cameracv/libs/opencv/3rdparty/openvx/include/ivx.hpp

3278 lines
109 KiB
C++
Raw Normal View History

2023-05-18 21:39:43 +03:00
// This file is part of OpenCV project.
// It is subject to the license terms in the LICENSE file found in the top-level directory
// of this distribution and at http://opencv.org/license.html.
// Copyright (C) 2016, Intel Corporation, all rights reserved.
// Third party copyrights are property of their respective owners.
/*
C++ wrappers over OpenVX 1.x C API
Details: TBD
*/
#pragma once
#ifndef IVX_HPP
#define IVX_HPP
#ifndef __cplusplus
#error This file has to be compiled with C++ compiler
#endif
#include <VX/vx.h>
#include <VX/vxu.h>
#ifndef VX_VERSION_1_1
// 1.1 to 1.0 backward compatibility defines
static const vx_enum VX_INTERPOLATION_BILINEAR = VX_INTERPOLATION_TYPE_BILINEAR;
static const vx_enum VX_INTERPOLATION_AREA = VX_INTERPOLATION_TYPE_AREA;
static const vx_enum VX_INTERPOLATION_NEAREST_NEIGHBOR = VX_INTERPOLATION_TYPE_NEAREST_NEIGHBOR;
static const vx_enum VX_BORDER_CONSTANT = VX_BORDER_MODE_CONSTANT;
static const vx_enum VX_BORDER_REPLICATE = VX_BORDER_MODE_REPLICATE;
#else
#ifdef IVX_RENAMED_REFS
static const vx_enum VX_REF_ATTRIBUTE_TYPE = VX_REFERENCE_TYPE;
#endif
#endif
#ifndef IVX_USE_CXX98
// checking compiler
#if __cplusplus < 201103L && (!defined(_MSC_VER) || _MSC_VER < 1800)
#define IVX_USE_CXX98
#endif
#endif // IVX_USE_CXX98
#if defined(IVX_USE_CXX98) && !defined(IVX_HIDE_INFO_WARNINGS)
#ifdef _MSC_VER
#pragma message ("ivx.hpp: The ISO C++ 2011 standard is not enabled, switching to C++98 fallback implementation.")
#else
#warning The ISO C++ 2011 standard is not enabled, switching to C++98 fallback implementation.
#endif
#endif // IVX_USE_CXX98
#ifndef IVX_USE_EXTERNAL_REFCOUNT
// checking OpenVX version
#ifndef VX_VERSION_1_1
#define IVX_USE_EXTERNAL_REFCOUNT
#endif
#endif // IVX_USE_CXX98
#if defined(IVX_USE_EXTERNAL_REFCOUNT) && !defined(IVX_HIDE_INFO_WARNINGS)
#ifdef _MSC_VER
#pragma message ("ivx.hpp: OpenVX version < 1.1, switching to external refcounter implementation.")
#else
#warning OpenVX version < 1.1, switching to external refcounter implementation.
#endif
#endif // IVX_USE_EXTERNAL_REFCOUNT
#include <stdexcept>
#include <utility>
#include <string>
#include <vector>
#include <cstdlib>
#ifndef IVX_USE_CXX98
#include <type_traits>
namespace ivx
{
using std::is_same;
using std::is_pointer;
}
#else
namespace ivx
{
// helpers for compile-time type checking
template<typename, typename> struct is_same { static const bool value = false; };
template<typename T> struct is_same<T, T> { static const bool value = true; };
template<typename T> struct is_pointer { static const bool value = false; };
template<typename T> struct is_pointer<T*> { static const bool value = true; };
template<typename T> struct is_pointer<const T*> { static const bool value = true; };
}
#endif
#ifdef IVX_USE_OPENCV
#include "opencv2/core.hpp"
#endif
// disabling false alarm warnings
#if defined(_MSC_VER)
#pragma warning(push)
//#pragma warning( disable : 4??? )
#elif defined(__clang__)
#pragma clang diagnostic push
#pragma clang diagnostic ignored "-Wunused-local-typedef"
#pragma clang diagnostic ignored "-Wmissing-prototypes"
#elif defined(__GNUC__)
#pragma GCC diagnostic push
#pragma GCC diagnostic ignored "-Wunused-local-typedefs"
#pragma GCC diagnostic ignored "-Wunused-value"
#pragma GCC diagnostic ignored "-Wmissing-declarations"
#endif // compiler macro
namespace ivx
{
inline vx_uint16 compiledWithVersion()
{ return VX_VERSION; }
/// Exception class for OpenVX runtime errors
class RuntimeError : public std::runtime_error
{
public:
/// Constructor
explicit RuntimeError(vx_status st, const std::string& msg = "")
: runtime_error(msg), _status(st)
{}
/// OpenVX error code
vx_status status() const
{ return _status; }
private:
vx_status _status;
};
/// Exception class for wrappers logic errors
class WrapperError : public std::logic_error
{
public:
/// Constructor
explicit WrapperError(const std::string& msg) : logic_error(msg)
{}
};
inline void checkVxStatus(vx_status status, const std::string& func, const std::string& msg)
{
if(status != VX_SUCCESS) throw RuntimeError( status, func + "() : " + msg );
}
/// Helper macro for turning a runtime error in the provided code into a \RuntimeError
#define IVX_CHECK_STATUS(code) checkVxStatus(code, __func__, #code)
/// OpenVX enum to type compile-time converter (TODO: add more types)
template<vx_enum E> struct EnumToType {};
template<> struct EnumToType<VX_TYPE_CHAR> { typedef vx_char type; static const vx_size bytes = sizeof(type); };
template<> struct EnumToType<VX_TYPE_INT8> { typedef vx_int8 type; static const vx_size bytes = sizeof(type); };
template<> struct EnumToType<VX_TYPE_UINT8> { typedef vx_uint8 type; static const vx_size bytes = sizeof(type); };
template<> struct EnumToType<VX_TYPE_INT16> { typedef vx_int16 type; static const vx_size bytes = sizeof(type); };
template<> struct EnumToType<VX_TYPE_UINT16> { typedef vx_uint16 type; static const vx_size bytes = sizeof(type); };
template<> struct EnumToType<VX_TYPE_INT32> { typedef vx_int32 type; static const vx_size bytes = sizeof(type); };
template<> struct EnumToType<VX_TYPE_UINT32> { typedef vx_uint32 type; static const vx_size bytes = sizeof(type); };
template<> struct EnumToType<VX_TYPE_INT64> { typedef vx_int64 type; static const vx_size bytes = sizeof(type); };
template<> struct EnumToType<VX_TYPE_UINT64> { typedef vx_uint64 type; static const vx_size bytes = sizeof(type); };
template<> struct EnumToType<VX_TYPE_FLOAT32> { typedef vx_float32 type; static const vx_size bytes = sizeof(type); };
template<> struct EnumToType<VX_TYPE_FLOAT64> { typedef vx_float64 type; static const vx_size bytes = sizeof(type); };
template<> struct EnumToType<VX_TYPE_ENUM> { typedef vx_enum type; static const vx_size bytes = sizeof(type); };
template<> struct EnumToType<VX_TYPE_SIZE> { typedef vx_size type; static const vx_size bytes = sizeof(type); };
template<> struct EnumToType<VX_TYPE_DF_IMAGE> { typedef vx_df_image type; static const vx_size bytes = sizeof(type); };
template<> struct EnumToType<VX_TYPE_BOOL> { typedef vx_bool type; static const vx_size bytes = sizeof(type); };
template<> struct EnumToType<VX_TYPE_KEYPOINT> { typedef vx_keypoint_t type;static const vx_size bytes = sizeof(type); };
#ifndef IVX_USE_CXX98
template <vx_enum E> using EnumToType_t = typename EnumToType<E>::type;
#endif
/// Gets size in bytes for the provided OpenVX type enum
inline vx_size enumToTypeSize(vx_enum type)
{
switch (type)
{
case VX_TYPE_CHAR: return EnumToType<VX_TYPE_CHAR>::bytes;
case VX_TYPE_INT8: return EnumToType<VX_TYPE_INT8>::bytes;
case VX_TYPE_UINT8: return EnumToType<VX_TYPE_UINT8>::bytes;
case VX_TYPE_INT16: return EnumToType<VX_TYPE_INT16>::bytes;
case VX_TYPE_UINT16: return EnumToType<VX_TYPE_UINT16>::bytes;
case VX_TYPE_INT32: return EnumToType<VX_TYPE_INT32>::bytes;
case VX_TYPE_UINT32: return EnumToType<VX_TYPE_UINT32>::bytes;
case VX_TYPE_INT64: return EnumToType<VX_TYPE_INT64>::bytes;
case VX_TYPE_UINT64: return EnumToType<VX_TYPE_UINT64>::bytes;
case VX_TYPE_FLOAT32: return EnumToType<VX_TYPE_FLOAT32>::bytes;
case VX_TYPE_FLOAT64: return EnumToType<VX_TYPE_FLOAT64>::bytes;
case VX_TYPE_ENUM: return EnumToType<VX_TYPE_ENUM>::bytes;
case VX_TYPE_SIZE: return EnumToType<VX_TYPE_SIZE>::bytes;
case VX_TYPE_DF_IMAGE: return EnumToType<VX_TYPE_DF_IMAGE>::bytes;
case VX_TYPE_BOOL: return EnumToType<VX_TYPE_BOOL>::bytes;
case VX_TYPE_KEYPOINT: return EnumToType<VX_TYPE_KEYPOINT>::bytes;
default: throw WrapperError(std::string(__func__) + ": unsupported type enum");
}
}
/// type to enum compile-time converter (TODO: add more types)
template<typename T> struct TypeToEnum {};
template<> struct TypeToEnum<vx_char> { static const vx_enum value = VX_TYPE_CHAR; };
template<> struct TypeToEnum<vx_int8> { static const vx_enum value = VX_TYPE_INT8; };
template<> struct TypeToEnum<vx_uint8> { static const vx_enum value = VX_TYPE_UINT8, imgType = VX_DF_IMAGE_U8; };
template<> struct TypeToEnum<vx_int16> { static const vx_enum value = VX_TYPE_INT16, imgType = VX_DF_IMAGE_S16; };
template<> struct TypeToEnum<vx_uint16> { static const vx_enum value = VX_TYPE_UINT16, imgType = VX_DF_IMAGE_U16; };
template<> struct TypeToEnum<vx_int32> { static const vx_enum value = VX_TYPE_INT32, imgType = VX_DF_IMAGE_S32; };
template<> struct TypeToEnum<vx_uint32> { static const vx_enum value = VX_TYPE_UINT32, imgType = VX_DF_IMAGE_U32; };
template<> struct TypeToEnum<vx_int64> { static const vx_enum value = VX_TYPE_INT64; };
template<> struct TypeToEnum<vx_uint64> { static const vx_enum value = VX_TYPE_UINT64; };
template<> struct TypeToEnum<vx_float32> { static const vx_enum value = VX_TYPE_FLOAT32, imgType = VX_DF_IMAGE('F', '0', '3', '2'); };
template<> struct TypeToEnum<vx_float64> { static const vx_enum value = VX_TYPE_FLOAT64; };
template<> struct TypeToEnum<vx_bool> { static const vx_enum value = VX_TYPE_BOOL; };
template<> struct TypeToEnum<vx_keypoint_t> {static const vx_enum value = VX_TYPE_KEYPOINT; };
// the commented types are aliases (of integral tyes) and have conflicts with the types above
//template<> struct TypeToEnum<vx_enum> { static const vx_enum val = VX_TYPE_ENUM; };
//template<> struct TypeToEnum<vx_size> { static const vx_enum val = VX_TYPE_SIZE; };
//template<> struct TypeToEnum<vx_df_image> { static const vx_enum val = VX_TYPE_DF_IMAGE; };
inline bool areTypesCompatible(const vx_enum a, const vx_enum b)
{
return enumToTypeSize(a) == enumToTypeSize(b);
}
#ifdef IVX_USE_OPENCV
inline int enumToCVType(vx_enum type)
{
switch (type)
{
case VX_TYPE_CHAR: return CV_8UC1;//While OpenCV support 8S as well, 8U is supported wider
case VX_TYPE_INT8: return CV_8SC1;
case VX_TYPE_UINT8: return CV_8UC1;
case VX_TYPE_INT16: return CV_16SC1;
case VX_TYPE_UINT16: return CV_16UC1;
case VX_TYPE_INT32: return CV_32SC1;
case VX_TYPE_UINT32: return CV_32SC1;//That's not the best option but there is CV_32S type only
case VX_TYPE_FLOAT32: return CV_32FC1;
case VX_TYPE_FLOAT64: return CV_64FC1;
case VX_TYPE_ENUM: return CV_32SC1;
case VX_TYPE_BOOL: return CV_32SC1;
default: throw WrapperError(std::string(__func__) + ": unsupported type enum");
}
}
#endif
/// Helper type, provides info for OpenVX 'objects' (vx_reference extending) types
template <typename T> struct RefTypeTraits {};
class Context;
template <> struct RefTypeTraits <vx_context>
{
typedef vx_context vxType;
typedef Context wrapperType;
static const vx_enum vxTypeEnum = VX_TYPE_CONTEXT;
static vx_status release(vxType& ref) { return vxReleaseContext(&ref); }
};
class Graph;
template <> struct RefTypeTraits <vx_graph>
{
typedef vx_graph vxType;
typedef Graph wrapperType;
static const vx_enum vxTypeEnum = VX_TYPE_GRAPH;
static vx_status release(vxType& ref) { return vxReleaseGraph(&ref); }
};
class Node;
template <> struct RefTypeTraits <vx_node>
{
typedef vx_node vxType;
typedef Node wrapperType;
static const vx_enum vxTypeEnum = VX_TYPE_NODE;
static vx_status release(vxType& ref) { return vxReleaseNode(&ref); }
};
class Kernel;
template <> struct RefTypeTraits <vx_kernel>
{
typedef vx_kernel vxType;
typedef Kernel wrapperType;
static const vx_enum vxTypeEnum = VX_TYPE_KERNEL;
static vx_status release(vxType& ref) { return vxReleaseKernel(&ref); }
};
class Param;
template <> struct RefTypeTraits <vx_parameter>
{
typedef vx_parameter vxType;
typedef Param wrapperType;
static const vx_enum vxTypeEnum = VX_TYPE_PARAMETER;
static vx_status release(vxType& ref) { return vxReleaseParameter(&ref); }
};
class Image;
template <> struct RefTypeTraits <vx_image>
{
typedef vx_image vxType;
typedef Image wrapperType;
static const vx_enum vxTypeEnum = VX_TYPE_IMAGE;
static vx_status release(vxType& ref) { return vxReleaseImage(&ref); }
};
class Scalar;
template <> struct RefTypeTraits <vx_scalar>
{
typedef vx_scalar vxType;
typedef Scalar wrapperType;
static const vx_enum vxTypeEnum = VX_TYPE_SCALAR;
static vx_status release(vxType& ref) { return vxReleaseScalar(&ref); }
};
class Array;
template <> struct RefTypeTraits <vx_array>
{
typedef vx_array vxType;
typedef Array wrapperType;
static const vx_enum vxTypeEnum = VX_TYPE_ARRAY;
static vx_status release(vxType& ref) { return vxReleaseArray(&ref); }
};
class Threshold;
template <> struct RefTypeTraits <vx_threshold>
{
typedef vx_threshold vxType;
typedef Threshold wrapperType;
static const vx_enum vxTypeEnum = VX_TYPE_THRESHOLD;
static vx_status release(vxType& ref) { return vxReleaseThreshold(&ref); }
};
class Convolution;
template <> struct RefTypeTraits <vx_convolution>
{
typedef vx_convolution vxType;
typedef Convolution wrapperType;
static const vx_enum vxTypeEnum = VX_TYPE_CONVOLUTION;
static vx_status release(vxType& ref) { return vxReleaseConvolution(&ref); }
};
class Matrix;
template <> struct RefTypeTraits <vx_matrix>
{
typedef vx_matrix vxType;
typedef Matrix wrapperType;
static const vx_enum vxTypeEnum = VX_TYPE_MATRIX;
static vx_status release(vxType& ref) { return vxReleaseMatrix(&ref); }
};
class LUT;
template <> struct RefTypeTraits <vx_lut>
{
typedef vx_lut vxType;
typedef LUT wrapperType;
static const vx_enum vxTypeEnum = VX_TYPE_LUT;
static vx_status release(vxType& ref) { return vxReleaseLUT(&ref); }
};
class Pyramid;
template <> struct RefTypeTraits <vx_pyramid>
{
typedef vx_pyramid vxType;
typedef Pyramid wrapperType;
static const vx_enum vxTypeEnum = VX_TYPE_PYRAMID;
static vx_status release(vxType& ref) { return vxReleasePyramid(&ref); }
};
class Distribution;
template <> struct RefTypeTraits <vx_distribution>
{
typedef vx_distribution vxType;
typedef Distribution wrapperType;
static const vx_enum vxTypeEnum = VX_TYPE_DISTRIBUTION;
static vx_status release(vxType& ref) { return vxReleaseDistribution(&ref); }
};
class Remap;
template <> struct RefTypeTraits <vx_remap>
{
typedef vx_remap vxType;
typedef Remap wrapperType;
static const vx_enum vxTypeEnum = VX_TYPE_REMAP;
static vx_status release(vxType& ref) { return vxReleaseRemap(&ref); }
};
#ifdef IVX_USE_CXX98
/// Casting to vx_reference with compile-time check
// takes 'vx_reference' itself and RefWrapper<T> via 'operator vx_reference()'
inline vx_reference castToReference(vx_reference ref)
{ return ref; }
// takes vx_reference extensions that have RefTypeTraits<T> specializations
template<typename T>
inline vx_reference castToReference(const T& ref, typename RefTypeTraits<T>::vxType dummy = 0)
{ (void)dummy; return (vx_reference)ref; }
#else
template<typename T, typename = void>
struct is_ref : std::is_same<T, vx_reference>{}; // allow vx_reference
// allow RefWrapper<> types
template<typename T>
#ifndef _MSC_VER
struct is_ref<T, decltype(T().operator vx_reference(), void())> : std::true_type {};
#else
// workarounding VC14 compiler crash
struct is_ref<T, decltype(T::vxType(), void())> : std::true_type {};
#endif
// allow vx_reference extensions
template<typename T>
struct is_ref<T, decltype(RefTypeTraits<T>::vxTypeEnum, void())> : std::true_type {};
/// Casting to vx_reference with compile-time check
template<typename T>
inline vx_reference castToReference(const T& obj)
{
static_assert(is_ref<T>::value, "unsupported conversion");
return (vx_reference) obj;
}
#endif // IVX_USE_CXX98
inline void checkVxRef(vx_reference ref, const std::string& func, const std::string& msg)
{
vx_status status = vxGetStatus(ref);
if(status != VX_SUCCESS) throw RuntimeError( status, func + "() : " + msg );
}
/// Helper macro for checking the provided OpenVX 'object' and throwing a \RuntimeError in case of error
#define IVX_CHECK_REF(code) checkVxRef(castToReference(code), __func__, #code)
#ifdef IVX_USE_EXTERNAL_REFCOUNT
/// Base class for OpenVX 'objects' wrappers
template <typename T> class RefWrapper
{
public:
typedef T vxType;
static const vx_enum vxTypeEnum = RefTypeTraits <T>::vxTypeEnum;
/// Default constructor
RefWrapper() : ref(0), refcount(0)
{}
/// Constructor
/// \param r OpenVX 'object' (e.g. vx_image)
/// \param retainRef flag indicating whether to increase ref counter in constructor (false by default)
explicit RefWrapper(T r, bool retainRef = false) : ref(0), refcount(0)
{ reset(r, retainRef); }
/// Copy constructor
RefWrapper(const RefWrapper& r) : ref(r.ref), refcount(r.refcount)
{ addRef(); }
#ifndef IVX_USE_CXX98
/// Move constructor
RefWrapper(RefWrapper&& rw) noexcept : RefWrapper()
{
using std::swap;
swap(ref, rw.ref);
swap(refcount, rw.refcount);
}
#endif
/// Casting to the wrapped OpenVX 'object'
operator T() const
{ return ref; }
/// Casting to vx_reference since every OpenVX 'object' extends it
operator vx_reference() const
{ return castToReference(ref); }
/// Assigning a new value (decreasing ref counter for the old one)
/// \param r OpenVX 'object' (e.g. vx_image)
/// \param retainRef flag indicating whether to increase ref counter in constructor (false by default)
void reset(T r, bool retainRef = false)
{
release();
ref = r;
#ifdef VX_VERSION_1_1
if(retainRef) addRef();
#else
// if 'retainRef' -just don't use ref-counting for v 1.0
if(!retainRef) refcount = new int(1);
#endif
checkRef();
}
/// Assigning an empty value (decreasing ref counter for the old one)
void reset()
{ release(); }
/// Dropping kept value without releas decreasing ref counter
/// \return the value being dropped
T detach()
{
T tmp = ref;
ref = 0;
release();
return tmp;
}
/// Unified assignment operator (covers both copy and move cases)
RefWrapper& operator=(RefWrapper r)
{
using std::swap;
swap(ref, r.ref);
swap(refcount, r.refcount);
return *this;
}
/// Checking for non-empty
bool operator !() const
{ return ref == 0; }
#ifndef IVX_USE_CXX98
/// Explicit boolean evaluation (called automatically inside conditional operators only)
explicit operator bool() const
{ return ref != 0; }
#endif
/// Getting a context that is kept in each OpenVX 'object' (call get<Context>())
template<typename C>
C get() const
{
typedef int static_assert_context[is_same<C, Context>::value ? 1 : -1];
vx_context c = vxGetContext(castToReference(ref));
// vxGetContext doesn't increment ref count, let do it in wrapper c-tor
return C(c, true);
}
#ifndef IVX_USE_CXX98
/// Getting a context that is kept in each OpenVX 'object'
template<typename C = Context, typename = typename std::enable_if<std::is_same<C, Context>::value>::type>
C getContext() const
{
vx_context c = vxGetContext(castToReference(ref));
// vxGetContext doesn't increment ref count, let do it in wrapper c-tor
return C(c, true);
}
#endif // IVX_USE_CXX98
protected:
T ref;
int* refcount;
void addRef()
{
#ifdef VX_VERSION_1_1
if(ref) IVX_CHECK_STATUS(vxRetainReference(castToReference(ref)));
#else //TODO: make thread-safe
if(refcount) ++(*refcount);
#endif
}
void release()
{
#ifdef VX_VERSION_1_1
if(ref) RefTypeTraits<T>::release(ref);
#else //TODO: make thread-safe
if(refcount && --(*refcount) == 0)
{
if(ref) RefTypeTraits<T>::release(ref);
ref = 0;
delete refcount;
refcount = 0;
}
#endif
}
void checkRef() const
{
IVX_CHECK_REF(ref);
vx_enum type;
IVX_CHECK_STATUS(vxQueryReference((vx_reference)ref, VX_REF_ATTRIBUTE_TYPE, &type, sizeof(type)));
if (type != vxTypeEnum) throw WrapperError("incompatible reference type");
}
~RefWrapper()
{ release(); }
};
#ifdef IVX_USE_CXX98
#define IVX_REF_STD_CTORS_AND_ASSIGNMENT(Class) \
Class() : RefWrapper() {} \
explicit Class(Class::vxType _ref, bool retainRef = false) : RefWrapper(_ref, retainRef) {} \
Class(const Class& _obj) : RefWrapper(_obj) {} \
\
Class& operator=(Class _obj) { using std::swap; swap(ref, _obj.ref); swap(refcount, _obj.refcount); return *this; }
#else
#define IVX_REF_STD_CTORS_AND_ASSIGNMENT(Class) \
Class() : RefWrapper() {} \
explicit Class(Class::vxType _ref, bool retainRef = false) : RefWrapper(_ref, retainRef) {} \
Class(const Class& _obj) : RefWrapper(_obj) {} \
Class(Class&& _obj) : RefWrapper(std::move(_obj)) {} \
\
Class& operator=(Class _obj) { using std::swap; swap(ref, _obj.ref); swap(refcount, _obj.refcount); return *this; }
#endif // IVX_USE_CXX98
#else // not IVX_USE_EXTERNAL_REFCOUNT
/// Base class for OpenVX 'objects' wrappers
template <typename T> class RefWrapper
{
public:
typedef T vxType;
static const vx_enum vxTypeEnum = RefTypeTraits <T>::vxTypeEnum;
/// Default constructor
RefWrapper() : ref(0)
{}
/// Constructor
/// \param r OpenVX 'object' (e.g. vx_image)
/// \param retainRef flag indicating whether to increase ref counter in constructor (false by default)
explicit RefWrapper(T r, bool retainRef = false) : ref(0)
{ reset(r, retainRef); }
/// Copy constructor
RefWrapper(const RefWrapper& r) : ref(r.ref)
{ addRef(); }
#ifndef IVX_USE_CXX98
/// Move constructor
RefWrapper(RefWrapper&& rw) noexcept : RefWrapper()
{
using std::swap;
swap(ref, rw.ref);
}
#endif
/// Casting to the wrapped OpenVX 'object'
operator T() const
{ return ref; }
/// Casting to vx_reference since every OpenVX 'object' extends it
operator vx_reference() const
{ return castToReference(ref); }
/// Getting a context that is kept in each OpenVX 'object' (call get<Context>())
template<typename C>
C get() const
{
typedef int static_assert_context[is_same<C, Context>::value ? 1 : -1];
vx_context c = vxGetContext(castToReference(ref));
// vxGetContext doesn't increment ref count, let do it in wrapper c-tor
return C(c, true);
}
#ifndef IVX_USE_CXX98
/// Getting a context that is kept in each OpenVX 'object'
template<typename C = Context, typename = typename std::enable_if<std::is_same<C, Context>::value>::type>
C getContext() const
{
vx_context c = vxGetContext(castToReference(ref));
// vxGetContext doesn't increment ref count, let do it in wrapper c-tor
return C(c, true);
}
#endif // IVX_USE_CXX98
/// Assigning a new value (decreasing ref counter for the old one)
/// \param r OpenVX 'object' (e.g. vx_image)
/// \param retainRef flag indicating whether to increase ref counter in constructor (false by default)
void reset(T r, bool retainRef = false)
{
release();
ref = r;
if (retainRef) addRef();
checkRef();
}
/// Assigning an empty value (decreasing ref counter for the old one)
void reset()
{ release(); }
/// Dropping kept value without releas decreasing ref counter
/// \return the value being dropped
T detach()
{
T tmp = ref;
ref = 0;
return tmp;
}
/// Unified assignment operator (covers both copy and move cases)
RefWrapper& operator=(RefWrapper r)
{
using std::swap;
swap(ref, r.ref);
return *this;
}
/// Checking for non-empty
bool operator !() const
{ return ref == 0; }
#ifndef IVX_USE_CXX98
/// Explicit boolean evaluation (called automatically inside conditional operators only)
explicit operator bool() const
{ return ref != 0; }
#endif
protected:
T ref;
void addRef()
{ if (ref) IVX_CHECK_STATUS(vxRetainReference((vx_reference)ref)); }
void release()
{
if (ref) RefTypeTraits<T>::release(ref);
ref = 0;
}
void checkRef() const
{
IVX_CHECK_REF(ref);
vx_enum type;
IVX_CHECK_STATUS(vxQueryReference((vx_reference)ref, VX_REF_ATTRIBUTE_TYPE, &type, sizeof(type)));
if (type != vxTypeEnum) throw WrapperError("incompatible reference type");
}
~RefWrapper()
{ release(); }
};
#ifdef IVX_USE_CXX98
#define IVX_REF_STD_CTORS_AND_ASSIGNMENT(Class) \
Class() : RefWrapper() {} \
explicit Class(Class::vxType _ref, bool retainRef = false) : RefWrapper(_ref, retainRef) {} \
Class(const Class& _obj) : RefWrapper(_obj) {} \
\
Class& operator=(Class _obj) { using std::swap; swap(ref, _obj.ref); return *this; }
#else
#define IVX_REF_STD_CTORS_AND_ASSIGNMENT(Class) \
Class() : RefWrapper() {} \
explicit Class(Class::vxType _ref, bool retainRef = false) : RefWrapper(_ref, retainRef) {} \
Class(const Class& _obj) : RefWrapper(_obj) {} \
Class(Class&& _obj) : RefWrapper(std::move(_obj)) {} \
\
Class& operator=(Class _obj) { using std::swap; swap(ref, _obj.ref); return *this; }
#endif // IVX_USE_CXX98
#endif // IVX_USE_EXTERNAL_REFCOUNT
#ifndef VX_VERSION_1_1
typedef vx_border_mode_t border_t;
#else
typedef vx_border_t border_t;
#endif
/// vx_context wrapper
class Context : public RefWrapper<vx_context>
{
public:
IVX_REF_STD_CTORS_AND_ASSIGNMENT(Context)
/// vxCreateContext() wrapper
static Context create()
{ return Context(vxCreateContext()); }
/// vxGetContext() wrapper
template <typename T>
static Context getFrom(const T& ref)
{
vx_context c = vxGetContext(castToReference(ref));
// vxGetContext doesn't increment ref count, let do it in wrapper c-tor
return Context(c, true);
}
/// vxLoadKernels() wrapper
void loadKernels(const std::string& module)
{ IVX_CHECK_STATUS( vxLoadKernels(ref, module.c_str()) ); }
/// vxQueryContext() wrapper
template<typename T>
void query(vx_enum att, T& value) const
{ IVX_CHECK_STATUS(vxQueryContext(ref, att, &value, sizeof(value))); }
#ifndef VX_VERSION_1_1
static const vx_enum
VX_CONTEXT_VENDOR_ID = VX_CONTEXT_ATTRIBUTE_VENDOR_ID,
VX_CONTEXT_VERSION = VX_CONTEXT_ATTRIBUTE_VERSION,
VX_CONTEXT_UNIQUE_KERNELS = VX_CONTEXT_ATTRIBUTE_UNIQUE_KERNELS,
VX_CONTEXT_MODULES = VX_CONTEXT_ATTRIBUTE_MODULES,
VX_CONTEXT_REFERENCES = VX_CONTEXT_ATTRIBUTE_REFERENCES,
VX_CONTEXT_IMPLEMENTATION = VX_CONTEXT_ATTRIBUTE_IMPLEMENTATION,
VX_CONTEXT_EXTENSIONS_SIZE = VX_CONTEXT_ATTRIBUTE_EXTENSIONS_SIZE,
VX_CONTEXT_EXTENSIONS = VX_CONTEXT_ATTRIBUTE_EXTENSIONS,
VX_CONTEXT_CONVOLUTION_MAX_DIMENSION = VX_CONTEXT_ATTRIBUTE_CONVOLUTION_MAXIMUM_DIMENSION,
VX_CONTEXT_OPTICAL_FLOW_MAX_WINDOW_DIMENSION = VX_CONTEXT_ATTRIBUTE_OPTICAL_FLOW_WINDOW_MAXIMUM_DIMENSION,
VX_CONTEXT_IMMEDIATE_BORDER = VX_CONTEXT_ATTRIBUTE_IMMEDIATE_BORDER_MODE,
VX_CONTEXT_UNIQUE_KERNEL_TABLE = VX_CONTEXT_ATTRIBUTE_UNIQUE_KERNEL_TABLE;
#endif
/// vxQueryContext(VX_CONTEXT_VENDOR_ID) wrapper
vx_uint16 vendorID() const
{
vx_uint16 v;
query(VX_CONTEXT_VENDOR_ID, v);
return v;
}
/// vxQueryContext(VX_CONTEXT_VERSION) wrapper
vx_uint16 version() const
{
vx_uint16 v;
query(VX_CONTEXT_VERSION, v);
return v;
}
/// vxQueryContext(VX_CONTEXT_UNIQUE_KERNELS) wrapper
vx_uint32 uniqueKernelsNum() const
{
vx_uint32 v;
query(VX_CONTEXT_UNIQUE_KERNELS, v);
return v;
}
/// vxQueryContext(VX_CONTEXT_MODULES) wrapper
vx_uint32 modulesNum() const
{
vx_uint32 v;
query(VX_CONTEXT_MODULES, v);
return v;
}
/// vxQueryContext(VX_CONTEXT_REFERENCES) wrapper
vx_uint32 refsNum() const
{
vx_uint32 v;
query(VX_CONTEXT_REFERENCES, v);
return v;
}
/// vxQueryContext(VX_CONTEXT_EXTENSIONS_SIZE) wrapper
vx_size extensionsSize() const
{
vx_size v;
query(VX_CONTEXT_EXTENSIONS_SIZE, v);
return v;
}
/// vxQueryContext(VX_CONTEXT_CONVOLUTION_MAX_DIMENSION) wrapper
vx_size convolutionMaxDimension() const
{
vx_size v;
query(VX_CONTEXT_CONVOLUTION_MAX_DIMENSION, v);
return v;
}
/// vxQueryContext(VX_CONTEXT_OPTICAL_FLOW_MAX_WINDOW_DIMENSION) wrapper
vx_size opticalFlowMaxWindowSize() const
{
vx_size v;
query(VX_CONTEXT_OPTICAL_FLOW_MAX_WINDOW_DIMENSION, v);
return v;
}
/// vxQueryContext(VX_CONTEXT_IMMEDIATE_BORDER) wrapper
border_t immediateBorder() const
{
border_t v;
query(VX_CONTEXT_IMMEDIATE_BORDER, v);
return v;
}
/// vxQueryContext(VX_CONTEXT_IMPLEMENTATION) wrapper
std::string implName() const
{
std::vector<vx_char> v(VX_MAX_IMPLEMENTATION_NAME);
IVX_CHECK_STATUS(vxQueryContext(ref, VX_CONTEXT_IMPLEMENTATION, &v[0], v.size() * sizeof(vx_char)));
return std::string(v.data());
}
/// vxQueryContext(VX_CONTEXT_EXTENSIONS) wrapper
std::string extensionsStr() const
{
std::vector<vx_char> v(extensionsSize());
IVX_CHECK_STATUS(vxQueryContext(ref, VX_CONTEXT_EXTENSIONS, &v[0], v.size() * sizeof(vx_char)));
return std::string(v.data());
}
/// vxQueryContext(VX_CONTEXT_UNIQUE_KERNEL_TABLE) wrapper
std::vector<vx_kernel_info_t> kernelTable() const
{
std::vector<vx_kernel_info_t> v(uniqueKernelsNum());
IVX_CHECK_STATUS(vxQueryContext(ref, VX_CONTEXT_UNIQUE_KERNEL_TABLE, &v[0], v.size() * sizeof(vx_kernel_info_t)));
return v;
}
#ifdef VX_VERSION_1_1
/// vxQueryContext(VX_CONTEXT_IMMEDIATE_BORDER_POLICY) wrapper
vx_enum immediateBorderPolicy() const
{
vx_enum v;
query(VX_CONTEXT_IMMEDIATE_BORDER_POLICY, v);
return v;
}
/// vxQueryContext(VX_CONTEXT_NONLINEAR_MAX_DIMENSION) wrapper
vx_size nonlinearMaxDimension() const
{
vx_size v;
query(VX_CONTEXT_NONLINEAR_MAX_DIMENSION, v);
return v;
}
#endif
/// vxSetContextAttribute() wrapper
template<typename T>
void setAttribute(vx_enum att, const T& value)
{ IVX_CHECK_STATUS( vxSetContextAttribute(ref, att, &value, sizeof(value)) ); }
/// vxSetContextAttribute(BORDER) wrapper
void setImmediateBorder(const border_t& bm)
{ setAttribute(VX_CONTEXT_IMMEDIATE_BORDER, bm); }
#ifndef VX_VERSION_1_1
/// vxSetContextAttribute(BORDER) wrapper
void setImmediateBorder(vx_enum mode, vx_uint32 val = 0)
{ border_t bm = {mode, val}; setImmediateBorder(bm); }
#else
/// vxSetContextAttribute(BORDER) wrapper
void setImmediateBorder(vx_enum mode, const vx_pixel_value_t& val)
{ border_t bm = {mode, val}; setImmediateBorder(bm); }
/// vxSetContextAttribute(BORDER) wrapper
template <typename T>
void setImmediateBorder(vx_enum mode, const T& _val)
{
vx_pixel_value_t val;
switch (TypeToEnum<T>::value)
{
case VX_TYPE_UINT8:
val.U8 = _val;
break;
case VX_TYPE_INT16:
val.S16 = _val;
break;
case VX_TYPE_UINT16:
val.U16 = _val;
break;
case VX_TYPE_INT32:
val.S32 = _val;
break;
case VX_TYPE_UINT32:
val.U32 = _val;
break;
default:
throw WrapperError("Unsupported constant border value type");
}
setImmediateBorder(mode, val);
}
/// vxSetContextAttribute(BORDER) wrapper
void setImmediateBorder(vx_enum mode)
{ vx_pixel_value_t val = {}; setImmediateBorder(mode, val); }
#endif
};
/// vx_graph wrapper
class Graph : public RefWrapper<vx_graph>
{
public:
IVX_REF_STD_CTORS_AND_ASSIGNMENT(Graph);
/// vxCreateGraph() wrapper
static Graph create(vx_context c)
{ return Graph(vxCreateGraph(c)); }
/// vxVerifyGraph() wrapper
void verify()
{ IVX_CHECK_STATUS( vxVerifyGraph(ref) ); }
/// vxProcessGraph() wrapper
void process()
{ IVX_CHECK_STATUS( vxProcessGraph(ref) ); }
/// vxScheduleGraph() wrapper
void schedule()
{ IVX_CHECK_STATUS(vxScheduleGraph(ref) ); }
/// vxWaitGraph() wrapper
void wait()
{ IVX_CHECK_STATUS(vxWaitGraph(ref)); }
};
/// vx_kernel wrapper
class Kernel : public RefWrapper<vx_kernel>
{
public:
IVX_REF_STD_CTORS_AND_ASSIGNMENT(Kernel);
/// vxGetKernelByEnum() wrapper
static Kernel getByEnum(vx_context c, vx_enum kernelID)
{ return Kernel(vxGetKernelByEnum(c, kernelID)); }
/// vxGetKernelByName() wrapper
static Kernel getByName(vx_context c, const std::string& name)
{ return Kernel(vxGetKernelByName(c, name.c_str())); }
};
/// vx_node wrapper
class Node : public RefWrapper<vx_node>
{
public:
IVX_REF_STD_CTORS_AND_ASSIGNMENT(Node);
/// vxCreateGenericNode() wrapper
static Node create(vx_graph g, vx_kernel k)
{ return Node(vxCreateGenericNode(g, k)); }
/// Create node for the kernel and set the parameters
static Node create(vx_graph graph, vx_kernel kernel, const std::vector<vx_reference>& params)
{
Node node = Node::create(graph, kernel);
vx_uint32 i = 0;
for (std::vector<vx_reference>::const_iterator p = params.begin(); p != params.end(); ++p)
node.setParameterByIndex(i++, *p);
return node;
}
/// Create node for the kernel ID and set the parameters
static Node create(vx_graph graph, vx_enum kernelID, const std::vector<vx_reference>& params)
{ return Node::create(graph, Kernel::getByEnum(Context::getFrom(graph), kernelID), params); }
#ifdef IVX_USE_CXX98
/// Create node for the kernel ID and set one parameter
template<typename T0>
static Node create(vx_graph g, vx_enum kernelID,
const T0& arg0)
{
std::vector<vx_reference> params;
params.push_back(castToReference(arg0));
return create(g, Kernel::getByEnum(Context::getFrom(g), kernelID), params);
}
/// Create node for the kernel ID and set two parameters
template<typename T0, typename T1>
static Node create(vx_graph g, vx_enum kernelID,
const T0& arg0, const T1& arg1)
{
std::vector<vx_reference> params;
params.push_back(castToReference(arg0));
params.push_back(castToReference(arg1));
return create(g, Kernel::getByEnum(Context::getFrom(g), kernelID), params);
}
/// Create node for the kernel ID and set three parameters
template<typename T0, typename T1, typename T2>
static Node create(vx_graph g, vx_enum kernelID,
const T0& arg0, const T1& arg1, const T2& arg2)
{
std::vector<vx_reference> params;
params.push_back(castToReference(arg0));
params.push_back(castToReference(arg1));
params.push_back(castToReference(arg2));
return create(g, Kernel::getByEnum(Context::getFrom(g), kernelID), params);
}
/// Create node for the kernel ID and set four parameters
template<typename T0, typename T1, typename T2, typename T3>
static Node create(vx_graph g, vx_enum kernelID,
const T0& arg0, const T1& arg1, const T2& arg2,
const T3& arg3)
{
std::vector<vx_reference> params;
params.push_back(castToReference(arg0));
params.push_back(castToReference(arg1));
params.push_back(castToReference(arg2));
params.push_back(castToReference(arg3));
return create(g, Kernel::getByEnum(Context::getFrom(g), kernelID), params);
}
/// Create node for the kernel ID and set five parameters
template<typename T0, typename T1, typename T2, typename T3, typename T4>
static Node create(vx_graph g, vx_enum kernelID,
const T0& arg0, const T1& arg1, const T2& arg2,
const T3& arg3, const T4& arg4)
{
std::vector<vx_reference> params;
params.push_back(castToReference(arg0));
params.push_back(castToReference(arg1));
params.push_back(castToReference(arg2));
params.push_back(castToReference(arg3));
params.push_back(castToReference(arg4));
return create(g, Kernel::getByEnum(Context::getFrom(g), kernelID), params);
}
/// Create node for the kernel ID and set six parameters
template<typename T0, typename T1, typename T2, typename T3, typename T4, typename T5>
static Node create(vx_graph g, vx_enum kernelID,
const T0& arg0, const T1& arg1, const T2& arg2,
const T3& arg3, const T4& arg4, const T5& arg5)
{
std::vector<vx_reference> params;
params.push_back(castToReference(arg0));
params.push_back(castToReference(arg1));
params.push_back(castToReference(arg2));
params.push_back(castToReference(arg3));
params.push_back(castToReference(arg4));
params.push_back(castToReference(arg5));
return create(g, Kernel::getByEnum(Context::getFrom(g), kernelID), params);
}
/// Create node for the kernel ID and set seven parameters
template<typename T0, typename T1, typename T2, typename T3, typename T4, typename T5,
typename T6>
static Node create(vx_graph g, vx_enum kernelID,
const T0& arg0, const T1& arg1, const T2& arg2,
const T3& arg3, const T4& arg4, const T5& arg5,
const T6& arg6)
{
std::vector<vx_reference> params;
params.push_back(castToReference(arg0));
params.push_back(castToReference(arg1));
params.push_back(castToReference(arg2));
params.push_back(castToReference(arg3));
params.push_back(castToReference(arg4));
params.push_back(castToReference(arg5));
params.push_back(castToReference(arg6));
return create(g, Kernel::getByEnum(Context::getFrom(g), kernelID), params);
}
/// Create node for the kernel ID and set eight parameters
template<typename T0, typename T1, typename T2, typename T3, typename T4, typename T5,
typename T6, typename T7>
static Node create(vx_graph g, vx_enum kernelID,
const T0& arg0, const T1& arg1, const T2& arg2,
const T3& arg3, const T4& arg4, const T5& arg5,
const T6& arg6, const T7& arg7)
{
std::vector<vx_reference> params;
params.push_back(castToReference(arg0));
params.push_back(castToReference(arg1));
params.push_back(castToReference(arg2));
params.push_back(castToReference(arg3));
params.push_back(castToReference(arg4));
params.push_back(castToReference(arg5));
params.push_back(castToReference(arg6));
params.push_back(castToReference(arg7));
return create(g, Kernel::getByEnum(Context::getFrom(g), kernelID), params);
}
/// Create node for the kernel ID and set nine parameters
template<typename T0, typename T1, typename T2, typename T3, typename T4, typename T5,
typename T6, typename T7, typename T8>
static Node create(vx_graph g, vx_enum kernelID,
const T0& arg0, const T1& arg1, const T2& arg2,
const T3& arg3, const T4& arg4, const T5& arg5,
const T6& arg6, const T7& arg7, const T8& arg8)
{
std::vector<vx_reference> params;
params.push_back(castToReference(arg0));
params.push_back(castToReference(arg1));
params.push_back(castToReference(arg2));
params.push_back(castToReference(arg3));
params.push_back(castToReference(arg4));
params.push_back(castToReference(arg5));
params.push_back(castToReference(arg6));
params.push_back(castToReference(arg7));
params.push_back(castToReference(arg8));
return create(g, Kernel::getByEnum(Context::getFrom(g), kernelID), params);
}
/// Create node for the kernel ID and set ten parameters
template<typename T0, typename T1, typename T2, typename T3, typename T4, typename T5,
typename T6, typename T7, typename T8, typename T9>
static Node create(vx_graph g, vx_enum kernelID,
const T0& arg0, const T1& arg1, const T2& arg2,
const T3& arg3, const T4& arg4, const T5& arg5,
const T6& arg6, const T7& arg7, const T8& arg8,
const T9& arg9)
{
std::vector<vx_reference> params;
params.push_back(castToReference(arg0));
params.push_back(castToReference(arg1));
params.push_back(castToReference(arg2));
params.push_back(castToReference(arg3));
params.push_back(castToReference(arg4));
params.push_back(castToReference(arg5));
params.push_back(castToReference(arg6));
params.push_back(castToReference(arg7));
params.push_back(castToReference(arg8));
params.push_back(castToReference(arg9));
return create(g, Kernel::getByEnum(Context::getFrom(g), kernelID), params);
}
#else // not IVX_USE_CXX98
/// Create node for the kernel ID and set the specified parameters
template<typename...Ts>
static Node create(vx_graph g, vx_enum kernelID, const Ts&...args)
{ return create(g, Kernel::getByEnum(Context::getFrom(g), kernelID), { castToReference(args)... }); }
#endif // IVX_USE_CXX98
/// vxSetParameterByIndex() wrapper
void setParameterByIndex(vx_uint32 index, vx_reference value)
{ IVX_CHECK_STATUS(vxSetParameterByIndex(ref, index, value)); }
/// vxQueryNode() wrapper
template<typename T>
void query(vx_enum att, T& value) const
{ IVX_CHECK_STATUS( vxQueryNode(ref, att, &value, sizeof(value)) ); }
#ifndef VX_VERSION_1_1
static const vx_enum
VX_NODE_STATUS = VX_NODE_ATTRIBUTE_STATUS,
VX_NODE_PERFORMANCE = VX_NODE_ATTRIBUTE_PERFORMANCE,
VX_NODE_BORDER = VX_NODE_ATTRIBUTE_BORDER_MODE,
VX_NODE_LOCAL_DATA_SIZE = VX_NODE_ATTRIBUTE_LOCAL_DATA_SIZE,
VX_NODE_LOCAL_DATA_PTR = VX_NODE_ATTRIBUTE_LOCAL_DATA_PTR,
VX_BORDER_UNDEFINED = VX_BORDER_MODE_UNDEFINED;
#endif
/// vxQueryNode(STATUS) wrapper
vx_status status() const
{
vx_status v;
query(VX_NODE_STATUS, v);
return v;
}
/// vxQueryNode(PERFORMANCE) wrapper
vx_perf_t performance() const
{
vx_perf_t v;
query(VX_NODE_PERFORMANCE, v);
return v;
}
/// vxQueryNode(BORDER) wrapper
border_t border() const
{
border_t v;
v.mode = VX_BORDER_UNDEFINED;
query(VX_NODE_BORDER, v);
return v;
}
/// vxQueryNode(LOCAL_DATA_SIZE) wrapper
vx_size dataSize() const
{
vx_size v;
query(VX_NODE_LOCAL_DATA_SIZE, v);
return v;
}
/// vxQueryNode(LOCAL_DATA_PTR) wrapper
void* dataPtr() const
{
void* v;
query(VX_NODE_LOCAL_DATA_PTR, v);
return v;
}
#ifdef VX_VERSION_1_1
/// vxQueryNode(PARAMETERS) wrapper
vx_uint32 paramsNum() const
{
vx_uint32 v;
query(VX_NODE_PARAMETERS, v);
return v;
}
/// vxQueryNode(REPLICATED) wrapper
vx_bool isReplicated() const
{
vx_bool v;
query(VX_NODE_IS_REPLICATED, v);
return v;
}
/// vxQueryNode(REPLICATE_FLAGS) wrapper
void replicateFlags(std::vector<vx_bool>& flags) const
{
if(flags.empty()) flags.resize(paramsNum(), vx_false_e);
IVX_CHECK_STATUS( vxQueryNode(ref, VX_NODE_REPLICATE_FLAGS, &flags[0], flags.size()*sizeof(flags[0])) );
}
/// vxQueryNode(VX_NODE_VALID_RECT_RESET) wrapper
vx_bool resetValidRect() const
{
vx_bool v;
query(VX_NODE_VALID_RECT_RESET, v);
return v;
}
#endif // VX_VERSION_1_1
/// vxSetNodeAttribute() wrapper
template<typename T>
void setAttribute(vx_enum att, const T& value)
{ IVX_CHECK_STATUS( vxSetNodeAttribute(ref, att, &value, sizeof(value)) ); }
/// vxSetNodeAttribute(BORDER) wrapper
void setBorder(const border_t& bm)
{ setAttribute(VX_NODE_BORDER, bm); }
#ifndef VX_VERSION_1_1
/// vxSetNodeAttribute(BORDER) wrapper
void setBorder(vx_enum mode, vx_uint32 val = 0)
{ vx_border_mode_t bm = {mode, val}; setBorder(bm); }
#else
/// vxSetNodeAttribute(BORDER) wrapper
void setBorder(vx_enum mode, const vx_pixel_value_t& val)
{ vx_border_t bm = {mode, val}; setBorder(bm); }
/// vxSetNodeAttribute(BORDER) wrapper
template <typename T>
void setBorder(vx_enum mode, const T& _val)
{
vx_pixel_value_t val;
switch (TypeToEnum<T>::value)
{
case VX_TYPE_UINT8:
val.U8 = _val;
break;
case VX_TYPE_INT16:
val.S16 = _val;
break;
case VX_TYPE_UINT16:
val.U16 = _val;
break;
case VX_TYPE_INT32:
val.S32 = _val;
break;
case VX_TYPE_UINT32:
val.U32 = _val;
break;
default:
throw WrapperError("Unsupported constant border value type");
}
setBorder(mode, val);
}
/// vxSetNodeAttribute(BORDER) wrapper
void setBorder(vx_enum mode)
{ vx_pixel_value_t val = {}; setBorder(mode, val); }
#endif
/// vxSetNodeAttribute(LOCAL_DATA_SIZE) wrapper
void setDataSize(vx_size size)
{ setAttribute(VX_NODE_LOCAL_DATA_SIZE, size); }
/// vxSetNodeAttribute(LOCAL_DATA_PTR) wrapper
void setDataPtr(void* ptr)
{ setAttribute(VX_NODE_LOCAL_DATA_PTR, ptr); }
};
/// vx_image wrapper
class Image : public RefWrapper<vx_image>
{
public:
IVX_REF_STD_CTORS_AND_ASSIGNMENT(Image);
/// vxCreateImage() wrapper
static Image create(vx_context context, vx_uint32 width, vx_uint32 height, vx_df_image format)
{ return Image(vxCreateImage(context, width, height, format)); }
/// vxCreateVirtualImage() wrapper
static Image createVirtual(vx_graph graph, vx_uint32 width = 0, vx_uint32 height = 0, vx_df_image format = VX_DF_IMAGE_VIRT)
{ return Image(vxCreateVirtualImage(graph, width, height, format)); }
#ifdef VX_VERSION_1_1
/// vxCreateUniformImage() wrapper
static Image createUniform(vx_context context, vx_uint32 width, vx_uint32 height, vx_df_image format, const vx_pixel_value_t& value)
{ return Image(vxCreateUniformImage(context, width, height, format, &value)); }
#else
/// vxCreateUniformImage() wrapper
static Image createUniform(vx_context context, vx_uint32 width, vx_uint32 height, vx_df_image format, const void* value)
{ return Image(vxCreateUniformImage(context, width, height, format, value)); }
#endif
template <typename T>
static Image createUniform(vx_context context, vx_uint32 width, vx_uint32 height, vx_df_image format, const T value)
{
#if VX_VERSION > VX_VERSION_1_0
vx_pixel_value_t pixel;
switch (format)
{
case VX_DF_IMAGE_U8:pixel.U8 = (vx_uint8)value; break;
case VX_DF_IMAGE_S16:pixel.S16 = (vx_int16)value; break;
case VX_DF_IMAGE_U16:pixel.U16 = (vx_uint16)value; break;
case VX_DF_IMAGE_S32:pixel.S32 = (vx_int32)value; break;
case VX_DF_IMAGE_U32:pixel.U32 = (vx_uint32)value; break;
default:throw ivx::WrapperError("uniform image type unsupported by this call");
}
return Image(vxCreateUniformImage(context, width, height, format, &pixel));
#else
return Image(vxCreateUniformImage(context, width, height, format, &value));
#endif
}
/// Planes number for the specified image format (fourcc)
/// \return 0 for unknown formats
static vx_size planes(vx_df_image format)
{
switch (format)
{
case VX_DF_IMAGE_IYUV:
case VX_DF_IMAGE_YUV4: return 3;
case VX_DF_IMAGE_NV12:
case VX_DF_IMAGE_NV21: return 2;
case VX_DF_IMAGE_RGB:
case VX_DF_IMAGE_RGBX:
case VX_DF_IMAGE_UYVY:
case VX_DF_IMAGE_YUYV:
case VX_DF_IMAGE_U8:
case VX_DF_IMAGE_U16:
case VX_DF_IMAGE_S16:
case VX_DF_IMAGE_U32:
case VX_DF_IMAGE_S32:
case /*VX_DF_IMAGE_F32*/VX_DF_IMAGE('F', '0', '3', '2'):
return 1;
default: return 0;
}
}
/// Create vx_imagepatch_addressing_t structure with default values
static vx_imagepatch_addressing_t createAddressing()
{ vx_imagepatch_addressing_t ipa = VX_IMAGEPATCH_ADDR_INIT; return ipa; }
/// Create vx_imagepatch_addressing_t structure with the provided values
static vx_imagepatch_addressing_t createAddressing(
vx_uint32 dimX, vx_uint32 dimY,
vx_int32 strideX, vx_int32 strideY,
vx_uint32 scaleX = VX_SCALE_UNITY, vx_uint32 scaleY = VX_SCALE_UNITY )
{
if (std::abs(strideY) < std::abs(strideX*(vx_int32)dimX))
throw WrapperError(std::string(__func__)+"(): invalid arguments");
vx_imagepatch_addressing_t ipa = VX_IMAGEPATCH_ADDR_INIT;
ipa.dim_x = dimX;
ipa.dim_y = dimY;
ipa.stride_x = strideX;
ipa.stride_y = strideY;
ipa.scale_x = scaleX;
ipa.scale_y = scaleY;
return ipa;
}
/// Create vx_imagepatch_addressing_t structure for the specified image plane and its valid region
vx_imagepatch_addressing_t createAddressing(vx_uint32 planeIdx)
{ return createAddressing(planeIdx, getValidRegion()); }
/// Create vx_imagepatch_addressing_t structure for the specified image plane and the provided region
vx_imagepatch_addressing_t createAddressing(vx_uint32 planeIdx, const vx_rectangle_t& rect)
{
vx_uint32 w = rect.end_x-rect.start_x, h = rect.end_y-rect.start_y;
vx_size patchBytes = computePatchSize(planeIdx, rect);
vx_imagepatch_addressing_t ipa = createAddressing(w, h, (vx_int32)(patchBytes/w/h), (vx_int32)(patchBytes/h));
return ipa;
}
#ifndef VX_VERSION_1_1
static const vx_enum VX_MEMORY_TYPE_HOST = VX_IMPORT_TYPE_HOST;
#endif
/// vxCreateImageFromHandle() wrapper
static Image createFromHandle(
vx_context context, vx_df_image format,
const std::vector<vx_imagepatch_addressing_t>& addrs,
const std::vector<void*>& ptrs, vx_enum memType = VX_MEMORY_TYPE_HOST )
{
vx_size num = planes(format);
if(num == 0)
throw WrapperError(std::string(__func__)+"(): unknown/unexpected planes number for the requested format");
if (addrs.size() != num || ptrs.size() != num)
throw WrapperError(std::string(__func__)+"(): incomplete input");
#ifdef VX_VERSION_1_1
return Image(vxCreateImageFromHandle(context, format, &addrs[0], &ptrs[0], memType));
#else
return Image( vxCreateImageFromHandle(context, format,
const_cast<vx_imagepatch_addressing_t*>(&addrs[0]),
const_cast<void**>(&ptrs[0]), memType) );
#endif
}
/// vxCreateImageFromHandle() wrapper for a single plane image
static Image createFromHandle(vx_context context, vx_df_image format,const vx_imagepatch_addressing_t& addr, void* ptr)
{
if(planes(format) != 1) throw WrapperError(std::string(__func__)+"(): not a single plane format");
return Image(vxCreateImageFromHandle(context, format, const_cast<vx_imagepatch_addressing_t*> (&addr), &ptr, VX_MEMORY_TYPE_HOST));
}
#ifdef VX_VERSION_1_1
/// vxSwapImageHandle() wrapper
/// \param newPtrs keeps addresses of new image planes data, can be of image planes size or empty when new pointers are not provided
/// \param prevPtrs storage for the previous addresses of image planes data, can be of image planes size or empty when previous pointers are not needed
void swapHandle(const std::vector<void*>& newPtrs, std::vector<void*>& prevPtrs)
{
vx_size num = planes();
if(num == 0)
throw WrapperError(std::string(__func__)+"(): unexpected planes number");
if (!newPtrs.empty() && newPtrs.size() != num)
throw WrapperError(std::string(__func__)+"(): unexpected number of input pointers");
if (!prevPtrs.empty() && prevPtrs.size() != num)
throw WrapperError(std::string(__func__)+"(): unexpected number of output pointers");
IVX_CHECK_STATUS( vxSwapImageHandle( ref,
newPtrs.empty() ? 0 : &newPtrs[0],
prevPtrs.empty() ? 0 : &prevPtrs[0],
num ) );
}
/// vxSwapImageHandle() wrapper for a single plane image
/// \param newPtr an address of new image data, can be zero when new pointer is not provided
/// \return the previuos address of image data
void* swapHandle(void* newPtr)
{
if(planes() != 1) throw WrapperError(std::string(__func__)+"(): not a single plane image");
void* prevPtr = 0;
IVX_CHECK_STATUS( vxSwapImageHandle(ref, &newPtr, &prevPtr, 1) );
return prevPtr;
}
/// vxSwapImageHandle() wrapper for the case when no new pointers provided and previous ones are not needed (retrive memory back)
void swapHandle()
{ IVX_CHECK_STATUS( vxSwapImageHandle(ref, 0, 0, 0) ); }
/// vxCreateImageFromChannel() wrapper
Image createFromChannel(vx_enum channel)
{ return Image(vxCreateImageFromChannel(ref, channel)); }
#endif // VX_VERSION_1_1
/// vxQueryImage() wrapper
template<typename T>
void query(vx_enum att, T& value) const
{ IVX_CHECK_STATUS( vxQueryImage(ref, att, &value, sizeof(value)) ); }
#ifndef VX_VERSION_1_1
static const vx_enum
VX_IMAGE_WIDTH = VX_IMAGE_ATTRIBUTE_WIDTH,
VX_IMAGE_HEIGHT = VX_IMAGE_ATTRIBUTE_HEIGHT,
VX_IMAGE_FORMAT = VX_IMAGE_ATTRIBUTE_FORMAT,
VX_IMAGE_PLANES = VX_IMAGE_ATTRIBUTE_PLANES,
VX_IMAGE_SPACE = VX_IMAGE_ATTRIBUTE_SPACE,
VX_IMAGE_RANGE = VX_IMAGE_ATTRIBUTE_RANGE,
VX_IMAGE_SIZE = VX_IMAGE_ATTRIBUTE_SIZE;
#endif
/// vxQueryImage(VX_IMAGE_WIDTH) wrapper
vx_uint32 width() const
{
vx_uint32 v;
query(VX_IMAGE_WIDTH, v);
return v;
}
/// vxQueryImage(VX_IMAGE_HEIGHT) wrapper
vx_uint32 height() const
{
vx_uint32 v;
query(VX_IMAGE_HEIGHT, v);
return v;
}
/// vxQueryImage(VX_IMAGE_FORMAT) wrapper
vx_df_image format() const
{
vx_df_image v;
query(VX_IMAGE_FORMAT, v);
return v;
}
/// vxQueryImage(VX_IMAGE_PLANES) wrapper
vx_size planes() const
{
vx_size v;
query(VX_IMAGE_PLANES, v);
return v;
}
/// vxQueryImage(VX_IMAGE_SPACE) wrapper
vx_enum space() const
{
vx_enum v;
query(VX_IMAGE_SPACE, v);
return v;
}
/// vxQueryImage(VX_IMAGE_RANGE) wrapper
vx_enum range() const
{
vx_enum v;
query(VX_IMAGE_RANGE, v);
return v;
}
/// vxQueryImage(VX_IMAGE_SIZE) wrapper
vx_size size() const
{
vx_size v;
query(VX_IMAGE_SIZE, v);
return v;
}
#ifdef VX_VERSION_1_1
/// vxQueryImage(VX_IMAGE_MEMORY_TYPE) wrapper
vx_memory_type_e memType() const
{
vx_memory_type_e v;
query(VX_IMAGE_MEMORY_TYPE, v);
return v;
}
#endif // VX_VERSION_1_1
/// vxSetImageAttribute() wrapper
template<typename T>
void setAttribute(vx_enum att, T& value) const
{ IVX_CHECK_STATUS(vxSetImageAttribute(ref, att, &value, sizeof(value))); }
/// vxSetImageAttribute(SPACE) wrapper
void setColorSpace(const vx_enum& sp)
{ setAttribute(VX_IMAGE_SPACE, sp); }
/// vxGetValidRegionImage() wrapper
vx_rectangle_t getValidRegion() const
{
vx_rectangle_t rect;
IVX_CHECK_STATUS( vxGetValidRegionImage(ref, &rect) );
return rect;
}
/// vxComputeImagePatchSize(valid region) wrapper
vx_size computePatchSize(vx_uint32 planeIdx)
{ return computePatchSize(planeIdx, getValidRegion()); }
/// vxComputeImagePatchSize() wrapper
vx_size computePatchSize(vx_uint32 planeIdx, const vx_rectangle_t& rect)
{
vx_size bytes = vxComputeImagePatchSize(ref, &rect, planeIdx);
if (bytes == 0) throw WrapperError(std::string(__func__)+"(): vxComputeImagePatchSize returned 0");
return bytes;
}
#ifdef VX_VERSION_1_1
/// vxSetImageValidRectangle() wrapper
void setValidRectangle(const vx_rectangle_t& rect)
{ IVX_CHECK_STATUS( vxSetImageValidRectangle(ref, &rect) ); }
#endif // VX_VERSION_1_1
/// Copy image plane content to the provided memory
void copyTo(vx_uint32 planeIdx, const vx_imagepatch_addressing_t& addr, void* data)
{
if(!data) throw WrapperError(std::string(__func__)+"(): output pointer is 0");
vx_rectangle_t r = getValidRegion();
// TODO: add sizes consistency checks
/*
vx_uint32 w = r.end_x - r.start_x, h = r.end_y - r.start_y;
if (w != addr.dim_x) throw WrapperError("Image::copyTo(): inconsistent dimension X");
if (h != addr.dim_y) throw WrapperError("Image::copyTo(): inconsistent dimension Y");
*/
#ifdef VX_VERSION_1_1
IVX_CHECK_STATUS(vxCopyImagePatch(ref, &r, planeIdx, &addr, data, VX_READ_ONLY, VX_MEMORY_TYPE_HOST));
#else
vx_imagepatch_addressing_t* a = const_cast<vx_imagepatch_addressing_t*>(&addr);
IVX_CHECK_STATUS(vxAccessImagePatch(ref, &r, planeIdx, a, &data, VX_READ_ONLY));
IVX_CHECK_STATUS(vxCommitImagePatch(ref, 0, planeIdx, a, data));
#endif
}
/// Copy the provided memory data to the specified image plane
void copyFrom(vx_uint32 planeIdx, const vx_imagepatch_addressing_t& addr, const void* data)
{
if (!data) throw WrapperError(std::string(__func__)+"(): input pointer is 0");
vx_rectangle_t r = getValidRegion();
// TODO: add sizes consistency checks
/*
vx_uint32 w = r.end_x - r.start_x, h = r.end_y - r.start_y;
//vx_size patchBytes = vxComputeImagePatchSize(ref, &r, planeIdx);
if (w != addr.dim_x) throw WrapperError("Image::copyFrom(): inconsistent dimension X");
if (h != addr.dim_y) throw WrapperError("Image::copyFrom(): inconsistent dimension Y");
*/
#ifdef VX_VERSION_1_1
IVX_CHECK_STATUS(vxCopyImagePatch(ref, &r, planeIdx, &addr, (void*)data, VX_WRITE_ONLY, VX_MEMORY_TYPE_HOST));
#else
vx_imagepatch_addressing_t* a = const_cast<vx_imagepatch_addressing_t*>(&addr);
IVX_CHECK_STATUS(vxAccessImagePatch(ref, &r, planeIdx, a, const_cast<void**>(&data), VX_WRITE_ONLY));
IVX_CHECK_STATUS(vxCommitImagePatch(ref, &r, planeIdx, a, data));
#endif
}
/// vxCopyImagePatch() wrapper (or vxAccessImagePatch() + vxCommitImagePatch() for OpenVX 1.0)
void copy( vx_uint32 planeIdx, vx_rectangle_t rect,
const vx_imagepatch_addressing_t& addr, void* data,
vx_enum usage, vx_enum memoryType = VX_MEMORY_TYPE_HOST )
{
#ifdef VX_VERSION_1_1
IVX_CHECK_STATUS(vxCopyImagePatch(ref, &rect, planeIdx, &addr, (void*)data, usage, memoryType));
#else
(void)memoryType;
vx_imagepatch_addressing_t* a = const_cast<vx_imagepatch_addressing_t*>(&addr);
IVX_CHECK_STATUS(vxAccessImagePatch(ref, &rect, planeIdx, a, &data, usage));
IVX_CHECK_STATUS(vxCommitImagePatch(ref, &rect, planeIdx, a, data));
#endif
}
#ifdef IVX_USE_OPENCV
/// Convert image format (fourcc) to cv::Mat type, throws WrapperError if not possible
static int formatToMatType(vx_df_image format, vx_uint32 planeIdx = 0)
{
switch (format)
{
case VX_DF_IMAGE_RGB: return CV_8UC3;
case VX_DF_IMAGE_RGBX: return CV_8UC4;
case VX_DF_IMAGE_U8: return CV_8UC1;
case VX_DF_IMAGE_U16: return CV_16UC1;
case VX_DF_IMAGE_S16: return CV_16SC1;
case VX_DF_IMAGE_U32:
case VX_DF_IMAGE_S32: return CV_32SC1;
case VX_DF_IMAGE('F', '0', '3', '2'):
return CV_32FC1;
case VX_DF_IMAGE_YUV4:
case VX_DF_IMAGE_IYUV: return CV_8UC1;
case VX_DF_IMAGE_UYVY:
case VX_DF_IMAGE_YUYV: return CV_8UC2;
case VX_DF_IMAGE_NV12:
case VX_DF_IMAGE_NV21: return planeIdx == 0 ? CV_8UC1 : CV_8UC2;
default: throw WrapperError(std::string(__func__)+"(): unsupported image format");
}
}
/// Convert cv::Mat type to standard image format (fourcc), throws WrapperError if not possible
static vx_df_image matTypeToFormat(int matType)
{
switch (matType)
{
case CV_8UC4: return VX_DF_IMAGE_RGBX;
case CV_8UC3: return VX_DF_IMAGE_RGB;
case CV_8UC1: return VX_DF_IMAGE_U8;
case CV_16UC1: return VX_DF_IMAGE_U16;
case CV_16SC1: return VX_DF_IMAGE_S16;
case CV_32SC1: return VX_DF_IMAGE_S32;
case CV_32FC1: return VX_DF_IMAGE('F', '0', '3', '2');
default: throw WrapperError(std::string(__func__)+"(): unsupported cv::Mat type");
}
}
/// Initialize cv::Mat shape to fit the specified image plane data
void createMatForPlane(cv::Mat& m, vx_uint32 planeIdx)
{
vx_df_image f = format();
//vx_uint32 w = width(), h = height();
vx_rectangle_t r = getValidRegion();
vx_int32 w = vx_int32(r.end_x - r.start_x), h = vx_int32(r.end_y - r.start_y);
switch (f)
{
case VX_DF_IMAGE_IYUV:
if (planeIdx == 0u) m.create(h, w, formatToMatType(f));
else if (planeIdx == 1u || planeIdx == 2u) m.create(h/2, w/2, formatToMatType(f));
else throw WrapperError(std::string(__func__)+"(): wrong plane index");
break;
case VX_DF_IMAGE_YUV4:
if (planeIdx == 0u || planeIdx == 1u || planeIdx == 2u) m.create(h, w, formatToMatType(f));
else throw WrapperError(std::string(__func__)+"(): wrong plane index");
break;
case VX_DF_IMAGE_NV12:
case VX_DF_IMAGE_NV21:
if (planeIdx == 0u) m.create(h, w, formatToMatType(f, 0));
else if (planeIdx == 1u) m.create(h/2, w/2, formatToMatType(f, 1));
else throw WrapperError(std::string(__func__)+"(): wrong plane index");
break;
case VX_DF_IMAGE_RGB:
case VX_DF_IMAGE_RGBX:
case VX_DF_IMAGE_UYVY:
case VX_DF_IMAGE_YUYV:
case VX_DF_IMAGE_U8:
case VX_DF_IMAGE_U16:
case VX_DF_IMAGE_S16:
case VX_DF_IMAGE_U32:
case VX_DF_IMAGE_S32:
case /*VX_DF_IMAGE_F32*/VX_DF_IMAGE('F', '0', '3', '2'):
if(planeIdx == 0u) m.create(h, w, formatToMatType(f));
else throw WrapperError(std::string(__func__)+"(): wrong plane index");
break;
default: throw WrapperError(std::string(__func__)+"(): unsupported color format");
}
}
/// Create vx_imagepatch_addressing_t corresponding to the provided cv::Mat
static vx_imagepatch_addressing_t createAddressing(const cv::Mat& m)
{
if(m.empty()) throw WrapperError(std::string(__func__)+"(): empty input Mat");
return createAddressing((vx_uint32)m.cols, (vx_uint32)m.rows, (vx_int32)m.elemSize(), (vx_int32)m.step);
}
/// Copy image plane content to the provided cv::Mat (reallocate if needed)
void copyTo(vx_uint32 planeIdx, cv::Mat& m)
{
createMatForPlane(m, planeIdx);
copyTo(planeIdx, createAddressing((vx_uint32)m.cols, (vx_uint32)m.rows, (vx_int32)m.elemSize(), (vx_int32)m.step), m.ptr());
}
/// Copy the provided cv::Mat data to the specified image plane
void copyFrom(vx_uint32 planeIdx, const cv::Mat& m)
{
if(m.empty()) throw WrapperError(std::string(__func__)+"(): empty input Mat");
// TODO: add sizes consistency checks
//vx_rectangle_t r = getValidRegion();
copyFrom(planeIdx, createAddressing((vx_uint32)m.cols, (vx_uint32)m.rows, (vx_int32)m.elemSize(), (vx_int32)m.step), m.ptr());
}
/*
private:
cv::Mat _mat; // TODO: update copy/move-c-tors, operator=() and swapHandles()
public:
static Image createFromHandle(vx_context context, const cv::Mat& mat)
{
if(mat.empty()) throw WrapperError(std::string(__func__)+"(): empty cv::Mat");
Image res = createFromHandle(context, matTypeToFormat(mat.type()), createAddressing(mat), mat.data );
res._mat = mat;
return res;
}
*/
#endif //IVX_USE_OPENCV
struct Patch;
};
/// Helper class for a mapping vx_image patch
struct Image::Patch
{
public:
/// reference to the current vx_imagepatch_addressing_t
const vx_imagepatch_addressing_t& addr() const
{ return _addr;}
/// current pixels data pointer
void* data() const
{ return _data; }
#ifdef VX_VERSION_1_1
/// vx_memory_type_e for the current data pointer
vx_memory_type_e memType() const
{ return _memType; }
/// vx_map_id for the current mapping
vx_map_id mapId() const
{ return _mapId; }
#else
/// reference to vx_rectangle_t for the current mapping
const vx_rectangle_t& rectangle() const
{ return _rect; }
/// Image plane index for the current mapping
vx_uint32 planeIndex() const
{ return _planeIdx; }
#endif // VX_VERSION_1_1
/// vx_image for the current mapping
vx_image image() const
{ return _img; }
/// where this patch is mapped
bool isMapped() const
{ return _img != 0; }
#ifdef IVX_USE_OPENCV
/// Reference to cv::Mat instance wrapping the mapped image data, becomes invalid after unmap()
cv::Mat& getMat()
{ return _m; }
#endif //IVX_USE_OPENCV
protected:
vx_imagepatch_addressing_t _addr;
void* _data;
vx_image _img;
#ifdef VX_VERSION_1_1
vx_memory_type_e _memType;
vx_map_id _mapId;
#else
vx_rectangle_t _rect;
vx_uint32 _planeIdx;
#endif
#ifdef IVX_USE_OPENCV
cv::Mat _m;
#endif
public:
/// Default constructor
Patch() : _addr(createAddressing()), _data(0), _img(0)
#ifdef VX_VERSION_1_1
, _memType(VX_MEMORY_TYPE_HOST), _mapId(0)
{}
#else
, _planeIdx(-1)
{ _rect.start_x = _rect.end_x = _rect.start_y = _rect.end_y = 0u; }
#endif
#ifndef IVX_USE_CXX98
/// Move constructor
Patch(Patch&& p) : Patch()
{
using std::swap;
swap(_addr, p._addr);
swap(_data, p._data);
#ifdef VX_VERSION_1_1
swap(_memType, p._memType);
swap(_mapId, p._mapId);
#else
swap(_rect, p._rect);
swap(_planeIdx, p._planeIdx);
#endif
swap(_img, p._img);
#ifdef IVX_USE_OPENCV
swap(_m, p._m);
#endif
}
#endif
/// vxMapImagePatch(VX_READ_ONLY, planeIdx valid region)
void map(vx_image img, vx_uint32 planeIdx)
{ map(img, planeIdx, Image(img, true).getValidRegion()); }
/// vxMapImagePatch() wrapper (or vxAccessImagePatch() for 1.0)
void map(vx_image img, vx_uint32 planeIdx, const vx_rectangle_t& rect, vx_enum usage = VX_READ_ONLY, vx_uint32 flags = 0)
{
if (isMapped()) throw WrapperError(std::string(__func__)+"(): already mapped");
#ifdef VX_VERSION_1_1
IVX_CHECK_STATUS(vxMapImagePatch(img, &rect, planeIdx, &_mapId, &_addr, &_data, usage, _memType, flags) );
#else
IVX_CHECK_STATUS(vxAccessImagePatch(img, &rect, planeIdx, &_addr, &_data, usage));
(void)flags;
_rect = rect;
_planeIdx = planeIdx;
#endif
if (_data == 0) throw WrapperError(std::string(__func__)+"(): mapped address is null");
_img = img;
#ifdef IVX_USE_OPENCV
vx_df_image format;
IVX_CHECK_STATUS( vxQueryImage(_img, VX_IMAGE_FORMAT, &format, sizeof(format)) );
int matType = formatToMatType(format);
_m = cv::Mat( vx_int32((vx_int64)_addr.dim_y * VX_SCALE_UNITY / _addr.scale_y),
vx_int32((vx_int64)_addr.dim_x * VX_SCALE_UNITY / _addr.scale_x),
matType, _data, std::size_t(_addr.stride_y) );
#endif
}
/// vxUnmapImagePatch() wrapper (or vxCommitImagePatch() for 1.0)
void unmap()
{
#ifdef VX_VERSION_1_1
IVX_CHECK_STATUS(vxUnmapImagePatch(_img, _mapId));
_mapId = 0;
#else
IVX_CHECK_STATUS(vxCommitImagePatch(_img, &_rect, _planeIdx, &_addr, _data));
_rect.start_x = _rect.end_x = _rect.start_y = _rect.end_y = 0u;
_planeIdx = -1;
#endif
_img = 0;
_data = 0;
_addr = createAddressing();
#ifdef IVX_USE_OPENCV
_m.release();
#endif
}
/// Destructor
~Patch()
{ try { if (_img) unmap(); } catch(...) {; /*ignore*/} }
/// Pointer to the specified pixel data (vxFormatImagePatchAddress2d)
void* pixelPtr(vx_uint32 x, vx_uint32 y)
{
if (!_data) throw WrapperError(std::string(__func__)+"(): base pointer is NULL");
if (x >= _addr.dim_x) throw WrapperError(std::string(__func__)+"(): X out of range");
if (y >= _addr.dim_y) throw WrapperError(std::string(__func__)+"(): Y out of range");
return vxFormatImagePatchAddress2d(_data, x, y, &_addr);
}
private:
Patch(const Patch& p); // = delete
Patch& operator=(const Patch&); // = delete
#ifndef IVX_USE_CXX98
Patch& operator=(Patch&&); // = delete
#endif
};
/// vx_parameter wrapper
class Param : public RefWrapper<vx_parameter>
{
public:
IVX_REF_STD_CTORS_AND_ASSIGNMENT(Param);
// NYI
};
/// vx_scalar wrapper
class Scalar : public RefWrapper<vx_scalar>
{
public:
IVX_REF_STD_CTORS_AND_ASSIGNMENT(Scalar);
/// vxCreateScalar() wrapper
static Scalar create(vx_context c, vx_enum dataType, const void *ptr)
{ return Scalar( vxCreateScalar(c, dataType, ptr) ); }
/// vxCreateScalar() wrapper, value is passed as a value not as a pointer
template<typename T> static Scalar create(vx_context c, vx_enum dataType, T value)
{
typedef int static_assert_not_pointer[is_pointer<T>::value ? -1 : 1];
return Scalar( vxCreateScalar(c, dataType, &value) );
}
/// vxCreateScalar() wrapper, data type is guessed based on the passed value
template<vx_enum E> static Scalar create(vx_context c, typename EnumToType<E>::type value)
{ return Scalar( vxCreateScalar(c, E, &value) ); }
#ifndef VX_VERSION_1_1
static const vx_enum VX_SCALAR_TYPE = VX_SCALAR_ATTRIBUTE_TYPE;
#endif
/// Get scalar data type
vx_enum type()
{
vx_enum val;
IVX_CHECK_STATUS( vxQueryScalar(ref, VX_SCALAR_TYPE, &val, sizeof(val)) );
return val;
}
/// Get scalar value
template<typename T>
void getValue(T& val)
{
if (!areTypesCompatible(TypeToEnum<T>::value, type()))
throw WrapperError(std::string(__func__)+"(): incompatible types");
#ifdef VX_VERSION_1_1
IVX_CHECK_STATUS( vxCopyScalar(ref, &val, VX_READ_ONLY, VX_MEMORY_TYPE_HOST) );
#else
IVX_CHECK_STATUS( vxReadScalarValue(ref, &val) );
#endif
}
/// Get scalar value
template<typename T>
T getValue()
{
T val;
getValue(val);
return val;
}
/// Set scalar value
template<typename T>
void setValue(T val)
{
if (!areTypesCompatible(TypeToEnum<T>::value, type()))
throw WrapperError(std::string(__func__)+"(): incompatible types");
#ifdef VX_VERSION_1_1
IVX_CHECK_STATUS(vxCopyScalar(ref, &val, VX_WRITE_ONLY, VX_MEMORY_TYPE_HOST));
#else
IVX_CHECK_STATUS( vxWriteScalarValue(ref, &val) );
#endif
}
};
/// vx_threshold wrapper
class Threshold : public RefWrapper<vx_threshold>
{
public:
IVX_REF_STD_CTORS_AND_ASSIGNMENT(Threshold);
/// vxCreateThreshold() wrapper
static Threshold create(vx_context c, vx_enum threshType, vx_enum dataType)
{ return Threshold(vxCreateThreshold(c, threshType, dataType)); }
#ifndef VX_VERSION_1_1
static const vx_enum
VX_THRESHOLD_TYPE = VX_THRESHOLD_ATTRIBUTE_TYPE,
VX_THRESHOLD_THRESHOLD_VALUE = VX_THRESHOLD_ATTRIBUTE_THRESHOLD_VALUE,
VX_THRESHOLD_THRESHOLD_LOWER = VX_THRESHOLD_ATTRIBUTE_THRESHOLD_LOWER,
VX_THRESHOLD_THRESHOLD_UPPER = VX_THRESHOLD_ATTRIBUTE_THRESHOLD_UPPER,
VX_THRESHOLD_TRUE_VALUE = VX_THRESHOLD_ATTRIBUTE_TRUE_VALUE,
VX_THRESHOLD_FALSE_VALUE = VX_THRESHOLD_ATTRIBUTE_FALSE_VALUE,
VX_THRESHOLD_DATA_TYPE = VX_THRESHOLD_ATTRIBUTE_DATA_TYPE;
#endif
/// Create binary threshold with the provided value
static Threshold createBinary(vx_context c, vx_enum dataType, vx_int32 val)
{
Threshold thr = create(c, VX_THRESHOLD_TYPE_BINARY, dataType);
IVX_CHECK_STATUS( vxSetThresholdAttribute(thr.ref, VX_THRESHOLD_THRESHOLD_VALUE, &val, sizeof(val)) );
return thr;
}
/// Create range threshold with the provided low and high values
static Threshold createRange(vx_context c, vx_enum dataType, vx_int32 valLower, vx_int32 valUpper)
{
Threshold thr = create(c, VX_THRESHOLD_TYPE_RANGE, dataType);
IVX_CHECK_STATUS( vxSetThresholdAttribute(thr.ref, VX_THRESHOLD_THRESHOLD_LOWER, &valLower, sizeof(valLower)) );
IVX_CHECK_STATUS( vxSetThresholdAttribute(thr.ref, VX_THRESHOLD_THRESHOLD_UPPER, &valUpper, sizeof(valUpper)) );
return thr;
}
/// vxQueryThreshold() wrapper
template<typename T>
void query(vx_enum att, T& val) const
{ IVX_CHECK_STATUS( vxQueryThreshold(ref, att, &val, sizeof(val)) ); }
/// vxQueryThreshold(VX_THRESHOLD_TYPE) wrapper
vx_enum type() const
{
vx_enum v;
query(VX_THRESHOLD_TYPE, v);
return v;
}
/// vxQueryThreshold(DATA_TYPE) wrapper
vx_enum dataType() const
{
vx_enum v;
query(VX_THRESHOLD_DATA_TYPE, v);
return v;
}
/// vxQueryThreshold(THRESHOLD_VALUE) wrapper
vx_int32 value() const
{
vx_int32 v;
query(VX_THRESHOLD_THRESHOLD_VALUE, v);
return v;
}
/// vxQueryThreshold(THRESHOLD_LOWER) wrapper
vx_int32 valueLower() const
{
vx_int32 v;
query(VX_THRESHOLD_THRESHOLD_LOWER, v);
return v;
}
/// vxQueryThreshold(THRESHOLD_UPPER) wrapper
vx_int32 valueUpper() const
{
vx_int32 v;
query(VX_THRESHOLD_THRESHOLD_UPPER, v);
return v;
}
/// vxQueryThreshold(TRUE_VALUE) wrapper
vx_int32 valueTrue() const
{
vx_int32 v;
query(VX_THRESHOLD_TRUE_VALUE, v);
return v;
}
/// vxQueryThreshold(FALSE_VALUE) wrapper
vx_int32 valueFalse() const
{
vx_int32 v;
query(VX_THRESHOLD_FALSE_VALUE, v);
return v;
}
/// vxSetThresholdAttribute(THRESHOLD_VALUE) wrapper
void setValue(vx_int32 &val)
{ IVX_CHECK_STATUS(vxSetThresholdAttribute(ref, VX_THRESHOLD_THRESHOLD_VALUE, &val, sizeof(val))); }
/// vxSetThresholdAttribute(THRESHOLD_LOWER) wrapper
void setValueLower(vx_int32 &val)
{ IVX_CHECK_STATUS(vxSetThresholdAttribute(ref, VX_THRESHOLD_THRESHOLD_LOWER, &val, sizeof(val))); }
/// vxSetThresholdAttribute(THRESHOLD_UPPER) wrapper
void setValueUpper(vx_int32 &val)
{ IVX_CHECK_STATUS(vxSetThresholdAttribute(ref, VX_THRESHOLD_THRESHOLD_UPPER, &val, sizeof(val))); }
/// vxSetThresholdAttribute(TRUE_VALUE) wrapper
void setValueTrue(vx_int32 &val)
{ IVX_CHECK_STATUS(vxSetThresholdAttribute(ref, VX_THRESHOLD_TRUE_VALUE, &val, sizeof(val))); }
/// vxSetThresholdAttribute(FALSE_VALUE) wrapper
void setValueFalse(vx_int32 &val)
{ IVX_CHECK_STATUS(vxSetThresholdAttribute(ref, VX_THRESHOLD_FALSE_VALUE, &val, sizeof(val))); }
};
/// vx_array wrapper
class Array : public RefWrapper<vx_array>
{
public:
IVX_REF_STD_CTORS_AND_ASSIGNMENT(Array);
/// vxCreateArray() wrapper
static Array create(vx_context c, vx_enum type, vx_size capacity)
{ return Array(vxCreateArray(c, type, capacity)); }
/// vxCreateVirtualArray() wrapper
static Array createVirtual(vx_graph g, vx_enum type, vx_size capacity)
{ return Array(vxCreateVirtualArray(g, type, capacity)); }
#ifndef VX_VERSION_1_1
static const vx_enum
VX_MEMORY_TYPE_HOST = VX_IMPORT_TYPE_HOST,
VX_ARRAY_ITEMTYPE = VX_ARRAY_ATTRIBUTE_ITEMTYPE,
VX_ARRAY_NUMITEMS = VX_ARRAY_ATTRIBUTE_NUMITEMS,
VX_ARRAY_CAPACITY = VX_ARRAY_ATTRIBUTE_CAPACITY,
VX_ARRAY_ITEMSIZE = VX_ARRAY_ATTRIBUTE_ITEMSIZE;
#endif
template<typename T>
void query(vx_enum att, T& value) const
{ IVX_CHECK_STATUS( vxQueryArray(ref, att, &value, sizeof(value)) ); }
vx_enum itemType() const
{
vx_enum v;
query(VX_ARRAY_ITEMTYPE, v);
return v;
}
vx_size itemSize() const
{
vx_size v;
query(VX_ARRAY_ITEMSIZE, v);
return v;
}
vx_size capacity() const
{
vx_size v;
query(VX_ARRAY_CAPACITY, v);
return v;
}
vx_size itemCount() const
{
vx_size v;
query(VX_ARRAY_NUMITEMS, v);
return v;
}
void addItems(vx_size count, const void* ptr, vx_size stride)
{
IVX_CHECK_STATUS(vxAddArrayItems(ref, count, ptr, stride));
}
void truncateArray(vx_size new_count)
{
if(new_count <= itemCount())
IVX_CHECK_STATUS(vxTruncateArray(ref, new_count));
else
throw WrapperError(std::string(__func__) + "(): array is too small");
}
void copyRangeTo(size_t start, size_t end, void* data)
{
if (!data) throw WrapperError(std::string(__func__) + "(): output pointer is 0");
#ifdef VX_VERSION_1_1
IVX_CHECK_STATUS(vxCopyArrayRange(ref, start, end, itemSize(), data, VX_READ_ONLY, VX_MEMORY_TYPE_HOST));
#else
vx_size stride = itemSize();
IVX_CHECK_STATUS(vxAccessArrayRange(ref, start, end, &stride, &data, VX_READ_ONLY));
IVX_CHECK_STATUS(vxCommitArrayRange(ref, start, end, data));
#endif
}
void copyTo(void* data)
{ copyRangeTo(0, itemCount(), data); }
void copyRangeFrom(size_t start, size_t end, const void* data)
{
if (!data) throw WrapperError(std::string(__func__) + "(): input pointer is 0");
#ifdef VX_VERSION_1_1
IVX_CHECK_STATUS(vxCopyArrayRange(ref, start, end, itemSize(), const_cast<void*>(data), VX_WRITE_ONLY, VX_MEMORY_TYPE_HOST));
#else
vx_size stride = itemSize();
IVX_CHECK_STATUS(vxAccessArrayRange(ref, start, end, &stride, const_cast<void**>(&data), VX_WRITE_ONLY));
IVX_CHECK_STATUS(vxCommitArrayRange(ref, start, end, data));
#endif
}
void copyFrom(const void* data)
{ copyRangeFrom(0, itemCount(), data); }
void copyRange(size_t start, size_t end, void* data, vx_enum usage, vx_enum memType = VX_MEMORY_TYPE_HOST)
{
if (!data) throw WrapperError(std::string(__func__) + "(): data pointer is 0");
#ifdef VX_VERSION_1_1
IVX_CHECK_STATUS(vxCopyArrayRange(ref, start, end, itemSize(), data, usage, memType));
#else
vx_size stride = itemSize();
IVX_CHECK_STATUS(vxAccessArrayRange(ref, start, end, &stride, &data, usage));
IVX_CHECK_STATUS(vxCommitArrayRange(ref, start, end, data));
(void)memType;
#endif
}
void copy(void* data, vx_enum usage, vx_enum memType = VX_MEMORY_TYPE_HOST)
{ copyRange(0, itemCount(), data, usage, memType); }
template<typename T> void addItem(const T& item)
{
if (!areTypesCompatible(TypeToEnum<T>::value, itemType()))
throw WrapperError(std::string(__func__) + "(): destination type is wrong");
addItems(1, &item, sizeof(T));
}
template<typename T> void addItems(const std::vector<T>& data)
{
if (!areTypesCompatible(TypeToEnum<T>::value, itemType()))
throw WrapperError(std::string(__func__) + "(): destination type is wrong");
addItems(data.size(), &data[0], itemSize());
}
template<typename T> void copyRangeTo(size_t start, size_t end, std::vector<T>& data)
{
if (!areTypesCompatible(TypeToEnum<T>::value, itemType()))
throw WrapperError(std::string(__func__) + "(): destination type is wrong");
if (data.empty())
data.resize((end - start));
else if (data.size() != (end - start))
{
throw WrapperError(std::string(__func__) + "(): destination size is wrong");
}
copyRangeTo(start, end, &data[0]);
}
template<typename T> void copyTo(std::vector<T>& data)
{ copyRangeTo(0, itemCount(), data); }
template<typename T> void copyRangeFrom(size_t start, size_t end, const std::vector<T>& data)
{
if (!areTypesCompatible(TypeToEnum<T>::value, itemType()))
throw WrapperError(std::string(__func__) + "(): source type is wrong");
if (data.size() != (end - start)) throw WrapperError(std::string(__func__) + "(): source size is wrong");
copyRangeFrom(start, end, &data[0]);
}
template<typename T> void copyFrom(std::vector<T>& data)
{ copyRangeFrom(0, itemCount(), data); }
#ifdef IVX_USE_OPENCV
void addItems(cv::InputArray ia)
{
cv::Mat m = ia.getMat();
if (m.type() != enumToCVType(itemType()))
throw WrapperError(std::string(__func__) + "(): destination type is wrong");
addItems(m.total(), m.isContinuous() ? m.ptr() : m.clone().ptr(),
(vx_size)(m.elemSize()));
}
void copyRangeTo(size_t start, size_t end, cv::Mat& m)
{
if (m.type() != enumToCVType(itemType()))
throw WrapperError(std::string(__func__) + "(): destination type is wrong");
if (!(
((vx_size)(m.rows) == (end - start) && m.cols == 1) ||
((vx_size)(m.cols) == (end - start) && m.rows == 1)
) && !m.empty())
throw WrapperError(std::string(__func__) + "(): destination size is wrong");
if (m.isContinuous() && (vx_size)(m.total()) == (end - start))
{
copyRangeTo(start, end, m.ptr());
}
else
{
cv::Mat tmp(1, (int)(end - start), enumToCVType(itemType()));
copyRangeTo(start, end, tmp.ptr());
if (m.empty())
m = tmp;
else
tmp.copyTo(m);
}
}
void copyTo(cv::Mat& m)
{ copyRangeTo(0, itemCount(), m); }
void copyRangeFrom(size_t start, size_t end, const cv::Mat& m)
{
if (!(
((vx_size)(m.rows) == (end - start) && m.cols == 1) ||
((vx_size)(m.cols) == (end - start) && m.rows == 1)
))
throw WrapperError(std::string(__func__) + "(): source size is wrong");
if (m.type() != enumToCVType(itemType()))
throw WrapperError(std::string(__func__) + "(): source type is wrong");
copyFrom(m.isContinuous() ? m.ptr() : m.clone().ptr());
}
void copyFrom(const cv::Mat& m)
{ copyRangeFrom(0, itemCount(), m); }
#endif //IVX_USE_OPENCV
};
/*
* Convolution
*/
class Convolution : public RefWrapper<vx_convolution>
{
public:
IVX_REF_STD_CTORS_AND_ASSIGNMENT(Convolution);
static Convolution create(vx_context context, vx_size columns, vx_size rows)
{ return Convolution(vxCreateConvolution(context, columns, rows)); }
#ifndef VX_VERSION_1_1
static const vx_enum
VX_MEMORY_TYPE_HOST = VX_IMPORT_TYPE_HOST,
VX_CONVOLUTION_ROWS = VX_CONVOLUTION_ATTRIBUTE_ROWS,
VX_CONVOLUTION_COLUMNS = VX_CONVOLUTION_ATTRIBUTE_COLUMNS,
VX_CONVOLUTION_SCALE = VX_CONVOLUTION_ATTRIBUTE_SCALE,
VX_CONVOLUTION_SIZE = VX_CONVOLUTION_ATTRIBUTE_SIZE;
#endif
template<typename T>
void query(vx_enum att, T& value) const
{ IVX_CHECK_STATUS( vxQueryConvolution(ref, att, &value, sizeof(value)) ); }
vx_size columns() const
{
vx_size v;
query(VX_CONVOLUTION_COLUMNS, v);
return v;
}
vx_size rows() const
{
vx_size v;
query(VX_CONVOLUTION_ROWS, v);
return v;
}
vx_uint32 scale() const
{
vx_uint32 v;
query(VX_CONVOLUTION_SCALE, v);
return v;
}
vx_size size() const
{
vx_size v;
query(VX_CONVOLUTION_SIZE, v);
return v;
}
vx_enum dataType()
{
return VX_TYPE_INT16;
}
void setScale(vx_uint32 newScale)
{ IVX_CHECK_STATUS( vxSetConvolutionAttribute(ref, VX_CONVOLUTION_SCALE, &newScale, sizeof(newScale)) ); }
void copyTo(void* data)
{
if (!data) throw WrapperError(std::string(__func__) + "(): output pointer is 0");
#ifdef VX_VERSION_1_1
IVX_CHECK_STATUS(vxCopyConvolutionCoefficients(ref, data, VX_READ_ONLY, VX_MEMORY_TYPE_HOST));
#else
IVX_CHECK_STATUS(vxReadConvolutionCoefficients(ref, (vx_int16 *)data));
#endif
}
void copyFrom(const void* data)
{
if (!data) throw WrapperError(std::string(__func__) + "(): input pointer is 0");
#ifdef VX_VERSION_1_1
IVX_CHECK_STATUS(vxCopyConvolutionCoefficients(ref, const_cast<void*>(data), VX_WRITE_ONLY, VX_MEMORY_TYPE_HOST));
#else
IVX_CHECK_STATUS(vxWriteConvolutionCoefficients(ref, (const vx_int16 *)data));
#endif
}
void copy(void* data, vx_enum usage, vx_enum memType = VX_MEMORY_TYPE_HOST)
{
if (!data) throw WrapperError(std::string(__func__) + "(): data pointer is 0");
#ifdef VX_VERSION_1_1
IVX_CHECK_STATUS(vxCopyConvolutionCoefficients(ref, data, usage, memType));
#else
if (usage == VX_READ_ONLY)
IVX_CHECK_STATUS(vxReadConvolutionCoefficients(ref, (vx_int16 *)data));
else if (usage == VX_WRITE_ONLY)
IVX_CHECK_STATUS(vxWriteConvolutionCoefficients(ref, (const vx_int16 *)data));
else
throw WrapperError(std::string(__func__) + "(): unknown copy direction");
(void)memType;
#endif
}
template<typename T> void copyTo(std::vector<T>& data)
{
if (!areTypesCompatible(TypeToEnum<T>::value, dataType()))
throw WrapperError(std::string(__func__) + "(): destination type is wrong");
if (data.size()*sizeof(T) != size())
{
if (data.size() == 0)
data.resize(size()/sizeof(T));
else
throw WrapperError(std::string(__func__) + "(): destination size is wrong");
}
copyTo(&data[0]);
}
template<typename T> void copyFrom(const std::vector<T>& data)
{
if (!areTypesCompatible(TypeToEnum<T>::value, dataType()))
throw WrapperError(std::string(__func__) + "(): source type is wrong");
if (data.size()*sizeof(T) != size()) throw WrapperError(std::string(__func__) + "(): source size is wrong");
copyFrom(&data[0]);
}
#ifdef IVX_USE_OPENCV
void copyTo(cv::Mat& m)
{
if (m.type() != enumToCVType(dataType())) throw WrapperError(std::string(__func__) + "(): destination type is wrong");
if (((vx_size)(m.rows) != rows() || (vx_size)(m.cols) != columns()) && !m.empty())
throw WrapperError(std::string(__func__) + "(): destination size is wrong");
if (m.isContinuous() && (vx_size)(m.rows) == rows() && (vx_size)(m.cols) == columns())
{
copyTo(m.ptr());
}
else
{
cv::Mat tmp((int)rows(), (int)columns(), enumToCVType(dataType()));
copyTo(tmp.ptr());
if (m.empty())
m = tmp;
else
tmp.copyTo(m);
}
}
void copyFrom(const cv::Mat& m)
{
if ((vx_size)(m.rows) != rows() || (vx_size)(m.cols) != columns()) throw WrapperError(std::string(__func__) + "(): source size is wrong");
if (m.type() != enumToCVType(dataType())) throw WrapperError(std::string(__func__) + "(): source type is wrong");
copyFrom(m.isContinuous() ? m.ptr() : m.clone().ptr());
}
#endif //IVX_USE_OPENCV
};
/*
* Matrix
*/
class Matrix : public RefWrapper<vx_matrix>
{
public:
IVX_REF_STD_CTORS_AND_ASSIGNMENT(Matrix);
static Matrix create(vx_context context, vx_enum dataType, vx_size columns, vx_size rows)
{ return Matrix(vxCreateMatrix(context, dataType, columns, rows)); }
#ifdef VX_VERSION_1_1
static Matrix createFromPattern(vx_context context, vx_enum pattern, vx_size columns, vx_size rows)
{ return Matrix(vxCreateMatrixFromPattern(context, pattern, columns, rows)); }
#endif
#ifndef VX_VERSION_1_1
static const vx_enum
VX_MEMORY_TYPE_HOST = VX_IMPORT_TYPE_HOST,
VX_MATRIX_TYPE = VX_MATRIX_ATTRIBUTE_TYPE,
VX_MATRIX_ROWS = VX_MATRIX_ATTRIBUTE_ROWS,
VX_MATRIX_COLUMNS = VX_MATRIX_ATTRIBUTE_COLUMNS,
VX_MATRIX_SIZE = VX_MATRIX_ATTRIBUTE_SIZE;
#endif
template<typename T>
void query(vx_enum att, T& value) const
{ IVX_CHECK_STATUS( vxQueryMatrix(ref, att, &value, sizeof(value)) ); }
vx_enum dataType() const
{
vx_enum v;
query(VX_MATRIX_TYPE, v);
return v;
}
vx_size columns() const
{
vx_size v;
query(VX_MATRIX_COLUMNS, v);
return v;
}
vx_size rows() const
{
vx_size v;
query(VX_MATRIX_ROWS, v);
return v;
}
vx_size size() const
{
vx_size v;
query(VX_MATRIX_SIZE, v);
return v;
}
#ifdef VX_VERSION_1_1
vx_coordinates2d_t origin() const
{
vx_coordinates2d_t v;
query(VX_MATRIX_ORIGIN, v);
return v;
}
vx_enum pattern() const
{
vx_enum v;
query(VX_MATRIX_PATTERN, v);
return v;
}
#endif // VX_VERSION_1_1
void copyTo(void* data)
{
if (!data) throw WrapperError(std::string(__func__) + "(): output pointer is 0");
#ifdef VX_VERSION_1_1
IVX_CHECK_STATUS(vxCopyMatrix(ref, data, VX_READ_ONLY, VX_MEMORY_TYPE_HOST));
#else
IVX_CHECK_STATUS(vxReadMatrix(ref, data));
#endif
}
void copyFrom(const void* data)
{
if (!data) throw WrapperError(std::string(__func__) + "(): input pointer is 0");
#ifdef VX_VERSION_1_1
IVX_CHECK_STATUS(vxCopyMatrix(ref, const_cast<void*>(data), VX_WRITE_ONLY, VX_MEMORY_TYPE_HOST));
#else
IVX_CHECK_STATUS(vxWriteMatrix(ref, data));
#endif
}
void copy(void* data, vx_enum usage, vx_enum memType = VX_MEMORY_TYPE_HOST)
{
if (!data) throw WrapperError(std::string(__func__) + "(): data pointer is 0");
#ifdef VX_VERSION_1_1
IVX_CHECK_STATUS(vxCopyMatrix(ref, data, usage, memType));
#else
if (usage == VX_READ_ONLY)
IVX_CHECK_STATUS(vxReadMatrix(ref, data));
else if (usage == VX_WRITE_ONLY)
IVX_CHECK_STATUS(vxWriteMatrix(ref, data));
else
throw WrapperError(std::string(__func__) + "(): unknown copy direction");
(void)memType;
#endif
}
template<typename T> void copyTo(std::vector<T>& data)
{
if (!areTypesCompatible(TypeToEnum<T>::value, dataType()))
throw WrapperError(std::string(__func__) + "(): destination type is wrong");
if (data.size()*sizeof(T) != size())
{
if (data.size() == 0)
data.resize(size()/sizeof(T));
else
throw WrapperError(std::string(__func__) + "(): destination size is wrong");
}
copyTo(&data[0]);
}
template<typename T> void copyFrom(const std::vector<T>& data)
{
if (!areTypesCompatible(TypeToEnum<T>::value, dataType()))
throw WrapperError(std::string(__func__) + "(): source type is wrong");
if (data.size()*sizeof(T) != size()) throw WrapperError(std::string(__func__) + "(): source size is wrong");
copyFrom(&data[0]);
}
#ifdef IVX_USE_OPENCV
void copyTo(cv::Mat& m)
{
if (m.type() != enumToCVType(dataType())) throw WrapperError(std::string(__func__) + "(): destination type is wrong");
if (((vx_size)(m.rows) != rows() || (vx_size)(m.cols) != columns()) && !m.empty())
throw WrapperError(std::string(__func__) + "(): destination size is wrong");
if (m.isContinuous() && (vx_size)(m.rows) == rows() && (vx_size)(m.cols) == columns())
{
copyTo(m.ptr());
}
else
{
cv::Mat tmp((int)rows(), (int)columns(), enumToCVType(dataType()));
copyTo(tmp.ptr());
if (m.empty())
m = tmp;
else
tmp.copyTo(m);
}
}
void copyFrom(const cv::Mat& m)
{
if ((vx_size)(m.rows) != rows() || (vx_size)(m.cols) != columns()) throw WrapperError(std::string(__func__) + "(): source size is wrong");
if (m.type() != enumToCVType(dataType())) throw WrapperError(std::string(__func__) + "(): source type is wrong");
copyFrom(m.isContinuous() ? m.ptr() : m.clone().ptr());
}
#endif //IVX_USE_OPENCV
};
/*
* LUT
*/
class LUT : public RefWrapper<vx_lut>
{
public:
IVX_REF_STD_CTORS_AND_ASSIGNMENT(LUT);
#ifdef VX_VERSION_1_1
static LUT create(vx_context context, vx_enum dataType = VX_TYPE_UINT8, vx_size count = 256)
{
#else
static LUT create(vx_context context)
{
vx_enum dataType = VX_TYPE_UINT8;
vx_size count = 256;
#endif
return LUT(vxCreateLUT(context, dataType, count));
}
#ifndef VX_VERSION_1_1
static const vx_enum VX_MEMORY_TYPE_HOST = VX_IMPORT_TYPE_HOST;
#endif
template<typename T>
void query(vx_enum att, T& value) const
{
IVX_CHECK_STATUS(vxQueryLUT(ref, att, &value, sizeof(value)));
}
#ifndef VX_VERSION_1_1
static const vx_enum
VX_LUT_TYPE = VX_LUT_ATTRIBUTE_TYPE,
VX_LUT_COUNT = VX_LUT_ATTRIBUTE_COUNT,
VX_LUT_SIZE = VX_LUT_ATTRIBUTE_SIZE;
#endif
vx_enum dataType() const
{
vx_enum v;
query(VX_LUT_TYPE, v);
return v;
}
vx_size count() const
{
vx_size v;
query(VX_LUT_COUNT, v);
return v;
}
vx_size size() const
{
vx_size v;
query(VX_LUT_SIZE, v);
return v;
}
#ifdef VX_VERSION_1_1
vx_uint32 offset() const
{
vx_enum v;
query(VX_LUT_OFFSET, v);
return v;
}
#endif // VX_VERSION_1_1
void copyTo(void* data)
{
if (!data) throw WrapperError(std::string(__func__) + "(): output pointer is 0");
#ifdef VX_VERSION_1_1
IVX_CHECK_STATUS(vxCopyLUT(ref, data, VX_READ_ONLY, VX_MEMORY_TYPE_HOST));
#else
IVX_CHECK_STATUS(vxAccessLUT(ref, &data, VX_READ_ONLY));
IVX_CHECK_STATUS(vxCommitLUT(ref, data));
#endif
}
void copyFrom(const void* data)
{
if (!data) throw WrapperError(std::string(__func__) + "(): input pointer is 0");
#ifdef VX_VERSION_1_1
IVX_CHECK_STATUS(vxCopyLUT(ref, const_cast<void*>(data), VX_WRITE_ONLY, VX_MEMORY_TYPE_HOST));
#else
IVX_CHECK_STATUS(vxAccessLUT(ref, const_cast<void**>(&data), VX_WRITE_ONLY));
IVX_CHECK_STATUS(vxCommitLUT(ref, data));
#endif
}
void copy(void* data, vx_enum usage, vx_enum memType = VX_MEMORY_TYPE_HOST)
{
#ifdef VX_VERSION_1_1
IVX_CHECK_STATUS(vxCopyLUT(ref, data, usage, memType));
#else
IVX_CHECK_STATUS(vxAccessLUT(ref, const_cast<void**>(&data), usage));
IVX_CHECK_STATUS(vxCommitLUT(ref, data));
(void)memType;
#endif
}
template<typename T> void copyTo(std::vector<T>& data)
{
if (!areTypesCompatible(TypeToEnum<T>::value, dataType()))
throw WrapperError(std::string(__func__) + "(): destination type is wrong");
if (data.size() != count())
{
if (data.size() == 0)
data.resize(count());
else
throw WrapperError(std::string(__func__) + "(): destination size is wrong");
}
copyTo(&data[0]);
}
template<typename T> void copyFrom(const std::vector<T>& data)
{
if (!areTypesCompatible(TypeToEnum<T>::value, dataType()))
throw WrapperError(std::string(__func__) + "(): source type is wrong");
if (data.size() != count()) throw WrapperError(std::string(__func__) + "(): source size is wrong");
copyFrom(&data[0]);
}
#ifdef IVX_USE_OPENCV
void copyTo(cv::Mat& m)
{
if (m.type() != enumToCVType(dataType())) throw WrapperError(std::string(__func__) + "(): destination type is wrong");
if (!(
((vx_size)(m.rows) == count() && m.cols == 1) ||
((vx_size)(m.cols) == count() && m.rows == 1)
) && !m.empty())
throw WrapperError(std::string(__func__) + "(): destination size is wrong");
if (m.isContinuous() && (vx_size)(m.total()) == count())
{
copyTo(m.ptr());
}
else
{
cv::Mat tmp(1, (int)count(), enumToCVType(dataType()));
copyTo(tmp.ptr());
if (m.empty())
m = tmp;
else
tmp.copyTo(m);
}
}
void copyFrom(const cv::Mat& m)
{
if (!(
((vx_size)(m.rows) == count() && m.cols == 1) ||
((vx_size)(m.cols) == count() && m.rows == 1)
)) throw WrapperError(std::string(__func__) + "(): source size is wrong");
if (m.type() != enumToCVType(dataType())) throw WrapperError(std::string(__func__) + "(): source type is wrong");
copyFrom(m.isContinuous() ? m.ptr() : m.clone().ptr());
}
#endif //IVX_USE_OPENCV
};
/*
* Pyramid
*/
class Pyramid : public RefWrapper<vx_pyramid>
{
public:
IVX_REF_STD_CTORS_AND_ASSIGNMENT(Pyramid)
static Pyramid create(vx_context context, vx_size levels, vx_float32 scale,
vx_uint32 width, vx_uint32 height, vx_df_image format)
{return Pyramid(vxCreatePyramid(context, levels, scale, width, height, format));}
static Pyramid createVirtual(vx_graph graph, vx_size levels, vx_float32 scale,
vx_uint32 width, vx_uint32 height, vx_df_image format)
{return Pyramid(vxCreateVirtualPyramid(graph, levels, scale, width, height, format));}
#ifndef VX_VERSION_1_1
static const vx_enum
VX_PYRAMID_LEVELS = VX_PYRAMID_ATTRIBUTE_LEVELS,
VX_PYRAMID_SCALE = VX_PYRAMID_ATTRIBUTE_SCALE,
VX_PYRAMID_WIDTH = VX_PYRAMID_ATTRIBUTE_WIDTH,
VX_PYRAMID_HEIGHT = VX_PYRAMID_ATTRIBUTE_HEIGHT,
VX_PYRAMID_FORMAT = VX_PYRAMID_ATTRIBUTE_FORMAT;
#endif
template<typename T>
void query(vx_enum att, T& value) const
{ IVX_CHECK_STATUS( vxQueryPyramid(ref, att, &value, sizeof(value)) ); }
vx_size levels() const
{
vx_size l;
query(VX_PYRAMID_LEVELS, l);
return l;
}
vx_float32 scale() const
{
vx_float32 s;
query(VX_PYRAMID_SCALE, s);
return s;
}
vx_uint32 width() const
{
vx_uint32 v;
query(VX_PYRAMID_WIDTH, v);
return v;
}
vx_uint32 height() const
{
vx_uint32 v;
query(VX_PYRAMID_HEIGHT, v);
return v;
}
vx_df_image format() const
{
vx_df_image f;
query(VX_PYRAMID_FORMAT, f);
return f;
}
Image getLevel(vx_uint32 index)
{ return Image(vxGetPyramidLevel(ref, index)); }
};
/*
* Distribution
*/
class Distribution : public RefWrapper<vx_distribution>
{
public:
IVX_REF_STD_CTORS_AND_ASSIGNMENT(Distribution);
static Distribution create(vx_context context, vx_size numBins, vx_int32 offset, vx_uint32 range)
{
return Distribution(vxCreateDistribution(context, numBins, offset, range));
}
#ifndef VX_VERSION_1_1
static const vx_enum
VX_MEMORY_TYPE_HOST = VX_IMPORT_TYPE_HOST,
VX_DISTRIBUTION_DIMENSIONS = VX_DISTRIBUTION_ATTRIBUTE_DIMENSIONS,
VX_DISTRIBUTION_OFFSET = VX_DISTRIBUTION_ATTRIBUTE_OFFSET,
VX_DISTRIBUTION_RANGE = VX_DISTRIBUTION_ATTRIBUTE_RANGE,
VX_DISTRIBUTION_BINS = VX_DISTRIBUTION_ATTRIBUTE_BINS,
VX_DISTRIBUTION_WINDOW = VX_DISTRIBUTION_ATTRIBUTE_WINDOW,
VX_DISTRIBUTION_SIZE = VX_DISTRIBUTION_ATTRIBUTE_SIZE;
#endif
template<typename T>
void query(vx_enum att, T& value) const
{
IVX_CHECK_STATUS(vxQueryDistribution(ref, att, &value, sizeof(value)));
}
vx_size dimensions() const
{
vx_size v;
query(VX_DISTRIBUTION_DIMENSIONS, v);
return v;
}
vx_int32 offset() const
{
vx_int32 v;
query(VX_DISTRIBUTION_OFFSET, v);
return v;
}
vx_uint32 range() const
{
vx_uint32 v;
query(VX_DISTRIBUTION_RANGE, v);
return v;
}
vx_size bins() const
{
vx_size v;
query(VX_DISTRIBUTION_BINS, v);
return v;
}
vx_uint32 window() const
{
vx_uint32 v;
query(VX_DISTRIBUTION_WINDOW, v);
return v;
}
vx_size size() const
{
vx_size v;
query(VX_DISTRIBUTION_SIZE, v);
return v;
}
vx_size dataType() const
{
return VX_TYPE_UINT32;
}
void copyTo(void* data)
{
if (!data) throw WrapperError(std::string(__func__) + "(): output pointer is 0");
#ifdef VX_VERSION_1_1
IVX_CHECK_STATUS(vxCopyDistribution(ref, data, VX_READ_ONLY, VX_MEMORY_TYPE_HOST));
#else
IVX_CHECK_STATUS(vxAccessDistribution(ref, &data, VX_READ_ONLY));
IVX_CHECK_STATUS(vxCommitDistribution(ref, data));
#endif
}
void copyFrom(const void* data)
{
if (!data) throw WrapperError(std::string(__func__) + "(): input pointer is 0");
#ifdef VX_VERSION_1_1
IVX_CHECK_STATUS(vxCopyDistribution(ref, const_cast<void*>(data), VX_WRITE_ONLY, VX_MEMORY_TYPE_HOST));
#else
IVX_CHECK_STATUS(vxAccessDistribution(ref, const_cast<void**>(&data), VX_WRITE_ONLY));
IVX_CHECK_STATUS(vxCommitDistribution(ref, data));
#endif
}
void copy(void* data, vx_enum usage, vx_enum memType = VX_MEMORY_TYPE_HOST)
{
#ifdef VX_VERSION_1_1
IVX_CHECK_STATUS(vxCopyDistribution(ref, data, usage, memType));
#else
IVX_CHECK_STATUS(vxAccessDistribution(ref, const_cast<void**>(&data), usage));
IVX_CHECK_STATUS(vxCommitDistribution(ref, data));
(void)memType;
#endif
}
template<typename T> void copyTo(std::vector<T>& data)
{
if (TypeToEnum<T>::value != dataType()) throw WrapperError(std::string(__func__) + "(): destination type is wrong");
if (data.size() != bins())
{
if (data.size() == 0)
data.resize(bins());
else
throw WrapperError(std::string(__func__) + "(): destination size is wrong");
}
copyTo(&data[0]);
}
template<typename T> void copyFrom(const std::vector<T>& data)
{
if (TypeToEnum<T>::value != dataType()) throw WrapperError(std::string(__func__) + "(): source type is wrong");
if (data.size() != bins()) throw WrapperError(std::string(__func__) + "(): source size is wrong");
copyFrom(&data[0]);
}
#ifdef IVX_USE_OPENCV
void copyTo(cv::Mat& m)
{
if (m.type() != enumToCVType(dataType())) throw WrapperError(std::string(__func__) + "(): destination type is wrong");
if (!(
((vx_size)(m.rows) == bins() && m.cols == 1) ||
((vx_size)(m.cols) == bins() && m.rows == 1)
) && !m.empty())
throw WrapperError(std::string(__func__) + "(): destination size is wrong");
if (m.isContinuous() && (vx_size)(m.total()) == bins())
{
copyTo(m.ptr());
}
else
{
cv::Mat tmp(1, (int)bins(), enumToCVType(dataType()));
copyTo(tmp.ptr());
if (m.empty())
m = tmp;
else
tmp.copyTo(m);
}
}
void copyFrom(const cv::Mat& m)
{
if (!(
((vx_size)(m.rows) == bins() && m.cols == 1) ||
((vx_size)(m.cols) == bins() && m.rows == 1)
)) throw WrapperError(std::string(__func__) + "(): source size is wrong");
if (m.type() != enumToCVType(dataType())) throw WrapperError(std::string(__func__) + "(): source type is wrong");
copyFrom(m.isContinuous() ? m.ptr() : m.clone().ptr());
}
#endif //IVX_USE_OPENCV
};
/*
* Remap
*/
class Remap : public RefWrapper<vx_remap>
{
public:
IVX_REF_STD_CTORS_AND_ASSIGNMENT(Remap);
static Remap create(vx_context context, vx_uint32 src_width, vx_uint32 src_height, vx_uint32 dst_width, vx_uint32 dst_height)
{
return Remap(vxCreateRemap(context, src_width, src_height, dst_width, dst_height));
}
#ifndef VX_VERSION_1_1
static const vx_enum
VX_REMAP_SOURCE_WIDTH = VX_REMAP_ATTRIBUTE_SOURCE_WIDTH,
VX_REMAP_SOURCE_HEIGHT = VX_REMAP_ATTRIBUTE_SOURCE_HEIGHT,
VX_REMAP_DESTINATION_WIDTH = VX_REMAP_ATTRIBUTE_DESTINATION_WIDTH,
VX_REMAP_DESTINATION_HEIGHT = VX_REMAP_ATTRIBUTE_DESTINATION_HEIGHT;
#endif
template<typename T>
void query(vx_enum att, T& value) const
{ IVX_CHECK_STATUS(vxQueryRemap(ref, att, &value, sizeof(value))); }
vx_uint32 srcWidth() const
{
vx_uint32 v;
query(VX_REMAP_SOURCE_WIDTH, v);
return v;
}
vx_uint32 srcHeight() const
{
vx_uint32 v;
query(VX_REMAP_SOURCE_HEIGHT, v);
return v;
}
vx_uint32 dstWidth() const
{
vx_uint32 v;
query(VX_REMAP_DESTINATION_WIDTH, v);
return v;
}
vx_uint32 dstHeight() const
{
vx_uint32 v;
query(VX_REMAP_DESTINATION_HEIGHT, v);
return v;
}
vx_uint32 srcCoordType() const
{ return VX_TYPE_FLOAT32; }
vx_uint32 dstCoordType() const
{ return VX_TYPE_UINT32; }
void setMapping(vx_uint32 dst_x, vx_uint32 dst_y, vx_float32 src_x, vx_float32 src_y)
{ IVX_CHECK_STATUS(vxSetRemapPoint(ref, dst_x, dst_y, src_x, src_y)); }
void getMapping(vx_uint32 dst_x, vx_uint32 dst_y, vx_float32 &src_x, vx_float32 &src_y) const
{ IVX_CHECK_STATUS(vxGetRemapPoint(ref, dst_x, dst_y, &src_x, &src_y)); }
#ifdef IVX_USE_OPENCV
void setMappings(const cv::Mat& map_x, const cv::Mat& map_y)
{
if (map_x.type() != enumToCVType(srcCoordType()) || map_y.type() != enumToCVType(srcCoordType()))
throw WrapperError(std::string(__func__) + "(): mapping type is wrong");
if ((vx_uint32)(map_x.rows) != dstHeight() || (vx_uint32)(map_x.cols) != dstWidth())
throw WrapperError(std::string(__func__) + "(): x mapping size is wrong");
if ((vx_uint32)(map_y.rows) != dstHeight() || (vx_uint32)(map_y.cols) != dstWidth())
throw WrapperError(std::string(__func__) + "(): y mapping size is wrong");
for (vx_uint32 y = 0; y < dstHeight(); y++)
{
const vx_float32* map_x_line = map_x.ptr<vx_float32>(y);
const vx_float32* map_y_line = map_y.ptr<vx_float32>(y);
for (vx_uint32 x = 0; x < dstWidth(); x++)
setMapping(x, y, map_x_line[x], map_y_line[x]);
}
}
void setMappings(const cv::Mat& map)
{
if (map.depth() != CV_MAT_DEPTH(enumToCVType(srcCoordType())) || map.channels() != 2)
throw WrapperError(std::string(__func__) + "(): mapping type is wrong");
if ((vx_uint32)(map.rows) != dstHeight() || (vx_uint32)(map.cols) != dstWidth())
throw WrapperError(std::string(__func__) + "(): x mapping size is wrong");
for (vx_uint32 y = 0; y < dstHeight(); y++)
{
const vx_float32* map_line = map.ptr<vx_float32>(y);
for (vx_uint32 x = 0; x < 2*dstWidth(); x+=2)
setMapping(x, y, map_line[x], map_line[x+1]);
}
}
void getMappings(cv::Mat& map_x, cv::Mat& map_y) const
{
if (map_x.type() != enumToCVType(srcCoordType()) || map_y.type() != enumToCVType(srcCoordType()))
throw WrapperError(std::string(__func__) + "(): mapping type is wrong");
if (((vx_uint32)(map_x.rows) != dstHeight() || (vx_uint32)(map_x.cols) != dstWidth()) && !map_x.empty())
throw WrapperError(std::string(__func__) + "(): x mapping size is wrong");
if (((vx_uint32)(map_y.rows) != dstHeight() || (vx_uint32)(map_y.cols) != dstWidth()) && !map_y.empty())
throw WrapperError(std::string(__func__) + "(): y mapping size is wrong");
if (map_x.empty())
map_x = cv::Mat((int)dstHeight(), (int)dstWidth(), enumToCVType(srcCoordType()));
if (map_y.empty())
map_y = cv::Mat((int)dstHeight(), (int)dstWidth(), enumToCVType(srcCoordType()));
for (vx_uint32 y = 0; y < dstHeight(); y++)
{
vx_float32* map_x_line = map_x.ptr<vx_float32>(y);
vx_float32* map_y_line = map_y.ptr<vx_float32>(y);
for (vx_uint32 x = 0; x < dstWidth(); x++)
getMapping(x, y, map_x_line[x], map_y_line[x]);
}
}
void getMappings(cv::Mat& map) const
{
if (map.depth() != CV_MAT_DEPTH(enumToCVType(srcCoordType())) || map.channels() != 2)
throw WrapperError(std::string(__func__) + "(): mapping type is wrong");
if (((vx_uint32)(map.rows) != dstHeight() || (vx_uint32)(map.cols) != dstWidth()) && !map.empty())
throw WrapperError(std::string(__func__) + "(): x mapping size is wrong");
if (map.empty())
map = cv::Mat((int)dstHeight(), (int)dstWidth(), CV_MAKETYPE(CV_MAT_DEPTH(enumToCVType(srcCoordType())),2));
for (vx_uint32 y = 0; y < dstHeight(); y++)
{
vx_float32* map_line = map.ptr<vx_float32>(y);
for (vx_uint32 x = 0; x < 2*dstWidth(); x+=2)
getMapping(x, y, map_line[x], map_line[x+1]);
}
}
#endif //IVX_USE_OPENCV
};
/// Standard nodes
namespace nodes {
/// Creates a Gaussian Filter 3x3 Node (vxGaussian3x3Node)
inline Node gaussian3x3(vx_graph graph, vx_image inImg, vx_image outImg)
{ return Node(vxGaussian3x3Node(graph, inImg, outImg)); }
} // namespace nodes
} // namespace ivx
// restore warnings
#if defined(_MSC_VER)
#pragma warning(pop)
#elif defined(__clang__)
#pragma clang diagnostic pop
#elif defined(__GNUC__)
#pragma GCC diagnostic pop
#endif // compiler macro
#endif //IVX_HPP