206 lines
6.8 KiB
HTML
206 lines
6.8 KiB
HTML
|
<!DOCTYPE html>
|
||
|
|
||
|
<html>
|
||
|
|
||
|
<head>
|
||
|
<script async src="../../opencv.js" type="text/javascript"></script>
|
||
|
<script src="../../utils.js" type="text/javascript"></script>
|
||
|
|
||
|
<script type='text/javascript'>
|
||
|
var netDet = undefined, netRecogn = undefined;
|
||
|
var persons = {};
|
||
|
|
||
|
//! [Run face detection model]
|
||
|
function detectFaces(img) {
|
||
|
var blob = cv.blobFromImage(img, 1, {width: 192, height: 144}, [104, 117, 123, 0], false, false);
|
||
|
netDet.setInput(blob);
|
||
|
var out = netDet.forward();
|
||
|
|
||
|
var faces = [];
|
||
|
for (var i = 0, n = out.data32F.length; i < n; i += 7) {
|
||
|
var confidence = out.data32F[i + 2];
|
||
|
var left = out.data32F[i + 3] * img.cols;
|
||
|
var top = out.data32F[i + 4] * img.rows;
|
||
|
var right = out.data32F[i + 5] * img.cols;
|
||
|
var bottom = out.data32F[i + 6] * img.rows;
|
||
|
left = Math.min(Math.max(0, left), img.cols - 1);
|
||
|
right = Math.min(Math.max(0, right), img.cols - 1);
|
||
|
bottom = Math.min(Math.max(0, bottom), img.rows - 1);
|
||
|
top = Math.min(Math.max(0, top), img.rows - 1);
|
||
|
|
||
|
if (confidence > 0.5 && left < right && top < bottom) {
|
||
|
faces.push({x: left, y: top, width: right - left, height: bottom - top})
|
||
|
}
|
||
|
}
|
||
|
blob.delete();
|
||
|
out.delete();
|
||
|
return faces;
|
||
|
};
|
||
|
//! [Run face detection model]
|
||
|
|
||
|
//! [Get 128 floating points feature vector]
|
||
|
function face2vec(face) {
|
||
|
var blob = cv.blobFromImage(face, 1.0 / 255, {width: 96, height: 96}, [0, 0, 0, 0], true, false)
|
||
|
netRecogn.setInput(blob);
|
||
|
var vec = netRecogn.forward();
|
||
|
blob.delete();
|
||
|
return vec;
|
||
|
};
|
||
|
//! [Get 128 floating points feature vector]
|
||
|
|
||
|
//! [Recognize]
|
||
|
function recognize(face) {
|
||
|
var vec = face2vec(face);
|
||
|
|
||
|
var bestMatchName = 'unknown';
|
||
|
var bestMatchScore = 0.5; // Actually, the minimum is -1 but we use it as a threshold.
|
||
|
for (name in persons) {
|
||
|
var personVec = persons[name];
|
||
|
var score = vec.dot(personVec);
|
||
|
if (score > bestMatchScore) {
|
||
|
bestMatchScore = score;
|
||
|
bestMatchName = name;
|
||
|
}
|
||
|
}
|
||
|
vec.delete();
|
||
|
return bestMatchName;
|
||
|
};
|
||
|
//! [Recognize]
|
||
|
|
||
|
function loadModels(callback) {
|
||
|
var utils = new Utils('');
|
||
|
var proto = 'https://raw.githubusercontent.com/opencv/opencv/4.x/samples/dnn/face_detector/deploy_lowres.prototxt';
|
||
|
var weights = 'https://raw.githubusercontent.com/opencv/opencv_3rdparty/dnn_samples_face_detector_20180205_fp16/res10_300x300_ssd_iter_140000_fp16.caffemodel';
|
||
|
var recognModel = 'https://raw.githubusercontent.com/pyannote/pyannote-data/master/openface.nn4.small2.v1.t7';
|
||
|
utils.createFileFromUrl('face_detector.prototxt', proto, () => {
|
||
|
document.getElementById('status').innerHTML = 'Downloading face_detector.caffemodel';
|
||
|
utils.createFileFromUrl('face_detector.caffemodel', weights, () => {
|
||
|
document.getElementById('status').innerHTML = 'Downloading OpenFace model';
|
||
|
utils.createFileFromUrl('face_recognition.t7', recognModel, () => {
|
||
|
document.getElementById('status').innerHTML = '';
|
||
|
netDet = cv.readNetFromCaffe('face_detector.prototxt', 'face_detector.caffemodel');
|
||
|
netRecogn = cv.readNetFromTorch('face_recognition.t7');
|
||
|
callback();
|
||
|
});
|
||
|
});
|
||
|
});
|
||
|
};
|
||
|
|
||
|
function main() {
|
||
|
// Create a camera object.
|
||
|
var output = document.getElementById('output');
|
||
|
var camera = document.createElement("video");
|
||
|
camera.setAttribute("width", output.width);
|
||
|
camera.setAttribute("height", output.height);
|
||
|
|
||
|
// Get a permission from user to use a camera.
|
||
|
navigator.mediaDevices.getUserMedia({video: true, audio: false})
|
||
|
.then(function(stream) {
|
||
|
camera.srcObject = stream;
|
||
|
camera.onloadedmetadata = function(e) {
|
||
|
camera.play();
|
||
|
};
|
||
|
});
|
||
|
|
||
|
//! [Open a camera stream]
|
||
|
var cap = new cv.VideoCapture(camera);
|
||
|
var frame = new cv.Mat(camera.height, camera.width, cv.CV_8UC4);
|
||
|
var frameBGR = new cv.Mat(camera.height, camera.width, cv.CV_8UC3);
|
||
|
//! [Open a camera stream]
|
||
|
|
||
|
//! [Add a person]
|
||
|
document.getElementById('addPersonButton').onclick = function() {
|
||
|
var rects = detectFaces(frameBGR);
|
||
|
if (rects.length > 0) {
|
||
|
var face = frameBGR.roi(rects[0]);
|
||
|
|
||
|
var name = prompt('Say your name:');
|
||
|
var cell = document.getElementById("targetNames").insertCell(0);
|
||
|
cell.innerHTML = name;
|
||
|
|
||
|
persons[name] = face2vec(face).clone();
|
||
|
|
||
|
var canvas = document.createElement("canvas");
|
||
|
canvas.setAttribute("width", 96);
|
||
|
canvas.setAttribute("height", 96);
|
||
|
var cell = document.getElementById("targetImgs").insertCell(0);
|
||
|
cell.appendChild(canvas);
|
||
|
|
||
|
var faceResized = new cv.Mat(canvas.height, canvas.width, cv.CV_8UC3);
|
||
|
cv.resize(face, faceResized, {width: canvas.width, height: canvas.height});
|
||
|
cv.cvtColor(faceResized, faceResized, cv.COLOR_BGR2RGB);
|
||
|
cv.imshow(canvas, faceResized);
|
||
|
faceResized.delete();
|
||
|
}
|
||
|
};
|
||
|
//! [Add a person]
|
||
|
|
||
|
//! [Define frames processing]
|
||
|
var isRunning = false;
|
||
|
const FPS = 30; // Target number of frames processed per second.
|
||
|
function captureFrame() {
|
||
|
var begin = Date.now();
|
||
|
cap.read(frame); // Read a frame from camera
|
||
|
cv.cvtColor(frame, frameBGR, cv.COLOR_RGBA2BGR);
|
||
|
|
||
|
var faces = detectFaces(frameBGR);
|
||
|
faces.forEach(function(rect) {
|
||
|
cv.rectangle(frame, {x: rect.x, y: rect.y}, {x: rect.x + rect.width, y: rect.y + rect.height}, [0, 255, 0, 255]);
|
||
|
|
||
|
var face = frameBGR.roi(rect);
|
||
|
var name = recognize(face);
|
||
|
cv.putText(frame, name, {x: rect.x, y: rect.y}, cv.FONT_HERSHEY_SIMPLEX, 1.0, [0, 255, 0, 255]);
|
||
|
});
|
||
|
|
||
|
cv.imshow(output, frame);
|
||
|
|
||
|
// Loop this function.
|
||
|
if (isRunning) {
|
||
|
var delay = 1000 / FPS - (Date.now() - begin);
|
||
|
setTimeout(captureFrame, delay);
|
||
|
}
|
||
|
};
|
||
|
//! [Define frames processing]
|
||
|
|
||
|
document.getElementById('startStopButton').onclick = function toggle() {
|
||
|
if (isRunning) {
|
||
|
isRunning = false;
|
||
|
document.getElementById('startStopButton').innerHTML = 'Start';
|
||
|
document.getElementById('addPersonButton').disabled = true;
|
||
|
} else {
|
||
|
function run() {
|
||
|
isRunning = true;
|
||
|
captureFrame();
|
||
|
document.getElementById('startStopButton').innerHTML = 'Stop';
|
||
|
document.getElementById('startStopButton').disabled = false;
|
||
|
document.getElementById('addPersonButton').disabled = false;
|
||
|
}
|
||
|
if (netDet == undefined || netRecogn == undefined) {
|
||
|
document.getElementById('startStopButton').disabled = true;
|
||
|
loadModels(run); // Load models and run a pipeline;
|
||
|
} else {
|
||
|
run();
|
||
|
}
|
||
|
}
|
||
|
};
|
||
|
|
||
|
document.getElementById('startStopButton').disabled = false;
|
||
|
};
|
||
|
</script>
|
||
|
|
||
|
</head>
|
||
|
|
||
|
<body onload="cv['onRuntimeInitialized']=()=>{ main() }">
|
||
|
<button id="startStopButton" type="button" disabled="true">Start</button>
|
||
|
<div id="status"></div>
|
||
|
<canvas id="output" width=640 height=480 style="max-width: 100%"></canvas>
|
||
|
|
||
|
<table>
|
||
|
<tr id="targetImgs"></tr>
|
||
|
<tr id="targetNames"></tr>
|
||
|
</table>
|
||
|
<button id="addPersonButton" type="button" disabled="true">Add a person</button>
|
||
|
</body>
|
||
|
|
||
|
</html>
|