cameracv/libs/opencv/samples/cpp/detect_mser.cpp

538 lines
14 KiB
C++
Raw Permalink Normal View History

2023-05-18 21:39:43 +03:00
#include <opencv2/core.hpp>
#include <opencv2/imgproc.hpp>
#include <opencv2/highgui.hpp>
#include <opencv2/features2d.hpp>
#include "opencv2/core/opengl.hpp"
#include <vector>
#include <map>
#include <iostream>
#include <iomanip>
#include <limits>
#include <stdint.h>
#ifdef HAVE_OPENGL
#ifdef _WIN32
#define WIN32_LEAN_AND_MEAN 1
#define NOMINMAX 1
#include <windows.h>
#endif
#if defined(_WIN64)
#include <windows.h>
#endif
#if defined(__APPLE__)
#include <OpenGL/gl.h>
#include <OpenGL/glu.h>
#else
#include <GL/gl.h>
#include <GL/glu.h>
#endif
#endif
using namespace std;
using namespace cv;
static void help(char** argv)
{
cout << "\nThis program demonstrates how to use MSER to detect extremal regions\n"
"Usage:\n"
<< argv[0] << " <image1(without parameter a synthetic image is used as default)>\n"
"Press esc key when image window is active to change descriptor parameter\n"
"Press 2, 8, 4, 6, +, -, or 5 keys in openGL windows to change view or use mouse\n";
}
struct MSERParams
{
MSERParams(int _delta = 5, int _min_area = 60, int _max_area = 14400,
double _max_variation = 0.25, double _min_diversity = .2,
int _max_evolution = 200, double _area_threshold = 1.01,
double _min_margin = 0.003, int _edge_blur_size = 5)
{
delta = _delta;
minArea = _min_area;
maxArea = _max_area;
maxVariation = _max_variation;
minDiversity = _min_diversity;
maxEvolution = _max_evolution;
areaThreshold = _area_threshold;
minMargin = _min_margin;
edgeBlurSize = _edge_blur_size;
pass2Only = false;
}
int delta;
int minArea;
int maxArea;
double maxVariation;
double minDiversity;
bool pass2Only;
int maxEvolution;
double areaThreshold;
double minMargin;
int edgeBlurSize;
};
static String Legende(const MSERParams &pAct)
{
ostringstream ss;
ss << "Area[" << pAct.minArea << "," << pAct.maxArea << "] ";
ss << "del. [" << pAct.delta << "] ";
ss << "var. [" << pAct.maxVariation << "] ";
ss << "div. [" << (int)pAct.minDiversity << "] ";
ss << "pas. [" << (int)pAct.pass2Only << "] ";
ss << "RGb->evo. [" << pAct.maxEvolution << "] ";
ss << "are. [" << (int)pAct.areaThreshold << "] ";
ss << "mar. [" << (int)pAct.minMargin << "] ";
ss << "siz. [" << pAct.edgeBlurSize << "]";
return ss.str();
}
#ifdef HAVE_OPENGL
const int win_width = 800;
const int win_height = 640;
#endif
bool rotateEnable=true;
bool keyPressed=false;
Vec4f rotAxis(1,0,1,0);
Vec3f zoom(1,0,0);
float obsX = 0.f;
float obsY = 0.f;
float obsZ = -10.f;
float tx = 0.f;
float ty = 0.f;
float thetaObs = -1.570f;
float phiObs = 1.570f;
float rObs = 10.f;
int prevX = -1;
int prevY = -1;
int prevTheta = -1000;
int prevPhi = -1000;
#ifdef HAVE_OPENGL
struct DrawData
{
ogl::Arrays arr;
ogl::Texture2D tex;
ogl::Buffer indices;
};
static void draw(void* userdata)
{
DrawData* data = static_cast<DrawData*>(userdata);
glMatrixMode(GL_MODELVIEW);
glLoadIdentity();
gluLookAt(obsX, obsY, obsZ, 0, 0, .0, .0, 10.0, 0.0);
glTranslatef(tx,ty,0);
keyPressed = false;
ogl::render(data->arr, data->indices, ogl::TRIANGLES);
}
static void onMouse(int event, int x, int y, int flags, void*)
{
if (event == EVENT_RBUTTONDOWN)
{
prevX = x;
prevY = y;
}
if (event == EVENT_RBUTTONUP)
{
prevX = -1;
prevY = -1;
}
if (prevX != -1)
{
tx += float((x - prevX) / 100.0);
ty -= float((y - prevY) / 100.0);
prevX = x;
prevY = y;
}
if (event == EVENT_LBUTTONDOWN)
{
prevTheta = x;
prevPhi = y;
}
if (event == EVENT_LBUTTONUP)
{
prevTheta = -1000;
prevPhi = -1000;
}
if (prevTheta != -1000)
{
if (x - prevTheta<0)
{
thetaObs += 0.02f;
}
else if (x - prevTheta>0)
{
thetaObs -= 0.02f;
}
if (y - prevPhi<0)
{
phiObs -= 0.02f;
}
else if (y - prevPhi>0)
{
phiObs += 0.02f;
}
prevTheta = x;
prevPhi = y;
}
if (event==EVENT_MOUSEWHEEL)
{
if (getMouseWheelDelta(flags)>0)
rObs += 0.1f;
else
rObs -= 0.1f;
}
float pi = static_cast<float>(CV_PI);
if (thetaObs>pi)
{
thetaObs = -2 * pi + thetaObs;
}
if (thetaObs<-pi)
{
thetaObs = 2 * pi + thetaObs;
}
if (phiObs>pi / 2)
{
phiObs = pi / 2 - 0.0001f;
}
if (phiObs<-pi / 2)
{
phiObs = -pi / 2 + 0.00001f;
}
if (rObs<0)
{
rObs = 0;
}
}
#endif
#ifdef HAVE_OPENGL
static void DrawOpenGLMSER(Mat img, Mat result)
{
Mat imgGray;
if (img.type() != CV_8UC1)
cvtColor(img, imgGray, COLOR_BGR2GRAY);
else
imgGray = img;
namedWindow("OpenGL", WINDOW_OPENGL);
setMouseCallback("OpenGL", onMouse, NULL);
Mat_<Vec3f> vertex(1, img.cols*img.rows);
Mat_<Vec2f> texCoords(1, img.cols*img.rows);
for (int i = 0, nbPix = 0; i<img.rows; i++)
{
for (int j = 0; j<img.cols; j++, nbPix++)
{
float x = (j) / (float)img.cols;
float y = (i) / (float)img.rows;
vertex.at< Vec3f >(0, nbPix) = Vec3f(float(2 * (x - 0.5)), float(2 * (0.5 - y)), float(imgGray.at<uchar>(i, j) / 512.0));
texCoords.at< Vec2f>(0, nbPix) = Vec2f(x, y);
}
}
Mat_<int> indices(1, (img.rows - 1)*(6 * img.cols));
for (int i = 1, nbPix = 0; i<img.rows; i++)
{
for (int j = 1; j<img.cols; j++)
{
int c = i*img.cols + j;
indices.at<int>(0, nbPix++) = c;
indices.at<int>(0, nbPix++) = c - 1;
indices.at<int>(0, nbPix++) = c - img.cols - 1;
indices.at<int>(0, nbPix++) = c - img.cols - 1;
indices.at<int>(0, nbPix++) = c - img.cols;
indices.at<int>(0, nbPix++) = c;
}
}
DrawData *data = new DrawData;
data->arr.setVertexArray(vertex);
data->arr.setTexCoordArray(texCoords);
data->indices.copyFrom(indices);
data->tex.copyFrom(result);
glMatrixMode(GL_PROJECTION);
glLoadIdentity();
gluPerspective(45.0, (double)win_width / win_height, 0.0, 1000.0);
glMatrixMode(GL_MODELVIEW);
glLoadIdentity();
glEnable(GL_TEXTURE_2D);
data->tex.bind();
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, GL_LINEAR);
glTexEnvi(GL_TEXTURE_ENV, GL_TEXTURE_ENV_MODE, GL_REPLACE);
glDisable(GL_CULL_FACE);
setOpenGlDrawCallback("OpenGL", draw, data);
for (;;)
{
updateWindow("OpenGL");
char key = (char)waitKey(40);
if (key == 27)
break;
if (key == 0x20)
rotateEnable = !rotateEnable;
float pi = static_cast<float>(CV_PI);
switch (key) {
case '5':
obsX = 0, obsY = 0, obsZ = -10;
thetaObs = -pi/2, phiObs = pi/2, rObs = 10;
tx=0; ty=0;
break;
case '4':
thetaObs += 0.1f;
break;
case '6':
thetaObs -= 0.1f;
break;
case '2':
phiObs -= 0.1f;
break;
case '8':
phiObs += 0.1f;
break;
case '+':
rObs -= 0.1f;
break;
case '-':
rObs += 0.1f;
break;
}
if (thetaObs>pi)
{
thetaObs = -2 * pi + thetaObs;
}
if (thetaObs<-pi)
thetaObs = 2 * pi + thetaObs;
if (phiObs>pi / 2)
phiObs = pi / 2 - 0.0001f;
if (phiObs<-pi / 2)
phiObs = -pi / 2 + 0.00001f;
if (rObs<0)
rObs = 0;
obsX = rObs*cos(thetaObs)*cos(phiObs);
obsY = rObs*sin(thetaObs)*cos(phiObs);
obsZ = rObs*sin(phiObs);
}
setOpenGlDrawCallback("OpenGL", 0, 0);
destroyAllWindows();
}
#endif
// Add nested rectangles of different widths and colors to an image
static void addNestedRectangles(Mat &img, Point p0, int* width, int *color, int n) {
for (int i = 0; i<n; i++)
{
rectangle(img, Rect(p0, Size(width[i], width[i])), Scalar(color[i]), 1);
p0 += Point((width[i] - width[i + 1]) / 2, (width[i] - width[i + 1]) / 2);
floodFill(img, p0, Scalar(color[i]));
}
}
// Add nested circles of different widths and colors to an image
static void addNestedCircles(Mat &img, Point p0, int *width, int *color, int n) {
for (int i = 0; i<n; i++)
{
circle(img, p0, width[i] / 2, Scalar(color[i]), 1);
floodFill(img, p0, Scalar(color[i]));
}
}
static Mat MakeSyntheticImage()
{
const int fond = 0;
Mat img(800, 800, CV_8UC1);
img = Scalar(fond);
int width[] = { 390, 380, 300, 290, 280, 270, 260, 250, 210, 190, 150, 100, 80, 70 };
int color1[] = { 80, 180, 160, 140, 120, 100, 90, 110, 170, 150, 140, 100, 220 };
int color2[] = { 81, 181, 161, 141, 121, 101, 91, 111, 171, 151, 141, 101, 221 };
int color3[] = { 175, 75, 95, 115, 135, 155, 165, 145, 85, 105, 115, 155, 35 };
int color4[] = { 173, 73, 93, 113, 133, 153, 163, 143, 83, 103, 113, 153, 33 };
addNestedRectangles(img, Point(10, 10), width, color1, 13);
addNestedCircles(img, Point(200, 600), width, color2, 13);
addNestedRectangles(img, Point(410, 10), width, color3, 13);
addNestedCircles(img, Point(600, 600), width, color4, 13);
int histSize = 256;
float range[] = { 0, 256 };
const float* histRange[] = { range };
Mat hist;
// we compute the histogram
calcHist(&img, 1, 0, Mat(), hist, 1, &histSize, histRange, true, false);
cout << "****************Maximal region************************\n";
for (int i = 0; i < hist.rows; i++)
{
if (hist.at<float>(i, 0)!=0)
{
cout << "h" << setw(3) << left << i << "\t=\t" << hist.at<float>(i, 0) << "\n";
}
}
return img;
}
int main(int argc, char *argv[])
{
Mat imgOrig, img;
Size blurSize(5, 5);
cv::CommandLineParser parser(argc, argv, "{ help h | | }{ @input | | }");
if (parser.has("help"))
{
help(argv);
return 0;
}
string input = parser.get<string>("@input");
if (!input.empty())
{
imgOrig = imread(samples::findFile(input), IMREAD_GRAYSCALE);
blur(imgOrig, img, blurSize);
}
else
{
imgOrig = MakeSyntheticImage();
img = imgOrig;
}
// Descriptor array MSER
vector<String> typeDesc;
// Param array for MSER
vector<MSERParams> pMSER;
// Color palette
vector<Vec3b> palette;
for (int i = 0; i<=numeric_limits<uint16_t>::max(); i++)
palette.push_back(Vec3b((uchar)rand(), (uchar)rand(), (uchar)rand()));
help(argv);
MSERParams params;
params.delta = 10;
params.minArea = 100;
params.maxArea = 5000;
params.maxVariation = 2;
params.minDiversity = 0;
params.pass2Only = true;
typeDesc.push_back("MSER");
pMSER.push_back(params);
params.pass2Only = false;
typeDesc.push_back("MSER");
pMSER.push_back(params);
params.delta = 100;
typeDesc.push_back("MSER");
pMSER.push_back(params);
vector<MSERParams>::iterator itMSER = pMSER.begin();
Ptr<Feature2D> b;
String label;
// Descriptor loop
vector<String>::iterator itDesc;
Mat result(img.rows, img.cols, CV_8UC3);
for (itDesc = typeDesc.begin(); itDesc != typeDesc.end(); ++itDesc)
{
vector<KeyPoint> keyImg1;
if (*itDesc == "MSER")
{
if (img.type() == CV_8UC3)
{
b = MSER::create(itMSER->delta, itMSER->minArea, itMSER->maxArea, itMSER->maxVariation, itMSER->minDiversity, itMSER->maxEvolution,
itMSER->areaThreshold, itMSER->minMargin, itMSER->edgeBlurSize);
label = Legende(*itMSER);
++itMSER;
}
else
{
b = MSER::create(itMSER->delta, itMSER->minArea, itMSER->maxArea, itMSER->maxVariation, itMSER->minDiversity);
b.dynamicCast<MSER>()->setPass2Only(itMSER->pass2Only);
label = Legende(*itMSER);
++itMSER;
}
}
if (img.type()==CV_8UC3)
{
img.copyTo(result);
}
else
{
vector<Mat> plan;
plan.push_back(img);
plan.push_back(img);
plan.push_back(img);
merge(plan,result);
}
try
{
// We can detect regions using detectRegions method
vector<KeyPoint> keyImg;
vector<Rect> zone;
vector<vector <Point> > region;
Mat desc;
if (b.dynamicCast<MSER>().get())
{
Ptr<MSER> sbd = b.dynamicCast<MSER>();
sbd->detectRegions(img, region, zone);
//result = Scalar(0, 0, 0);
int nbPixelInMSER=0;
for (vector<vector <Point> >::iterator itr = region.begin(); itr != region.end(); ++itr)
{
for (vector <Point>::iterator itp = itr->begin(); itp != itr->end(); ++itp)
{
// all pixels belonging to region become blue
result.at<Vec3b>(itp->y, itp->x) = Vec3b(128, 0, 0);
nbPixelInMSER++;
}
}
cout << "Number of MSER region: " << region.size() << "; Number of pixels in all MSER region: " << nbPixelInMSER << "\n";
}
const string winName = *itDesc + label;
namedWindow(winName, WINDOW_AUTOSIZE);
imshow(winName, result);
imshow("Original", img);
}
catch (const Exception& e)
{
cout << "Feature: " << *itDesc << "\n";
cout << e.msg << endl;
}
#ifdef HAVE_OPENGL
DrawOpenGLMSER(img, result);
#endif
waitKey();
}
return 0;
}