311 lines
7.4 KiB
C++
311 lines
7.4 KiB
C++
|
///////////////////////////////////////////////////////////////////////////
|
|||
|
//
|
|||
|
// Copyright (c) 2002, Industrial Light & Magic, a division of Lucas
|
|||
|
// Digital Ltd. LLC
|
|||
|
//
|
|||
|
// All rights reserved.
|
|||
|
//
|
|||
|
// Redistribution and use in source and binary forms, with or without
|
|||
|
// modification, are permitted provided that the following conditions are
|
|||
|
// met:
|
|||
|
// * Redistributions of source code must retain the above copyright
|
|||
|
// notice, this list of conditions and the following disclaimer.
|
|||
|
// * Redistributions in binary form must reproduce the above
|
|||
|
// copyright notice, this list of conditions and the following disclaimer
|
|||
|
// in the documentation and/or other materials provided with the
|
|||
|
// distribution.
|
|||
|
// * Neither the name of Industrial Light & Magic nor the names of
|
|||
|
// its contributors may be used to endorse or promote products derived
|
|||
|
// from this software without specific prior written permission.
|
|||
|
//
|
|||
|
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
|
|||
|
// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
|
|||
|
// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
|
|||
|
// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
|
|||
|
// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
|
|||
|
// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
|
|||
|
// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
|
|||
|
// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
|
|||
|
// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
|
|||
|
// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
|
|||
|
// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
|||
|
//
|
|||
|
///////////////////////////////////////////////////////////////////////////
|
|||
|
|
|||
|
// Primary authors:
|
|||
|
// Florian Kainz <kainz@ilm.com>
|
|||
|
// Rod Bogart <rgb@ilm.com>
|
|||
|
|
|||
|
|
|||
|
//---------------------------------------------------------------------------
|
|||
|
//
|
|||
|
// class half --
|
|||
|
// implementation of non-inline members
|
|||
|
//
|
|||
|
//---------------------------------------------------------------------------
|
|||
|
|
|||
|
#include <assert.h>
|
|||
|
#include "half.h"
|
|||
|
|
|||
|
using namespace std;
|
|||
|
|
|||
|
//-------------------------------------------------------------
|
|||
|
// Lookup tables for half-to-float and float-to-half conversion
|
|||
|
//-------------------------------------------------------------
|
|||
|
|
|||
|
HALF_EXPORT const half::uif half::_toFloat[1 << 16] =
|
|||
|
#include "toFloat.h"
|
|||
|
HALF_EXPORT const unsigned short half::_eLut[1 << 9] =
|
|||
|
#include "eLut.h"
|
|||
|
|
|||
|
//-----------------------------------------------
|
|||
|
// Overflow handler for float-to-half conversion;
|
|||
|
// generates a hardware floating-point overflow,
|
|||
|
// which may be trapped by the operating system.
|
|||
|
//-----------------------------------------------
|
|||
|
|
|||
|
HALF_EXPORT float
|
|||
|
half::overflow ()
|
|||
|
{
|
|||
|
volatile float f = 1e10;
|
|||
|
|
|||
|
for (int i = 0; i < 10; i++)
|
|||
|
f *= f; // this will overflow before
|
|||
|
// the for<6F>loop terminates
|
|||
|
return f;
|
|||
|
}
|
|||
|
|
|||
|
|
|||
|
//-----------------------------------------------------
|
|||
|
// Float-to-half conversion -- general case, including
|
|||
|
// zeroes, denormalized numbers and exponent overflows.
|
|||
|
//-----------------------------------------------------
|
|||
|
|
|||
|
HALF_EXPORT short
|
|||
|
half::convert (int i)
|
|||
|
{
|
|||
|
//
|
|||
|
// Our floating point number, f, is represented by the bit
|
|||
|
// pattern in integer i. Disassemble that bit pattern into
|
|||
|
// the sign, s, the exponent, e, and the significand, m.
|
|||
|
// Shift s into the position where it will go in in the
|
|||
|
// resulting half number.
|
|||
|
// Adjust e, accounting for the different exponent bias
|
|||
|
// of float and half (127 versus 15).
|
|||
|
//
|
|||
|
|
|||
|
int s = (i >> 16) & 0x00008000;
|
|||
|
int e = ((i >> 23) & 0x000000ff) - (127 - 15);
|
|||
|
int m = i & 0x007fffff;
|
|||
|
|
|||
|
//
|
|||
|
// Now reassemble s, e and m into a half:
|
|||
|
//
|
|||
|
|
|||
|
if (e <= 0)
|
|||
|
{
|
|||
|
if (e < -10)
|
|||
|
{
|
|||
|
//
|
|||
|
// E is less than -10. The absolute value of f is
|
|||
|
// less than HALF_MIN (f may be a small normalized
|
|||
|
// float, a denormalized float or a zero).
|
|||
|
//
|
|||
|
// We convert f to a half zero with the same sign as f.
|
|||
|
//
|
|||
|
|
|||
|
return s;
|
|||
|
}
|
|||
|
|
|||
|
//
|
|||
|
// E is between -10 and 0. F is a normalized float
|
|||
|
// whose magnitude is less than HALF_NRM_MIN.
|
|||
|
//
|
|||
|
// We convert f to a denormalized half.
|
|||
|
//
|
|||
|
|
|||
|
//
|
|||
|
// Add an explicit leading 1 to the significand.
|
|||
|
//
|
|||
|
|
|||
|
m = m | 0x00800000;
|
|||
|
|
|||
|
//
|
|||
|
// Round to m to the nearest (10+e)-bit value (with e between
|
|||
|
// -10 and 0); in case of a tie, round to the nearest even value.
|
|||
|
//
|
|||
|
// Rounding may cause the significand to overflow and make
|
|||
|
// our number normalized. Because of the way a half's bits
|
|||
|
// are laid out, we don't have to treat this case separately;
|
|||
|
// the code below will handle it correctly.
|
|||
|
//
|
|||
|
|
|||
|
int t = 14 - e;
|
|||
|
int a = (1 << (t - 1)) - 1;
|
|||
|
int b = (m >> t) & 1;
|
|||
|
|
|||
|
m = (m + a + b) >> t;
|
|||
|
|
|||
|
//
|
|||
|
// Assemble the half from s, e (zero) and m.
|
|||
|
//
|
|||
|
|
|||
|
return s | m;
|
|||
|
}
|
|||
|
else if (e == 0xff - (127 - 15))
|
|||
|
{
|
|||
|
if (m == 0)
|
|||
|
{
|
|||
|
//
|
|||
|
// F is an infinity; convert f to a half
|
|||
|
// infinity with the same sign as f.
|
|||
|
//
|
|||
|
|
|||
|
return s | 0x7c00;
|
|||
|
}
|
|||
|
else
|
|||
|
{
|
|||
|
//
|
|||
|
// F is a NAN; we produce a half NAN that preserves
|
|||
|
// the sign bit and the 10 leftmost bits of the
|
|||
|
// significand of f, with one exception: If the 10
|
|||
|
// leftmost bits are all zero, the NAN would turn
|
|||
|
// into an infinity, so we have to set at least one
|
|||
|
// bit in the significand.
|
|||
|
//
|
|||
|
|
|||
|
m >>= 13;
|
|||
|
return s | 0x7c00 | m | (m == 0);
|
|||
|
}
|
|||
|
}
|
|||
|
else
|
|||
|
{
|
|||
|
//
|
|||
|
// E is greater than zero. F is a normalized float.
|
|||
|
// We try to convert f to a normalized half.
|
|||
|
//
|
|||
|
|
|||
|
//
|
|||
|
// Round to m to the nearest 10-bit value. In case of
|
|||
|
// a tie, round to the nearest even value.
|
|||
|
//
|
|||
|
|
|||
|
m = m + 0x00000fff + ((m >> 13) & 1);
|
|||
|
|
|||
|
if (m & 0x00800000)
|
|||
|
{
|
|||
|
m = 0; // overflow in significand,
|
|||
|
e += 1; // adjust exponent
|
|||
|
}
|
|||
|
|
|||
|
//
|
|||
|
// Handle exponent overflow
|
|||
|
//
|
|||
|
|
|||
|
if (e > 30)
|
|||
|
{
|
|||
|
overflow (); // Cause a hardware floating point overflow;
|
|||
|
return s | 0x7c00; // if this returns, the half becomes an
|
|||
|
} // infinity with the same sign as f.
|
|||
|
|
|||
|
//
|
|||
|
// Assemble the half from s, e and m.
|
|||
|
//
|
|||
|
|
|||
|
return s | (e << 10) | (m >> 13);
|
|||
|
}
|
|||
|
}
|
|||
|
|
|||
|
|
|||
|
//---------------------
|
|||
|
// Stream I/O operators
|
|||
|
//---------------------
|
|||
|
|
|||
|
HALF_EXPORT ostream &
|
|||
|
operator << (ostream &os, half h)
|
|||
|
{
|
|||
|
os << float (h);
|
|||
|
return os;
|
|||
|
}
|
|||
|
|
|||
|
|
|||
|
HALF_EXPORT istream &
|
|||
|
operator >> (istream &is, half &h)
|
|||
|
{
|
|||
|
float f;
|
|||
|
is >> f;
|
|||
|
h = half (f);
|
|||
|
return is;
|
|||
|
}
|
|||
|
|
|||
|
|
|||
|
//---------------------------------------
|
|||
|
// Functions to print the bit-layout of
|
|||
|
// floats and halfs, mostly for debugging
|
|||
|
//---------------------------------------
|
|||
|
|
|||
|
HALF_EXPORT void
|
|||
|
printBits (ostream &os, half h)
|
|||
|
{
|
|||
|
unsigned short b = h.bits();
|
|||
|
|
|||
|
for (int i = 15; i >= 0; i--)
|
|||
|
{
|
|||
|
os << (((b >> i) & 1)? '1': '0');
|
|||
|
|
|||
|
if (i == 15 || i == 10)
|
|||
|
os << ' ';
|
|||
|
}
|
|||
|
}
|
|||
|
|
|||
|
|
|||
|
HALF_EXPORT void
|
|||
|
printBits (ostream &os, float f)
|
|||
|
{
|
|||
|
half::uif x;
|
|||
|
x.f = f;
|
|||
|
|
|||
|
for (int i = 31; i >= 0; i--)
|
|||
|
{
|
|||
|
os << (((x.i >> i) & 1)? '1': '0');
|
|||
|
|
|||
|
if (i == 31 || i == 23)
|
|||
|
os << ' ';
|
|||
|
}
|
|||
|
}
|
|||
|
|
|||
|
|
|||
|
HALF_EXPORT void
|
|||
|
printBits (char c[19], half h)
|
|||
|
{
|
|||
|
unsigned short b = h.bits();
|
|||
|
|
|||
|
for (int i = 15, j = 0; i >= 0; i--, j++)
|
|||
|
{
|
|||
|
c[j] = (((b >> i) & 1)? '1': '0');
|
|||
|
|
|||
|
if (i == 15 || i == 10)
|
|||
|
c[++j] = ' ';
|
|||
|
}
|
|||
|
|
|||
|
c[18] = 0;
|
|||
|
}
|
|||
|
|
|||
|
|
|||
|
HALF_EXPORT void
|
|||
|
printBits (char c[35], float f)
|
|||
|
{
|
|||
|
half::uif x;
|
|||
|
x.f = f;
|
|||
|
|
|||
|
for (int i = 31, j = 0; i >= 0; i--, j++)
|
|||
|
{
|
|||
|
c[j] = (((x.i >> i) & 1)? '1': '0');
|
|||
|
|
|||
|
if (i == 31 || i == 23)
|
|||
|
c[++j] = ' ';
|
|||
|
}
|
|||
|
|
|||
|
c[34] = 0;
|
|||
|
}
|