cameracv/libs/opencv/samples/dnn/optical_flow.py

104 lines
4.2 KiB
Python
Raw Permalink Normal View History

2023-05-18 21:39:43 +03:00
#!/usr/bin/env python
'''
This sample using FlowNet v2 model to calculate optical flow.
Original paper: https://arxiv.org/abs/1612.01925.
Original repo: https://github.com/lmb-freiburg/flownet2.
Download the converted .caffemodel model from https://drive.google.com/open?id=16qvE9VNmU39NttpZwZs81Ga8VYQJDaWZ
and .prototxt from https://drive.google.com/file/d/1RyNIUsan1ZOh2hpYIH36A-jofAvJlT6a/view?usp=sharing.
Otherwise download original model from https://lmb.informatik.uni-freiburg.de/resources/binaries/flownet2/flownet2-models.tar.gz,
convert .h5 model to .caffemodel and modify original .prototxt using .prototxt from link above.
'''
import argparse
import os.path
import numpy as np
import cv2 as cv
class OpticalFlow(object):
def __init__(self, proto, model, height, width):
self.net = cv.dnn.readNetFromCaffe(proto, model)
self.net.setPreferableBackend(cv.dnn.DNN_BACKEND_OPENCV)
self.height = height
self.width = width
def compute_flow(self, first_img, second_img):
inp0 = cv.dnn.blobFromImage(first_img, size=(self.width, self.height))
inp1 = cv.dnn.blobFromImage(second_img, size=(self.width, self.height))
self.net.setInput(inp0, "img0")
self.net.setInput(inp1, "img1")
flow = self.net.forward()
output = self.motion_to_color(flow)
return output
def motion_to_color(self, flow):
arr = np.arange(0, 255, dtype=np.uint8)
colormap = cv.applyColorMap(arr, cv.COLORMAP_HSV)
colormap = colormap.squeeze(1)
flow = flow.squeeze(0)
fx, fy = flow[0, ...], flow[1, ...]
rad = np.sqrt(fx**2 + fy**2)
maxrad = rad.max() if rad.max() != 0 else 1
ncols = arr.size
rad = rad[..., np.newaxis] / maxrad
a = np.arctan2(-fy / maxrad, -fx / maxrad) / np.pi
fk = (a + 1) / 2.0 * (ncols - 1)
k0 = fk.astype(np.int)
k1 = (k0 + 1) % ncols
f = fk[..., np.newaxis] - k0[..., np.newaxis]
col0 = colormap[k0] / 255.0
col1 = colormap[k1] / 255.0
col = (1 - f) * col0 + f * col1
col = np.where(rad <= 1, 1 - rad * (1 - col), col * 0.75)
output = (255.0 * col).astype(np.uint8)
return output
if __name__ == '__main__':
parser = argparse.ArgumentParser(description='Use this script to calculate optical flow using FlowNetv2',
formatter_class=argparse.ArgumentDefaultsHelpFormatter)
parser.add_argument('-input', '-i', required=True, help='Path to input video file. Skip this argument to capture frames from a camera.')
parser.add_argument('--height', default=320, type=int, help='Input height')
parser.add_argument('--width', default=448, type=int, help='Input width')
parser.add_argument('--proto', '-p', default='FlowNet2_deploy_anysize.prototxt', help='Path to prototxt.')
parser.add_argument('--model', '-m', default='FlowNet2_weights.caffemodel', help='Path to caffemodel.')
args, _ = parser.parse_known_args()
if not os.path.isfile(args.model) or not os.path.isfile(args.proto):
raise OSError("Prototxt or caffemodel not exist")
winName = 'Calculation optical flow in OpenCV'
cv.namedWindow(winName, cv.WINDOW_NORMAL)
cap = cv.VideoCapture(args.input if args.input else 0)
hasFrame, first_frame = cap.read()
divisor = 64.
var = {}
var['ADAPTED_WIDTH'] = int(np.ceil(args.width/divisor) * divisor)
var['ADAPTED_HEIGHT'] = int(np.ceil(args.height/divisor) * divisor)
var['SCALE_WIDTH'] = args.width / float(var['ADAPTED_WIDTH'])
var['SCALE_HEIGHT'] = args.height / float(var['ADAPTED_HEIGHT'])
config = ''
proto = open(args.proto).readlines()
for line in proto:
for key, value in var.items():
tag = "$%s$" % key
line = line.replace(tag, str(value))
config += line
caffemodel = open(args.model, 'rb').read()
opt_flow = OpticalFlow(bytearray(config.encode()), caffemodel, var['ADAPTED_HEIGHT'], var['ADAPTED_WIDTH'])
while cv.waitKey(1) < 0:
hasFrame, second_frame = cap.read()
if not hasFrame:
break
flow = opt_flow.compute_flow(first_frame, second_frame)
first_frame = second_frame
cv.imshow(winName, flow)