97 lines
2.8 KiB
Python
97 lines
2.8 KiB
Python
|
#!/usr/bin/env python
|
||
|
|
||
|
'''
|
||
|
Camshift tracker
|
||
|
================
|
||
|
|
||
|
This is a demo that shows mean-shift based tracking
|
||
|
You select a color objects such as your face and it tracks it.
|
||
|
This reads from video camera (0 by default, or the camera number the user enters)
|
||
|
|
||
|
http://www.robinhewitt.com/research/track/camshift.html
|
||
|
|
||
|
'''
|
||
|
|
||
|
# Python 2/3 compatibility
|
||
|
from __future__ import print_function
|
||
|
import sys
|
||
|
PY3 = sys.version_info[0] == 3
|
||
|
|
||
|
if PY3:
|
||
|
xrange = range
|
||
|
|
||
|
import numpy as np
|
||
|
import cv2 as cv
|
||
|
from tst_scene_render import TestSceneRender
|
||
|
|
||
|
from tests_common import NewOpenCVTests, intersectionRate
|
||
|
|
||
|
class camshift_test(NewOpenCVTests):
|
||
|
|
||
|
framesNum = 300
|
||
|
frame = None
|
||
|
selection = None
|
||
|
drag_start = None
|
||
|
show_backproj = False
|
||
|
track_window = None
|
||
|
render = None
|
||
|
errors = 0
|
||
|
|
||
|
def prepareRender(self):
|
||
|
|
||
|
self.render = TestSceneRender(self.get_sample('samples/data/pca_test1.jpg'), deformation = True)
|
||
|
|
||
|
def runTracker(self):
|
||
|
|
||
|
framesCounter = 0
|
||
|
self.selection = True
|
||
|
|
||
|
xmin, ymin, xmax, ymax = self.render.getCurrentRect()
|
||
|
|
||
|
self.track_window = (xmin, ymin, xmax - xmin, ymax - ymin)
|
||
|
|
||
|
while True:
|
||
|
framesCounter += 1
|
||
|
self.frame = self.render.getNextFrame()
|
||
|
hsv = cv.cvtColor(self.frame, cv.COLOR_BGR2HSV)
|
||
|
mask = cv.inRange(hsv, np.array((0., 60., 32.)), np.array((180., 255., 255.)))
|
||
|
|
||
|
if self.selection:
|
||
|
x0, y0, x1, y1 = self.render.getCurrentRect() + 50
|
||
|
x0 -= 100
|
||
|
y0 -= 100
|
||
|
|
||
|
hsv_roi = hsv[y0:y1, x0:x1]
|
||
|
mask_roi = mask[y0:y1, x0:x1]
|
||
|
hist = cv.calcHist( [hsv_roi], [0], mask_roi, [16], [0, 180] )
|
||
|
cv.normalize(hist, hist, 0, 255, cv.NORM_MINMAX)
|
||
|
self.hist = hist.reshape(-1)
|
||
|
self.selection = False
|
||
|
|
||
|
if self.track_window and self.track_window[2] > 0 and self.track_window[3] > 0:
|
||
|
self.selection = None
|
||
|
prob = cv.calcBackProject([hsv], [0], self.hist, [0, 180], 1)
|
||
|
prob &= mask
|
||
|
term_crit = ( cv.TERM_CRITERIA_EPS | cv.TERM_CRITERIA_COUNT, 10, 1 )
|
||
|
_track_box, self.track_window = cv.CamShift(prob, self.track_window, term_crit)
|
||
|
|
||
|
trackingRect = np.array(self.track_window)
|
||
|
trackingRect[2] += trackingRect[0]
|
||
|
trackingRect[3] += trackingRect[1]
|
||
|
|
||
|
if intersectionRate(self.render.getCurrentRect(), trackingRect) < 0.4:
|
||
|
self.errors += 1
|
||
|
|
||
|
if framesCounter > self.framesNum:
|
||
|
break
|
||
|
|
||
|
self.assertLess(float(self.errors) / self.framesNum, 0.4)
|
||
|
|
||
|
def test_camshift(self):
|
||
|
self.prepareRender()
|
||
|
self.runTracker()
|
||
|
|
||
|
|
||
|
if __name__ == '__main__':
|
||
|
NewOpenCVTests.bootstrap()
|