216 lines
7.2 KiB
C++
216 lines
7.2 KiB
C++
|
#include "opencv2/objdetect.hpp"
|
||
|
#include "opencv2/highgui.hpp"
|
||
|
#include "opencv2/imgproc.hpp"
|
||
|
#include "opencv2/videoio.hpp"
|
||
|
#include <iostream>
|
||
|
|
||
|
using namespace std;
|
||
|
using namespace cv;
|
||
|
|
||
|
static void help(const char** argv)
|
||
|
{
|
||
|
cout << "\nThis program demonstrates the smile detector.\n"
|
||
|
"Usage:\n" <<
|
||
|
argv[0] << " [--cascade=<cascade_path> this is the frontal face classifier]\n"
|
||
|
" [--smile-cascade=[<smile_cascade_path>]]\n"
|
||
|
" [--scale=<image scale greater or equal to 1, try 2.0 for example. The larger the faster the processing>]\n"
|
||
|
" [--try-flip]\n"
|
||
|
" [video_filename|camera_index]\n\n"
|
||
|
"Example:\n" <<
|
||
|
argv[0] << " --cascade=\"data/haarcascades/haarcascade_frontalface_alt.xml\" --smile-cascade=\"data/haarcascades/haarcascade_smile.xml\" --scale=2.0\n\n"
|
||
|
"During execution:\n\tHit any key to quit.\n"
|
||
|
"\tUsing OpenCV version " << CV_VERSION << "\n" << endl;
|
||
|
}
|
||
|
|
||
|
void detectAndDraw( Mat& img, CascadeClassifier& cascade,
|
||
|
CascadeClassifier& nestedCascade,
|
||
|
double scale, bool tryflip );
|
||
|
|
||
|
string cascadeName;
|
||
|
string nestedCascadeName;
|
||
|
|
||
|
int main( int argc, const char** argv )
|
||
|
{
|
||
|
VideoCapture capture;
|
||
|
Mat frame, image;
|
||
|
string inputName;
|
||
|
bool tryflip;
|
||
|
|
||
|
help(argv);
|
||
|
|
||
|
CascadeClassifier cascade, nestedCascade;
|
||
|
double scale;
|
||
|
cv::CommandLineParser parser(argc, argv,
|
||
|
"{help h||}{scale|1|}"
|
||
|
"{cascade|data/haarcascades/haarcascade_frontalface_alt.xml|}"
|
||
|
"{smile-cascade|data/haarcascades/haarcascade_smile.xml|}"
|
||
|
"{try-flip||}{@input||}");
|
||
|
if (parser.has("help"))
|
||
|
{
|
||
|
help(argv);
|
||
|
return 0;
|
||
|
}
|
||
|
cascadeName = samples::findFile(parser.get<string>("cascade"));
|
||
|
nestedCascadeName = samples::findFile(parser.get<string>("smile-cascade"));
|
||
|
tryflip = parser.has("try-flip");
|
||
|
inputName = parser.get<string>("@input");
|
||
|
scale = parser.get<int>("scale");
|
||
|
if (!parser.check())
|
||
|
{
|
||
|
help(argv);
|
||
|
return 1;
|
||
|
}
|
||
|
if (scale < 1)
|
||
|
scale = 1;
|
||
|
if( !cascade.load( cascadeName ) )
|
||
|
{
|
||
|
cerr << "ERROR: Could not load face cascade" << endl;
|
||
|
help(argv);
|
||
|
return -1;
|
||
|
}
|
||
|
if( !nestedCascade.load( nestedCascadeName ) )
|
||
|
{
|
||
|
cerr << "ERROR: Could not load smile cascade" << endl;
|
||
|
help(argv);
|
||
|
return -1;
|
||
|
}
|
||
|
if( inputName.empty() || (isdigit(inputName[0]) && inputName.size() == 1) )
|
||
|
{
|
||
|
int c = inputName.empty() ? 0 : inputName[0] - '0' ;
|
||
|
if(!capture.open(c))
|
||
|
cout << "Capture from camera #" << c << " didn't work" << endl;
|
||
|
}
|
||
|
else if( inputName.size() )
|
||
|
{
|
||
|
inputName = samples::findFileOrKeep(inputName);
|
||
|
if(!capture.open( inputName ))
|
||
|
cout << "Could not read " << inputName << endl;
|
||
|
}
|
||
|
|
||
|
if( capture.isOpened() )
|
||
|
{
|
||
|
cout << "Video capturing has been started ..." << endl;
|
||
|
cout << endl << "NOTE: Smile intensity will only be valid after a first smile has been detected" << endl;
|
||
|
|
||
|
for(;;)
|
||
|
{
|
||
|
capture >> frame;
|
||
|
if( frame.empty() )
|
||
|
break;
|
||
|
|
||
|
Mat frame1 = frame.clone();
|
||
|
detectAndDraw( frame1, cascade, nestedCascade, scale, tryflip );
|
||
|
|
||
|
char c = (char)waitKey(10);
|
||
|
if( c == 27 || c == 'q' || c == 'Q' )
|
||
|
break;
|
||
|
}
|
||
|
}
|
||
|
else
|
||
|
{
|
||
|
cerr << "ERROR: Could not initiate capture" << endl;
|
||
|
help(argv);
|
||
|
return -1;
|
||
|
}
|
||
|
|
||
|
return 0;
|
||
|
}
|
||
|
|
||
|
void detectAndDraw( Mat& img, CascadeClassifier& cascade,
|
||
|
CascadeClassifier& nestedCascade,
|
||
|
double scale, bool tryflip)
|
||
|
{
|
||
|
vector<Rect> faces, faces2;
|
||
|
const static Scalar colors[] =
|
||
|
{
|
||
|
Scalar(255,0,0),
|
||
|
Scalar(255,128,0),
|
||
|
Scalar(255,255,0),
|
||
|
Scalar(0,255,0),
|
||
|
Scalar(0,128,255),
|
||
|
Scalar(0,255,255),
|
||
|
Scalar(0,0,255),
|
||
|
Scalar(255,0,255)
|
||
|
};
|
||
|
Mat gray, smallImg;
|
||
|
|
||
|
cvtColor( img, gray, COLOR_BGR2GRAY );
|
||
|
|
||
|
double fx = 1 / scale;
|
||
|
resize( gray, smallImg, Size(), fx, fx, INTER_LINEAR_EXACT );
|
||
|
equalizeHist( smallImg, smallImg );
|
||
|
|
||
|
cascade.detectMultiScale( smallImg, faces,
|
||
|
1.1, 2, 0
|
||
|
//|CASCADE_FIND_BIGGEST_OBJECT
|
||
|
//|CASCADE_DO_ROUGH_SEARCH
|
||
|
|CASCADE_SCALE_IMAGE,
|
||
|
Size(30, 30) );
|
||
|
if( tryflip )
|
||
|
{
|
||
|
flip(smallImg, smallImg, 1);
|
||
|
cascade.detectMultiScale( smallImg, faces2,
|
||
|
1.1, 2, 0
|
||
|
//|CASCADE_FIND_BIGGEST_OBJECT
|
||
|
//|CASCADE_DO_ROUGH_SEARCH
|
||
|
|CASCADE_SCALE_IMAGE,
|
||
|
Size(30, 30) );
|
||
|
for( vector<Rect>::const_iterator r = faces2.begin(); r != faces2.end(); ++r )
|
||
|
{
|
||
|
faces.push_back(Rect(smallImg.cols - r->x - r->width, r->y, r->width, r->height));
|
||
|
}
|
||
|
}
|
||
|
|
||
|
for ( size_t i = 0; i < faces.size(); i++ )
|
||
|
{
|
||
|
Rect r = faces[i];
|
||
|
Mat smallImgROI;
|
||
|
vector<Rect> nestedObjects;
|
||
|
Point center;
|
||
|
Scalar color = colors[i%8];
|
||
|
int radius;
|
||
|
|
||
|
double aspect_ratio = (double)r.width/r.height;
|
||
|
if( 0.75 < aspect_ratio && aspect_ratio < 1.3 )
|
||
|
{
|
||
|
center.x = cvRound((r.x + r.width*0.5)*scale);
|
||
|
center.y = cvRound((r.y + r.height*0.5)*scale);
|
||
|
radius = cvRound((r.width + r.height)*0.25*scale);
|
||
|
circle( img, center, radius, color, 3, 8, 0 );
|
||
|
}
|
||
|
else
|
||
|
rectangle( img, Point(cvRound(r.x*scale), cvRound(r.y*scale)),
|
||
|
Point(cvRound((r.x + r.width-1)*scale), cvRound((r.y + r.height-1)*scale)),
|
||
|
color, 3, 8, 0);
|
||
|
|
||
|
const int half_height=cvRound((float)r.height/2);
|
||
|
r.y=r.y + half_height;
|
||
|
r.height = half_height-1;
|
||
|
smallImgROI = smallImg( r );
|
||
|
nestedCascade.detectMultiScale( smallImgROI, nestedObjects,
|
||
|
1.1, 0, 0
|
||
|
//|CASCADE_FIND_BIGGEST_OBJECT
|
||
|
//|CASCADE_DO_ROUGH_SEARCH
|
||
|
//|CASCADE_DO_CANNY_PRUNING
|
||
|
|CASCADE_SCALE_IMAGE,
|
||
|
Size(30, 30) );
|
||
|
|
||
|
// The number of detected neighbors depends on image size (and also illumination, etc.). The
|
||
|
// following steps use a floating minimum and maximum of neighbors. Intensity thus estimated will be
|
||
|
//accurate only after a first smile has been displayed by the user.
|
||
|
const int smile_neighbors = (int)nestedObjects.size();
|
||
|
static int max_neighbors=-1;
|
||
|
static int min_neighbors=-1;
|
||
|
if (min_neighbors == -1) min_neighbors = smile_neighbors;
|
||
|
max_neighbors = MAX(max_neighbors, smile_neighbors);
|
||
|
|
||
|
// Draw rectangle on the left side of the image reflecting smile intensity
|
||
|
float intensityZeroOne = ((float)smile_neighbors - min_neighbors) / (max_neighbors - min_neighbors + 1);
|
||
|
int rect_height = cvRound((float)img.rows * intensityZeroOne);
|
||
|
Scalar col = Scalar((float)255 * intensityZeroOne, 0, 0);
|
||
|
rectangle(img, Point(0, img.rows), Point(img.cols/10, img.rows - rect_height), col, -1);
|
||
|
}
|
||
|
|
||
|
imshow( "result", img );
|
||
|
}
|