAYSCALE);
EXPECT_FALSE(src.empty()) << "Invalid test image: " << filename;
const double dp = method == HOUGH_GRADIENT_ALT ? 1.5 : 1.0;
double minDist = 10;
double edgeThreshold = 90;
double accumThreshold = 11;
double minCos2 = 0.85;
double param2 = method == HOUGH_GRADIENT_ALT ? minCos2 : accumThreshold;
int minRadius = 7;
int maxRadius = 18;
int ncircles_min = method == HOUGH_GRADIENT_ALT ? 2000 : 3000;
Mat src_smooth;
if( method == HOUGH_GRADIENT_ALT )
GaussianBlur(src, src_smooth, Size(7, 7), 1.5, 1.5);
else
src.copyTo(src_smooth);
vector<Vec3f> circles;
vector<Vec4f> circles4f;
HoughCircles(src_smooth, circles, method, dp, minDist, edgeThreshold, param2, minRadius, maxRadius);
HoughCircles(src_smooth, circles4f, method, dp, minDist, edgeThreshold, param2, minRadius, maxRadius);
#if DEBUG_IMAGES
string imgProc = string(cvtest::TS::ptr()->get_data_path()) + "imgproc/";
string test_case_name = getTestCaseName(picture_name, minDist, edgeThreshold, accumThreshold, minRadius, maxRadius);
highlightCircles(filename, circles, imgProc + test_case_name + ".png");
#endif
EXPECT_GT(circles.size(), size_t(ncircles_min)) << "Should find a lot of circles";
EXPECT_EQ(circles.size(), circles4f.size());
}
INSTANTIATE_TEST_CASE_P(HoughGradient, HoughCirclesTest, testing::Values(HOUGH_GRADIENT));
INSTANTIATE_TEST_CASE_P(HoughGradientAlt, HoughCirclesTest, testing::Values(HOUGH_GRADIENT_ALT));
}} // namespace