400 lines
10 KiB
C++
400 lines
10 KiB
C++
|
#include "opencv2/core.hpp"
|
||
|
#include "opencv2/imgproc.hpp"
|
||
|
#include "opencv2/ml.hpp"
|
||
|
#include "opencv2/highgui.hpp"
|
||
|
|
||
|
#include <stdio.h>
|
||
|
|
||
|
using namespace std;
|
||
|
using namespace cv;
|
||
|
using namespace cv::ml;
|
||
|
|
||
|
const Scalar WHITE_COLOR = Scalar(255,255,255);
|
||
|
const string winName = "points";
|
||
|
const int testStep = 5;
|
||
|
|
||
|
Mat img, imgDst;
|
||
|
RNG rng;
|
||
|
|
||
|
vector<Point> trainedPoints;
|
||
|
vector<int> trainedPointsMarkers;
|
||
|
const int MAX_CLASSES = 2;
|
||
|
vector<Vec3b> classColors(MAX_CLASSES);
|
||
|
int currentClass = 0;
|
||
|
vector<int> classCounters(MAX_CLASSES);
|
||
|
|
||
|
#define _NBC_ 1 // normal Bayessian classifier
|
||
|
#define _KNN_ 1 // k nearest neighbors classifier
|
||
|
#define _SVM_ 1 // support vectors machine
|
||
|
#define _DT_ 1 // decision tree
|
||
|
#define _BT_ 1 // ADA Boost
|
||
|
#define _GBT_ 0 // gradient boosted trees
|
||
|
#define _RF_ 1 // random forest
|
||
|
#define _ANN_ 1 // artificial neural networks
|
||
|
#define _EM_ 1 // expectation-maximization
|
||
|
|
||
|
static void on_mouse( int event, int x, int y, int /*flags*/, void* )
|
||
|
{
|
||
|
if( img.empty() )
|
||
|
return;
|
||
|
|
||
|
int updateFlag = 0;
|
||
|
|
||
|
if( event == EVENT_LBUTTONUP )
|
||
|
{
|
||
|
trainedPoints.push_back( Point(x,y) );
|
||
|
trainedPointsMarkers.push_back( currentClass );
|
||
|
classCounters[currentClass]++;
|
||
|
updateFlag = true;
|
||
|
}
|
||
|
|
||
|
//draw
|
||
|
if( updateFlag )
|
||
|
{
|
||
|
img = Scalar::all(0);
|
||
|
|
||
|
// draw points
|
||
|
for( size_t i = 0; i < trainedPoints.size(); i++ )
|
||
|
{
|
||
|
Vec3b c = classColors[trainedPointsMarkers[i]];
|
||
|
circle( img, trainedPoints[i], 5, Scalar(c), -1 );
|
||
|
}
|
||
|
|
||
|
imshow( winName, img );
|
||
|
}
|
||
|
}
|
||
|
|
||
|
static Mat prepare_train_samples(const vector<Point>& pts)
|
||
|
{
|
||
|
Mat samples;
|
||
|
Mat(pts).reshape(1, (int)pts.size()).convertTo(samples, CV_32F);
|
||
|
return samples;
|
||
|
}
|
||
|
|
||
|
static Ptr<TrainData> prepare_train_data()
|
||
|
{
|
||
|
Mat samples = prepare_train_samples(trainedPoints);
|
||
|
return TrainData::create(samples, ROW_SAMPLE, Mat(trainedPointsMarkers));
|
||
|
}
|
||
|
|
||
|
static void predict_and_paint(const Ptr<StatModel>& model, Mat& dst)
|
||
|
{
|
||
|
Mat testSample( 1, 2, CV_32FC1 );
|
||
|
for( int y = 0; y < img.rows; y += testStep )
|
||
|
{
|
||
|
for( int x = 0; x < img.cols; x += testStep )
|
||
|
{
|
||
|
testSample.at<float>(0) = (float)x;
|
||
|
testSample.at<float>(1) = (float)y;
|
||
|
|
||
|
int response = (int)model->predict( testSample );
|
||
|
dst.at<Vec3b>(y, x) = classColors[response];
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
|
||
|
#if _NBC_
|
||
|
static void find_decision_boundary_NBC()
|
||
|
{
|
||
|
// learn classifier
|
||
|
Ptr<NormalBayesClassifier> normalBayesClassifier = StatModel::train<NormalBayesClassifier>(prepare_train_data());
|
||
|
|
||
|
predict_and_paint(normalBayesClassifier, imgDst);
|
||
|
}
|
||
|
#endif
|
||
|
|
||
|
|
||
|
#if _KNN_
|
||
|
static void find_decision_boundary_KNN( int K )
|
||
|
{
|
||
|
|
||
|
Ptr<KNearest> knn = KNearest::create();
|
||
|
knn->setDefaultK(K);
|
||
|
knn->setIsClassifier(true);
|
||
|
knn->train(prepare_train_data());
|
||
|
predict_and_paint(knn, imgDst);
|
||
|
}
|
||
|
#endif
|
||
|
|
||
|
#if _SVM_
|
||
|
static void find_decision_boundary_SVM( double C )
|
||
|
{
|
||
|
Ptr<SVM> svm = SVM::create();
|
||
|
svm->setType(SVM::C_SVC);
|
||
|
svm->setKernel(SVM::POLY); //SVM::LINEAR;
|
||
|
svm->setDegree(0.5);
|
||
|
svm->setGamma(1);
|
||
|
svm->setCoef0(1);
|
||
|
svm->setNu(0.5);
|
||
|
svm->setP(0);
|
||
|
svm->setTermCriteria(TermCriteria(TermCriteria::MAX_ITER+TermCriteria::EPS, 1000, 0.01));
|
||
|
svm->setC(C);
|
||
|
svm->train(prepare_train_data());
|
||
|
predict_and_paint(svm, imgDst);
|
||
|
|
||
|
Mat sv = svm->getSupportVectors();
|
||
|
for( int i = 0; i < sv.rows; i++ )
|
||
|
{
|
||
|
const float* supportVector = sv.ptr<float>(i);
|
||
|
circle( imgDst, Point(saturate_cast<int>(supportVector[0]),saturate_cast<int>(supportVector[1])), 5, Scalar(255,255,255), -1 );
|
||
|
}
|
||
|
}
|
||
|
#endif
|
||
|
|
||
|
#if _DT_
|
||
|
static void find_decision_boundary_DT()
|
||
|
{
|
||
|
Ptr<DTrees> dtree = DTrees::create();
|
||
|
dtree->setMaxDepth(8);
|
||
|
dtree->setMinSampleCount(2);
|
||
|
dtree->setUseSurrogates(false);
|
||
|
dtree->setCVFolds(0); // the number of cross-validation folds
|
||
|
dtree->setUse1SERule(false);
|
||
|
dtree->setTruncatePrunedTree(false);
|
||
|
dtree->train(prepare_train_data());
|
||
|
predict_and_paint(dtree, imgDst);
|
||
|
}
|
||
|
#endif
|
||
|
|
||
|
#if _BT_
|
||
|
static void find_decision_boundary_BT()
|
||
|
{
|
||
|
Ptr<Boost> boost = Boost::create();
|
||
|
boost->setBoostType(Boost::DISCRETE);
|
||
|
boost->setWeakCount(100);
|
||
|
boost->setWeightTrimRate(0.95);
|
||
|
boost->setMaxDepth(2);
|
||
|
boost->setUseSurrogates(false);
|
||
|
boost->setPriors(Mat());
|
||
|
boost->train(prepare_train_data());
|
||
|
predict_and_paint(boost, imgDst);
|
||
|
}
|
||
|
|
||
|
#endif
|
||
|
|
||
|
#if _GBT_
|
||
|
static void find_decision_boundary_GBT()
|
||
|
{
|
||
|
GBTrees::Params params( GBTrees::DEVIANCE_LOSS, // loss_function_type
|
||
|
100, // weak_count
|
||
|
0.1f, // shrinkage
|
||
|
1.0f, // subsample_portion
|
||
|
2, // max_depth
|
||
|
false // use_surrogates )
|
||
|
);
|
||
|
|
||
|
Ptr<GBTrees> gbtrees = StatModel::train<GBTrees>(prepare_train_data(), params);
|
||
|
predict_and_paint(gbtrees, imgDst);
|
||
|
}
|
||
|
#endif
|
||
|
|
||
|
#if _RF_
|
||
|
static void find_decision_boundary_RF()
|
||
|
{
|
||
|
Ptr<RTrees> rtrees = RTrees::create();
|
||
|
rtrees->setMaxDepth(4);
|
||
|
rtrees->setMinSampleCount(2);
|
||
|
rtrees->setRegressionAccuracy(0.f);
|
||
|
rtrees->setUseSurrogates(false);
|
||
|
rtrees->setMaxCategories(16);
|
||
|
rtrees->setPriors(Mat());
|
||
|
rtrees->setCalculateVarImportance(false);
|
||
|
rtrees->setActiveVarCount(1);
|
||
|
rtrees->setTermCriteria(TermCriteria(TermCriteria::MAX_ITER, 5, 0));
|
||
|
rtrees->train(prepare_train_data());
|
||
|
predict_and_paint(rtrees, imgDst);
|
||
|
}
|
||
|
|
||
|
#endif
|
||
|
|
||
|
#if _ANN_
|
||
|
static void find_decision_boundary_ANN( const Mat& layer_sizes )
|
||
|
{
|
||
|
Mat trainClasses = Mat::zeros( (int)trainedPoints.size(), (int)classColors.size(), CV_32FC1 );
|
||
|
for( int i = 0; i < trainClasses.rows; i++ )
|
||
|
{
|
||
|
trainClasses.at<float>(i, trainedPointsMarkers[i]) = 1.f;
|
||
|
}
|
||
|
|
||
|
Mat samples = prepare_train_samples(trainedPoints);
|
||
|
Ptr<TrainData> tdata = TrainData::create(samples, ROW_SAMPLE, trainClasses);
|
||
|
|
||
|
Ptr<ANN_MLP> ann = ANN_MLP::create();
|
||
|
ann->setLayerSizes(layer_sizes);
|
||
|
ann->setActivationFunction(ANN_MLP::SIGMOID_SYM, 1, 1);
|
||
|
ann->setTermCriteria(TermCriteria(TermCriteria::MAX_ITER+TermCriteria::EPS, 300, FLT_EPSILON));
|
||
|
ann->setTrainMethod(ANN_MLP::BACKPROP, 0.001);
|
||
|
ann->train(tdata);
|
||
|
predict_and_paint(ann, imgDst);
|
||
|
}
|
||
|
#endif
|
||
|
|
||
|
#if _EM_
|
||
|
static void find_decision_boundary_EM()
|
||
|
{
|
||
|
img.copyTo( imgDst );
|
||
|
|
||
|
Mat samples = prepare_train_samples(trainedPoints);
|
||
|
|
||
|
int i, j, nmodels = (int)classColors.size();
|
||
|
vector<Ptr<EM> > em_models(nmodels);
|
||
|
Mat modelSamples;
|
||
|
|
||
|
for( i = 0; i < nmodels; i++ )
|
||
|
{
|
||
|
const int componentCount = 3;
|
||
|
|
||
|
modelSamples.release();
|
||
|
for( j = 0; j < samples.rows; j++ )
|
||
|
{
|
||
|
if( trainedPointsMarkers[j] == i )
|
||
|
modelSamples.push_back(samples.row(j));
|
||
|
}
|
||
|
|
||
|
// learn models
|
||
|
if( !modelSamples.empty() )
|
||
|
{
|
||
|
Ptr<EM> em = EM::create();
|
||
|
em->setClustersNumber(componentCount);
|
||
|
em->setCovarianceMatrixType(EM::COV_MAT_DIAGONAL);
|
||
|
em->trainEM(modelSamples, noArray(), noArray(), noArray());
|
||
|
em_models[i] = em;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
// classify coordinate plane points using the bayes classifier, i.e.
|
||
|
// y(x) = arg max_i=1_modelsCount likelihoods_i(x)
|
||
|
Mat testSample(1, 2, CV_32FC1 );
|
||
|
Mat logLikelihoods(1, nmodels, CV_64FC1, Scalar(-DBL_MAX));
|
||
|
|
||
|
for( int y = 0; y < img.rows; y += testStep )
|
||
|
{
|
||
|
for( int x = 0; x < img.cols; x += testStep )
|
||
|
{
|
||
|
testSample.at<float>(0) = (float)x;
|
||
|
testSample.at<float>(1) = (float)y;
|
||
|
|
||
|
for( i = 0; i < nmodels; i++ )
|
||
|
{
|
||
|
if( !em_models[i].empty() )
|
||
|
logLikelihoods.at<double>(i) = em_models[i]->predict2(testSample, noArray())[0];
|
||
|
}
|
||
|
Point maxLoc;
|
||
|
minMaxLoc(logLikelihoods, 0, 0, 0, &maxLoc);
|
||
|
imgDst.at<Vec3b>(y, x) = classColors[maxLoc.x];
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
#endif
|
||
|
|
||
|
int main()
|
||
|
{
|
||
|
cout << "Use:" << endl
|
||
|
<< " key '0' .. '1' - switch to class #n" << endl
|
||
|
<< " left mouse button - to add new point;" << endl
|
||
|
<< " key 'r' - to run the ML model;" << endl
|
||
|
<< " key 'i' - to init (clear) the data." << endl << endl;
|
||
|
|
||
|
cv::namedWindow( "points", 1 );
|
||
|
img.create( 480, 640, CV_8UC3 );
|
||
|
imgDst.create( 480, 640, CV_8UC3 );
|
||
|
|
||
|
imshow( "points", img );
|
||
|
setMouseCallback( "points", on_mouse );
|
||
|
|
||
|
classColors[0] = Vec3b(0, 255, 0);
|
||
|
classColors[1] = Vec3b(0, 0, 255);
|
||
|
|
||
|
for(;;)
|
||
|
{
|
||
|
char key = (char)waitKey();
|
||
|
|
||
|
if( key == 27 ) break;
|
||
|
|
||
|
if( key == 'i' ) // init
|
||
|
{
|
||
|
img = Scalar::all(0);
|
||
|
|
||
|
trainedPoints.clear();
|
||
|
trainedPointsMarkers.clear();
|
||
|
classCounters.assign(MAX_CLASSES, 0);
|
||
|
|
||
|
imshow( winName, img );
|
||
|
}
|
||
|
|
||
|
if( key == '0' || key == '1' )
|
||
|
{
|
||
|
currentClass = key - '0';
|
||
|
}
|
||
|
|
||
|
if( key == 'r' ) // run
|
||
|
{
|
||
|
double minVal = 0;
|
||
|
minMaxLoc(classCounters, &minVal, 0, 0, 0);
|
||
|
if( minVal == 0 )
|
||
|
{
|
||
|
printf("each class should have at least 1 point\n");
|
||
|
continue;
|
||
|
}
|
||
|
img.copyTo( imgDst );
|
||
|
#if _NBC_
|
||
|
find_decision_boundary_NBC();
|
||
|
imshow( "NormalBayesClassifier", imgDst );
|
||
|
#endif
|
||
|
#if _KNN_
|
||
|
find_decision_boundary_KNN( 3 );
|
||
|
imshow( "kNN", imgDst );
|
||
|
|
||
|
find_decision_boundary_KNN( 15 );
|
||
|
imshow( "kNN2", imgDst );
|
||
|
#endif
|
||
|
|
||
|
#if _SVM_
|
||
|
//(1)-(2)separable and not sets
|
||
|
|
||
|
find_decision_boundary_SVM( 1 );
|
||
|
imshow( "classificationSVM1", imgDst );
|
||
|
|
||
|
find_decision_boundary_SVM( 10 );
|
||
|
imshow( "classificationSVM2", imgDst );
|
||
|
#endif
|
||
|
|
||
|
#if _DT_
|
||
|
find_decision_boundary_DT();
|
||
|
imshow( "DT", imgDst );
|
||
|
#endif
|
||
|
|
||
|
#if _BT_
|
||
|
find_decision_boundary_BT();
|
||
|
imshow( "BT", imgDst);
|
||
|
#endif
|
||
|
|
||
|
#if _GBT_
|
||
|
find_decision_boundary_GBT();
|
||
|
imshow( "GBT", imgDst);
|
||
|
#endif
|
||
|
|
||
|
#if _RF_
|
||
|
find_decision_boundary_RF();
|
||
|
imshow( "RF", imgDst);
|
||
|
#endif
|
||
|
|
||
|
#if _ANN_
|
||
|
Mat layer_sizes1( 1, 3, CV_32SC1 );
|
||
|
layer_sizes1.at<int>(0) = 2;
|
||
|
layer_sizes1.at<int>(1) = 5;
|
||
|
layer_sizes1.at<int>(2) = (int)classColors.size();
|
||
|
find_decision_boundary_ANN( layer_sizes1 );
|
||
|
imshow( "ANN", imgDst );
|
||
|
#endif
|
||
|
|
||
|
#if _EM_
|
||
|
find_decision_boundary_EM();
|
||
|
imshow( "EM", imgDst );
|
||
|
#endif
|
||
|
}
|
||
|
}
|
||
|
|
||
|
return 0;
|
||
|
}
|