80 lines
3 KiB
Python
80 lines
3 KiB
Python
|
from statistics import median
|
||
|
|
||
|
import cv2 as cv
|
||
|
import numpy as np
|
||
|
|
||
|
|
||
|
class Warper:
|
||
|
|
||
|
WARP_TYPE_CHOICES = ('spherical', 'plane', 'affine', 'cylindrical',
|
||
|
'fisheye', 'stereographic', 'compressedPlaneA2B1',
|
||
|
'compressedPlaneA1.5B1',
|
||
|
'compressedPlanePortraitA2B1',
|
||
|
'compressedPlanePortraitA1.5B1',
|
||
|
'paniniA2B1', 'paniniA1.5B1', 'paniniPortraitA2B1',
|
||
|
'paniniPortraitA1.5B1', 'mercator',
|
||
|
'transverseMercator')
|
||
|
|
||
|
DEFAULT_WARP_TYPE = 'spherical'
|
||
|
|
||
|
def __init__(self, warper_type=DEFAULT_WARP_TYPE):
|
||
|
self.warper_type = warper_type
|
||
|
self.scale = None
|
||
|
|
||
|
def set_scale(self, cameras):
|
||
|
focals = [cam.focal for cam in cameras]
|
||
|
self.scale = median(focals)
|
||
|
|
||
|
def warp_images(self, imgs, cameras, aspect=1):
|
||
|
for img, camera in zip(imgs, cameras):
|
||
|
yield self.warp_image(img, camera, aspect)
|
||
|
|
||
|
def warp_image(self, img, camera, aspect=1):
|
||
|
warper = cv.PyRotationWarper(self.warper_type, self.scale*aspect)
|
||
|
_, warped_image = warper.warp(img,
|
||
|
Warper.get_K(camera, aspect),
|
||
|
camera.R,
|
||
|
cv.INTER_LINEAR,
|
||
|
cv.BORDER_REFLECT)
|
||
|
return warped_image
|
||
|
|
||
|
def create_and_warp_masks(self, sizes, cameras, aspect=1):
|
||
|
for size, camera in zip(sizes, cameras):
|
||
|
yield self.create_and_warp_mask(size, camera, aspect)
|
||
|
|
||
|
def create_and_warp_mask(self, size, camera, aspect=1):
|
||
|
warper = cv.PyRotationWarper(self.warper_type, self.scale*aspect)
|
||
|
mask = 255 * np.ones((size[1], size[0]), np.uint8)
|
||
|
_, warped_mask = warper.warp(mask,
|
||
|
Warper.get_K(camera, aspect),
|
||
|
camera.R,
|
||
|
cv.INTER_NEAREST,
|
||
|
cv.BORDER_CONSTANT)
|
||
|
return warped_mask
|
||
|
|
||
|
def warp_rois(self, sizes, cameras, aspect=1):
|
||
|
roi_corners = []
|
||
|
roi_sizes = []
|
||
|
for size, camera in zip(sizes, cameras):
|
||
|
roi = self.warp_roi(size, camera, aspect)
|
||
|
roi_corners.append(roi[0:2])
|
||
|
roi_sizes.append(roi[2:4])
|
||
|
return roi_corners, roi_sizes
|
||
|
|
||
|
def warp_roi(self, size, camera, aspect=1):
|
||
|
warper = cv.PyRotationWarper(self.warper_type, self.scale*aspect)
|
||
|
K = Warper.get_K(camera, aspect)
|
||
|
return warper.warpRoi(size, K, camera.R)
|
||
|
|
||
|
@staticmethod
|
||
|
def get_K(camera, aspect=1):
|
||
|
K = camera.K().astype(np.float32)
|
||
|
""" Modification of intrinsic parameters needed if cameras were
|
||
|
obtained on different scale than the scale of the Images which should
|
||
|
be warped """
|
||
|
K[0, 0] *= aspect
|
||
|
K[0, 2] *= aspect
|
||
|
K[1, 1] *= aspect
|
||
|
K[1, 2] *= aspect
|
||
|
return K
|