cameracv/libs/opencv/modules/dnn/test/test_halide_layers.cpp

979 lines
35 KiB
C++
Raw Normal View History

2023-05-18 21:39:43 +03:00
// This file is part of OpenCV project.
// It is subject to the license terms in the LICENSE file found in the top-level directory
// of this distribution and at http://opencv.org/license.html.
//
// Copyright (C) 2017-2019, Intel Corporation, all rights reserved.
// Third party copyrights are property of their respective owners.
// This tests doesn't require any external data. They just compare outputs of
// layers using different computation backends. Input and parameters are random.
#include "test_precomp.hpp"
namespace opencv_test { namespace {
using namespace cv;
using namespace cv::dnn;
using namespace testing;
static void test(Mat& input, Net& net, Backend backendId, Target targetId, bool skipCheck = false, bool randInput = true, double l1 = 0.0, double lInf = 0.0)
{
DNNTestLayer::checkBackend(backendId, targetId);
if (randInput)
randu(input, -1.0f, 1.0f);
net.setInput(input);
net.setPreferableBackend(DNN_BACKEND_OPENCV);
Mat outputDefault = net.forward().clone();
net.setPreferableBackend(backendId);
net.setPreferableTarget(targetId);
Mat outputHalide = net.forward().clone();
if (skipCheck)
return;
double default_l1, default_lInf;
DNNTestLayer::getDefaultThresholds(backendId, targetId, &default_l1, &default_lInf);
if (l1 == 0.0)
l1 = default_l1;
if (lInf == 0.0)
lInf = default_lInf;
normAssert(outputDefault, outputHalide, "", l1, lInf);
if (cvtest::debugLevel > 0 || testing::Test::HasFailure())
{
std::cout << "l1=" << l1 << " lInf=" << lInf << std::endl;
std::cout << outputDefault.reshape(1, outputDefault.total()).t() << std::endl;
std::cout << outputHalide.reshape(1, outputDefault.total()).t() << std::endl;
}
}
static void test(LayerParams& params, Mat& input, Backend backendId, Target targetId, bool skipCheck = false, double l1 = 0.0, double lInf = 0.0)
{
Net net;
net.addLayerToPrev(params.name, params.type, params);
test(input, net, backendId, targetId, skipCheck, true, l1, lInf);
}
static inline testing::internal::ParamGenerator<tuple<Backend, Target> > dnnBackendsAndTargetsWithHalide()
{
return dnnBackendsAndTargets(true, true, false); // OpenCV/CPU is used as reference
}
class Test_Halide_layers : public DNNTestLayer {};
////////////////////////////////////////////////////////////////////////////////
// Padding
////////////////////////////////////////////////////////////////////////////////
TEST_P(Test_Halide_layers, Padding)
{
static const int kNumRuns = 10;
std::vector<int> paddings(8);
cv::RNG& rng = cv::theRNG();
for (int t = 0; t < kNumRuns; ++t)
{
for (int i = 0; i < paddings.size(); ++i)
paddings[i] = rng(5);
LayerParams lp;
lp.set("paddings", DictValue::arrayInt<int*>(&paddings[0], paddings.size()));
lp.type = "Padding";
lp.name = "testLayer";
int sz[] = {1 + (int)rng(10), 1 + (int)rng(10), 1 + (int)rng(10), 1 + (int)rng(10)};
Mat input(4, &sz[0], CV_32F);
test(lp, input, backend, target);
}
}
////////////////////////////////////////////////////////////////////////////////
// Convolution
////////////////////////////////////////////////////////////////////////////////
typedef TestWithParam<tuple<Vec3i, Size, Size, Size, Size, Size, bool, tuple<Backend, Target> > > Convolution;
TEST_P(Convolution, Accuracy)
{
int inChannels = get<0>(GetParam())[0];
int outChannels = get<0>(GetParam())[1];
int group = get<0>(GetParam())[2];
Size inSize = get<1>(GetParam());
Size kernel = get<2>(GetParam());
Size stride = get<3>(GetParam());
Size pad = get<4>(GetParam());
Size dilation = get<5>(GetParam());
bool hasBias = get<6>(GetParam());
Backend backendId = get<0>(get<7>(GetParam()));
Target targetId = get<1>(get<7>(GetParam()));
bool skipCheck = false;
int sz[] = {outChannels, inChannels / group, kernel.height, kernel.width};
Mat weights(4, &sz[0], CV_32F);
randu(weights, -1.0f, 1.0f);
LayerParams lp;
lp.set("kernel_w", kernel.width);
lp.set("kernel_h", kernel.height);
lp.set("pad_w", pad.width);
lp.set("pad_h", pad.height);
lp.set("stride_w", stride.width);
lp.set("stride_h", stride.height);
lp.set("dilation_w", dilation.width);
lp.set("dilation_h", dilation.height);
lp.set("num_output", outChannels);
lp.set("group", group);
lp.set("bias_term", hasBias);
lp.type = "Convolution";
lp.name = "testLayer";
lp.blobs.push_back(weights);
if (hasBias)
{
Mat bias(1, outChannels, CV_32F);
randu(bias, -1.0f, 1.0f);
lp.blobs.push_back(bias);
}
int inpSz[] = {1, inChannels, inSize.height, inSize.width};
Mat input(4, &inpSz[0], CV_32F);
test(lp, input, backendId, targetId, skipCheck);
if (skipCheck)
throw SkipTestException("Skip checks in unstable test");
}
INSTANTIATE_TEST_CASE_P(Layer_Test_Halide, Convolution, Combine(
/*in channels, out channels, group*/
Values(Vec3i(6, 4, 1), Vec3i(6, 9, 1),
Vec3i(6, 4, 2), Vec3i(6, 9, 3)),
/*in size*/ Values(Size(5, 6)),
/*kernel*/ Values(Size(3, 1), Size(1, 3)),
/*stride*/ Values(Size(1, 1), Size(2, 2)),
/*pad*/ Values(Size(1, 0), Size(0, 1)),
/*dilation*/ Values(Size(1, 1), Size(2, 2)),
/*has bias*/ Bool(),
dnnBackendsAndTargetsWithHalide()
));
////////////////////////////////////////////////////////////////////////////////
// Deconvolution
////////////////////////////////////////////////////////////////////////////////
typedef TestWithParam<tuple<Vec3i, Size, Size, Size, Size, Vec4i, bool, tuple<Backend, Target> > > Deconvolution;
TEST_P(Deconvolution, Accuracy)
{
int inChannels = get<0>(GetParam())[0];
int outChannels = get<0>(GetParam())[1];
int group = get<0>(GetParam())[2];
Size inSize = get<1>(GetParam());
Size kernel = get<2>(GetParam());
Size pad = get<3>(GetParam());
Size dilation = get<4>(GetParam());
Size stride = Size(get<5>(GetParam())[0], get<5>(GetParam())[1]);
Size adjPad = Size(get<5>(GetParam())[2], get<5>(GetParam())[3]);
bool hasBias = get<6>(GetParam());
Backend backendId = get<0>(get<7>(GetParam()));
Target targetId = get<1>(get<7>(GetParam()));
#if defined(INF_ENGINE_RELEASE) && INF_ENGINE_VER_MAJOR_GE(2019010000)
if (backendId == DNN_BACKEND_INFERENCE_ENGINE_NN_BUILDER_2019 && targetId == DNN_TARGET_MYRIAD
&& getInferenceEngineVPUType() == CV_DNN_INFERENCE_ENGINE_VPU_TYPE_MYRIAD_X
&& inChannels == 6 && outChannels == 4 && group == 1
&& kernel == Size(1, 3) && pad == Size(1, 0)
&& stride == Size(1, 1) && dilation == Size(1, 1))
applyTestTag(CV_TEST_TAG_DNN_SKIP_IE_MYRIAD_X);
#endif
if (targetId == DNN_TARGET_CUDA_FP16)
applyTestTag(CV_TEST_TAG_DNN_SKIP_CUDA_FP16);
int sz[] = {inChannels, outChannels / group, kernel.height, kernel.width};
Mat weights(4, &sz[0], CV_32F);
randu(weights, -1.0f, 1.0f);
LayerParams lp;
lp.set("kernel_w", kernel.width);
lp.set("kernel_h", kernel.height);
lp.set("pad_w", pad.width);
lp.set("pad_h", pad.height);
lp.set("stride_w", stride.width);
lp.set("stride_h", stride.height);
lp.set("dilation_w", dilation.width);
lp.set("dilation_h", dilation.height);
lp.set("adj_w", adjPad.width);
lp.set("adj_h", adjPad.height);
lp.set("num_output", outChannels);
lp.set("group", group);
lp.set("bias_term", hasBias);
lp.type = "Deconvolution";
lp.name = "testLayer";
lp.blobs.push_back(weights);
if (hasBias)
{
Mat bias(1, outChannels, CV_32F);
randu(bias, -1.0f, 1.0f);
lp.blobs.push_back(bias);
}
int inpSz[] = {1, inChannels, inSize.height, inSize.width};
Mat input(4, &inpSz[0], CV_32F);
test(lp, input, backendId, targetId);
}
INSTANTIATE_TEST_CASE_P(Layer_Test_Halide, Deconvolution, Combine(
/*in channels, out channels, group*/
Values(Vec3i(6, 4, 1), Vec3i(6, 9, 3)),
/*in size*/ Values(Size(5, 6)),
/*kernel*/ Values(Size(3, 1), Size(1, 3)),
/*pad*/ Values(Size(1, 0), Size(0, 1)),
/*dilation*/ Values(Size(1, 1)),
/*stride, adj. pad*/ Values(Vec4i(1,1, 0,0), Vec4i(2,2, 1,0), Vec4i(1,2, 0,1)),
/*has bias*/ Bool(),
dnnBackendsAndTargetsWithHalide()
));
////////////////////////////////////////////////////////////////////////////////
// LRN
////////////////////////////////////////////////////////////////////////////////
typedef TestWithParam<tuple<Vec3i, int, Vec3f, bool, std::string, tuple<Backend, Target> > > LRN;
TEST_P(LRN, Accuracy)
{
int inChannels = get<0>(GetParam())[0];
Size inSize = Size(get<0>(GetParam())[1], get<0>(GetParam())[2]);
int localSize = get<1>(GetParam());
float alpha = get<2>(GetParam())[0];
float beta = get<2>(GetParam())[1];
float bias = get<2>(GetParam())[2];
bool normBySize = get<3>(GetParam());
std::string nrmType = get<4>(GetParam());
Backend backendId = get<0>(get<5>(GetParam()));
Target targetId = get<1>(get<5>(GetParam()));
#if defined(INF_ENGINE_RELEASE) && INF_ENGINE_VER_MAJOR_LT(2021040000)
if ((inSize.width == 5 || inSize.height == 5) && targetId == DNN_TARGET_MYRIAD &&
nrmType == "ACROSS_CHANNELS")
applyTestTag(CV_TEST_TAG_DNN_SKIP_IE_MYRIAD);
#endif
LayerParams lp;
lp.set("norm_region", nrmType);
lp.set("local_size", localSize);
lp.set("alpha", alpha);
lp.set("beta", beta);
lp.set("bias", bias);
lp.set("norm_by_size", normBySize);
lp.type = "LRN";
lp.name = "testLayer";
int sz[] = {1, inChannels, inSize.height, inSize.width};
Mat input(4, &sz[0], CV_32F);
double l1 = 0.0, lInf = 0.0;
// The OpenCL kernels use the native_ math functions which have
// implementation defined accuracy, so we use relaxed thresholds. See
// https://github.com/opencv/opencv/issues/9821 for more details.
if (targetId == DNN_TARGET_OPENCL)
{
l1 = 0.01;
lInf = 0.01;
}
test(lp, input, backendId, targetId, false, l1, lInf);
}
INSTANTIATE_TEST_CASE_P(Layer_Test_Halide, LRN, Combine(
/*input ch,w,h*/ Values(Vec3i(6, 5, 8), Vec3i(7, 11, 6)),
/*local size*/ Values(3, 5),
Values(Vec3f(0.9f, 1.0f, 1.1f), Vec3f(0.9f, 1.1f, 1.0f),
/*alpha, beta, bias*/ Vec3f(1.0f, 0.9f, 1.1f), Vec3f(1.0f, 1.1f, 0.9f),
Vec3f(1.1f, 0.9f, 1.0f), Vec3f(1.1f, 1.0f, 0.9f)),
/*norm_by_size*/ Bool(),
/*norm_type*/ Values("ACROSS_CHANNELS", "WITHIN_CHANNEL"),
dnnBackendsAndTargetsWithHalide()
));
////////////////////////////////////////////////////////////////////////////////
// Average pooling
////////////////////////////////////////////////////////////////////////////////
typedef TestWithParam<tuple<int, Size, Size, Size, tuple<Backend, Target> > > AvePooling;
TEST_P(AvePooling, Accuracy)
{
int inChannels = get<0>(GetParam());
Size outSize = get<1>(GetParam());; // Input size will be computed from parameters.
Size kernel = get<2>(GetParam());
Size stride = get<3>(GetParam());
Backend backendId = get<0>(get<4>(GetParam()));
Target targetId = get<1>(get<4>(GetParam()));
#if defined(INF_ENGINE_RELEASE)
if (backendId == DNN_BACKEND_INFERENCE_ENGINE_NN_BUILDER_2019 && targetId == DNN_TARGET_MYRIAD
&& getInferenceEngineVPUType() == CV_DNN_INFERENCE_ENGINE_VPU_TYPE_MYRIAD_X
&& kernel == Size(1, 1) && (stride == Size(1, 1) || stride == Size(2, 2)))
applyTestTag(CV_TEST_TAG_DNN_SKIP_IE_MYRIAD_X);
#endif
const int inWidth = (outSize.width - 1) * stride.width + kernel.width;
const int inHeight = (outSize.height - 1) * stride.height + kernel.height;
LayerParams lp;
lp.set("pool", "ave");
lp.set("kernel_w", kernel.width);
lp.set("kernel_h", kernel.height);
lp.set("stride_w", stride.width);
lp.set("stride_h", stride.height);
lp.type = "Pooling";
lp.name = "testLayer";
int sz[] = {1, inChannels, inHeight, inWidth};
Mat input(4, &sz[0], CV_32F);
test(lp, input, backendId, targetId);
}
INSTANTIATE_TEST_CASE_P(Layer_Test_Halide, AvePooling, Combine(
/*in channels*/ Values(3, 4),
/*out size*/ Values(Size(1, 1), Size(2, 2), Size(3, 2), Size(4, 7)),
/*kernel*/ Values(Size(1, 1), Size(2, 2), Size(3, 3), Size(3, 2)),
/*stride*/ Values(Size(1, 1), Size(2, 2), Size(3, 2)),
dnnBackendsAndTargetsWithHalide()
));
////////////////////////////////////////////////////////////////////////////////
// Maximum pooling
////////////////////////////////////////////////////////////////////////////////
typedef TestWithParam<tuple<int, Size, Size, Size, Size, tuple<Backend, Target> > > MaxPooling;
TEST_P(MaxPooling, Accuracy)
{
int inChannels = get<0>(GetParam());
Size inSize = get<1>(GetParam());
Size kernel = get<2>(GetParam());
Size stride = get<3>(GetParam());
Size pad = get<4>(GetParam());
Backend backendId = get<0>(get<5>(GetParam()));
Target targetId = get<1>(get<5>(GetParam()));
#if defined(INF_ENGINE_RELEASE) && INF_ENGINE_VER_MAJOR_LE(2018050000)
if (backendId == DNN_BACKEND_INFERENCE_ENGINE_NN_BUILDER_2019 && targetId == DNN_TARGET_MYRIAD
&& inSize == Size(7, 6) && kernel == Size(3, 2)
&& (stride == Size(1, 1) || stride == Size(2, 2))
&& (pad == Size(0, 1) || pad == Size(1, 1))
)
applyTestTag(CV_TEST_TAG_DNN_SKIP_IE_MYRIAD, CV_TEST_TAG_DNN_SKIP_IE_VERSION);
#endif
#if defined(INF_ENGINE_RELEASE) && INF_ENGINE_VER_MAJOR_EQ(2018050000)
if (backendId == DNN_BACKEND_INFERENCE_ENGINE_NN_BUILDER_2019 && targetId == DNN_TARGET_MYRIAD
&& (kernel == Size(2, 2) || kernel == Size(3, 2))
&& stride == Size(1, 1) && (pad == Size(0, 0) || pad == Size(0, 1))
)
applyTestTag(CV_TEST_TAG_DNN_SKIP_IE_MYRIAD, CV_TEST_TAG_DNN_SKIP_IE_VERSION);
#endif
#if defined(INF_ENGINE_RELEASE) && INF_ENGINE_VER_MAJOR_GE(2019010000)
if (backendId == DNN_BACKEND_INFERENCE_ENGINE_NN_BUILDER_2019 && targetId == DNN_TARGET_MYRIAD
&& getInferenceEngineVPUType() == CV_DNN_INFERENCE_ENGINE_VPU_TYPE_MYRIAD_X
&& (stride == Size(1, 1) || stride == Size(2, 2))
&& (pad == Size(0, 1) || pad == Size(1, 1))
)
applyTestTag(CV_TEST_TAG_DNN_SKIP_IE_MYRIAD_X, CV_TEST_TAG_DNN_SKIP_IE_VERSION);
#endif
#if defined(INF_ENGINE_RELEASE) && INF_ENGINE_VER_MAJOR_GE(2020020000)
if (backendId == DNN_BACKEND_INFERENCE_ENGINE_NGRAPH && targetId == DNN_TARGET_MYRIAD)
applyTestTag(CV_TEST_TAG_DNN_SKIP_IE_MYRIAD, CV_TEST_TAG_DNN_SKIP_IE_NGRAPH, CV_TEST_TAG_DNN_SKIP_IE_VERSION);
#endif
LayerParams lp;
lp.set("pool", "max");
lp.set("kernel_w", kernel.width);
lp.set("kernel_h", kernel.height);
lp.set("stride_w", stride.width);
lp.set("stride_h", stride.height);
lp.set("pad_w", pad.width);
lp.set("pad_h", pad.height);
lp.type = "Pooling";
lp.name = "testLayer";
int sz[] = {1, inChannels, inSize.height, inSize.width};
Mat input(4, &sz[0], CV_32F);
test(lp, input, backendId, targetId);
}
INSTANTIATE_TEST_CASE_P(Layer_Test_Halide, MaxPooling, Combine(
/*in channels*/ Values(3, 4),
/*in size*/ Values(Size(5, 5), Size(7, 6)),
/*kernel*/ Values(Size(2, 2), Size(3, 3), Size(3, 2)),
/*stride*/ Values(Size(1, 1), Size(2, 2), Size(3, 2)),
/*pad*/ Values(Size(0, 0), Size(1, 1), Size(0, 1)),
dnnBackendsAndTargetsWithHalide()
));
////////////////////////////////////////////////////////////////////////////////
// Fully-connected
////////////////////////////////////////////////////////////////////////////////
typedef TestWithParam<tuple<int, Size, int, bool, tuple<Backend, Target> > > FullyConnected;
TEST_P(FullyConnected, Accuracy)
{
int inChannels = get<0>(GetParam());
Size inSize = get<1>(GetParam());
int outChannels = get<2>(GetParam());
bool hasBias = get<3>(GetParam());
Backend backendId = get<0>(get<4>(GetParam()));
Target targetId = get<1>(get<4>(GetParam()));
#if defined(INF_ENGINE_RELEASE) && INF_ENGINE_VER_MAJOR_LT(2021040000)
if ((backendId == DNN_BACKEND_INFERENCE_ENGINE_NN_BUILDER_2019 ||
backendId == DNN_BACKEND_INFERENCE_ENGINE_NGRAPH) && (targetId == DNN_TARGET_OPENCL_FP16 ||
(targetId == DNN_TARGET_MYRIAD && getInferenceEngineVPUType() == CV_DNN_INFERENCE_ENGINE_VPU_TYPE_MYRIAD_X))) {
applyTestTag(CV_TEST_TAG_DNN_SKIP_IE_OPENCL_FP16);
applyTestTag(CV_TEST_TAG_DNN_SKIP_IE_MYRIAD_X);
}
#endif
Mat weights(outChannels, inChannels * inSize.height * inSize.width, CV_32F);
randu(weights, -1.0f, 1.0f);
Mat bias(1, outChannels, CV_32F);
randu(bias, -1.0f, 1.0f);
LayerParams lp;
lp.set("num_output", outChannels);
lp.set("bias_term", hasBias);
lp.blobs.push_back(weights);
lp.blobs.push_back(bias);
lp.type = "InnerProduct";
lp.name = "testLayer";
int sz[] = {1, inChannels, inSize.height, inSize.width};
Mat input(4, &sz[0], CV_32F);
double l1 = 0.0;
double lInf = 0.0;
#if defined(INF_ENGINE_RELEASE)
if (targetId == DNN_TARGET_MYRIAD)
{
l1 = 0.015;
lInf = 0.025;
}
if (backendId == DNN_BACKEND_INFERENCE_ENGINE_NGRAPH && targetId == DNN_TARGET_OPENCL_FP16)
{
l1 = 0.01;
}
#endif
if (targetId == DNN_TARGET_CUDA_FP16)
l1 = 0.015;
test(lp, input, backendId, targetId, false, l1, lInf);
}
INSTANTIATE_TEST_CASE_P(Layer_Test_Halide, FullyConnected, Combine(
/*in channels*/ Values(3, 4),
/*in size*/ Values(Size(5, 4), Size(4, 5), Size(1, 1)),
/*out channels*/ Values(3, 4),
/*has bias*/ Bool(),
dnnBackendsAndTargetsWithHalide()
));
////////////////////////////////////////////////////////////////////////////////
// SoftMax
////////////////////////////////////////////////////////////////////////////////
typedef TestWithParam<tuple<int, tuple<Backend, Target> > > SoftMax;
TEST_P(SoftMax, Accuracy)
{
int inChannels = get<0>(GetParam());
Backend backendId = get<0>(get<1>(GetParam()));
Target targetId = get<1>(get<1>(GetParam()));
LayerParams lp;
lp.type = "Softmax";
lp.name = "testLayer";
int sz[] = {1, inChannels, 1, 1};
Mat input(4, &sz[0], CV_32F);
test(lp, input, backendId, targetId);
}
INSTANTIATE_TEST_CASE_P(Layer_Test_Halide, SoftMax, Combine(
Values(3, 4, 5, 1024),
dnnBackendsAndTargetsWithHalide()
));
//////////////////////////////////////////////////////////////////////////////
// Max pooling - unpooling
//////////////////////////////////////////////////////////////////////////////
TEST_P(Test_Halide_layers, MaxPoolUnpool)
{
if (backend == DNN_BACKEND_INFERENCE_ENGINE_NN_BUILDER_2019)
applyTestTag(CV_TEST_TAG_DNN_SKIP_IE_NN_BUILDER);
if (backend == DNN_BACKEND_INFERENCE_ENGINE_NGRAPH)
applyTestTag(CV_TEST_TAG_DNN_SKIP_IE_NGRAPH);
LayerParams pool;
pool.set("pool", "max");
pool.set("kernel_w", 2);
pool.set("kernel_h", 2);
pool.set("stride_w", 2);
pool.set("stride_h", 2);
pool.set("pad_w", 0);
pool.set("pad_h", 0);
pool.type = "Pooling";
pool.name = "testPool";
LayerParams unpool;
unpool.set("pool_k_w", 2);
unpool.set("pool_k_h", 2);
unpool.set("pool_stride_w", 2);
unpool.set("pool_stride_h", 2);
unpool.set("pool_pad_w", 0);
unpool.set("pool_pad_h", 0);
unpool.type = "MaxUnpool";
unpool.name = "testUnpool";
Net net;
int poolId = net.addLayer(pool.name, pool.type, pool);
net.connect(0, 0, poolId, 0);
int unpoolId = net.addLayer(unpool.name, unpool.type, unpool);
net.connect(poolId, 0, unpoolId, 0);
net.connect(poolId, 1, unpoolId, 1);
int sz[] = {1, 1, 4, 4};
Mat input(4, &sz[0], CV_32F);
test(input, net, backend, target);
}
////////////////////////////////////////////////////////////////////////////////
// AvePooling + in-place layers
////////////////////////////////////////////////////////////////////////////////
static const int kNumChannels = 3;
void testInPlaceActivation(LayerParams& lp, Backend backendId, Target targetId, double l1 = 0.0, double lInf = 0.0)
{
EXPECT_FALSE(lp.name.empty());
LayerParams pool;
pool.set("pool", "ave");
pool.set("kernel_w", 2);
pool.set("kernel_h", 2);
pool.set("stride_w", 2);
pool.set("stride_h", 2);
pool.type = "Pooling";
pool.name = "ave_pool";
Net net;
int poolId = net.addLayer(pool.name, pool.type, pool);
net.connect(0, 0, poolId, 0);
net.addLayerToPrev(lp.name, lp.type, lp);
int sz[] = {1, kNumChannels, 10, 10};
Mat input(4, &sz[0], CV_32F);
test(input, net, backendId, targetId, false, true, l1, lInf);
}
typedef TestWithParam<tuple<bool, bool, float, tuple<Backend, Target> > > BatchNorm;
TEST_P(BatchNorm, Accuracy)
{
bool hasWeights = get<0>(GetParam());
bool hasBias = get<1>(GetParam());
float epsilon = get<2>(GetParam());
Backend backendId = get<0>(get<3>(GetParam()));
Target targetId = get<1>(get<3>(GetParam()));
LayerParams lp;
lp.set("has_weight", hasWeights);
lp.set("has_bias", hasBias);
lp.set("eps", epsilon);
lp.type = "BatchNorm";
lp.name = "testLayer";
lp.blobs.reserve(4);
for (int i = 0; i < 3; ++i)
lp.blobs.push_back(Mat(1, kNumChannels, CV_32F));
if (hasBias || hasWeights)
lp.blobs.push_back(Mat(1, kNumChannels, CV_32F));
for (int i = 0; i < lp.blobs.size(); ++i)
randu(lp.blobs[i], 0.0f, 1.0f);
testInPlaceActivation(lp, backendId, targetId);
}
INSTANTIATE_TEST_CASE_P(Layer_Test_Halide, BatchNorm, Combine(
/*has weights*/ Bool(),
/*has bias*/ Bool(),
/*epsilon*/ Values(1e-3f, 1e-5f),
dnnBackendsAndTargetsWithHalide()
));
typedef TestWithParam<tuple<float, tuple<Backend, Target> > > ReLU;
TEST_P(ReLU, Accuracy)
{
float negativeSlope = get<0>(GetParam());
Backend backendId = get<0>(get<1>(GetParam()));
Target targetId = get<1>(get<1>(GetParam()));
#if defined(INF_ENGINE_RELEASE) && INF_ENGINE_VER_MAJOR_GE(2019020000)
if (backendId == DNN_BACKEND_INFERENCE_ENGINE_NN_BUILDER_2019 && targetId == DNN_TARGET_MYRIAD && negativeSlope < 0)
applyTestTag(CV_TEST_TAG_DNN_SKIP_IE_NN_BUILDER, CV_TEST_TAG_DNN_SKIP_IE_VERSION);
#endif
LayerParams lp;
lp.set("negative_slope", negativeSlope);
lp.type = "ReLU";
lp.name = "testLayer";
testInPlaceActivation(lp, backendId, targetId);
}
INSTANTIATE_TEST_CASE_P(Layer_Test_Halide, ReLU, Combine(
/*negative slope*/ Values(2.0f, 0.3f, -0.1f, 0.0f),
dnnBackendsAndTargetsWithHalide()
));
typedef TestWithParam<tuple<std::string, tuple<Backend, Target> > > NoParamActivation;
TEST_P(NoParamActivation, Accuracy)
{
Backend backendId = get<0>(get<1>(GetParam()));
Target targetId = get<1>(get<1>(GetParam()));
LayerParams lp;
lp.type = get<0>(GetParam());
lp.name = "testLayer";
testInPlaceActivation(lp, backendId, targetId);
}
INSTANTIATE_TEST_CASE_P(Layer_Test_Halide, NoParamActivation, Combine(
/*type*/ Values("TanH", "Sigmoid", "AbsVal", "BNLL", "Swish", "Mish"),
dnnBackendsAndTargetsWithHalide()
));
typedef TestWithParam<tuple<Vec3f, tuple<Backend, Target> > > Power;
TEST_P(Power, Accuracy)
{
float power = get<0>(GetParam())[0];
float scale = get<0>(GetParam())[1];
float shift = get<0>(GetParam())[2];
Backend backendId = get<0>(get<1>(GetParam()));
Target targetId = get<1>(get<1>(GetParam()));
LayerParams lp;
lp.set("power", power);
lp.set("scale", scale);
lp.set("shift", shift);
lp.type = "Power";
lp.name = "testLayer";
testInPlaceActivation(lp, backendId, targetId);
}
INSTANTIATE_TEST_CASE_P(Layer_Test_Halide, Power, Combine(
/*power, scale, shift*/ Values(Vec3f(0.9f, 1.0f, 1.1f), Vec3f(0.9f, 1.1f, 1.0f),
Vec3f(1.0f, 0.9f, 1.1f), Vec3f(1.0f, 1.1f, 0.9f),
Vec3f(1.1f, 0.9f, 1.0f), Vec3f(1.1f, 1.0f, 0.9f)),
dnnBackendsAndTargetsWithHalide()
));
typedef TestWithParam<tuple<Vec3f, tuple<Backend, Target> > > Exp;
TEST_P(Exp, Accuracy)
{
float base = get<0>(GetParam())[0];
float scale = get<0>(GetParam())[1];
float shift = get<0>(GetParam())[2];
Backend backendId = get<0>(get<1>(GetParam()));
Target targetId = get<1>(get<1>(GetParam()));
LayerParams lp;
lp.set("base", base);
lp.set("scale", scale);
lp.set("shift", shift);
lp.type = "Exp";
lp.name = "testLayer";
testInPlaceActivation(lp, backendId, targetId);
}
INSTANTIATE_TEST_CASE_P(Layer_Test_Halide, Exp, Combine(
/*base, scale, shift*/ Values(Vec3f(0.9f, -1.0f, 1.1f), Vec3f(0.9f, 1.1f, -1.0f),
Vec3f(-1.0f, 0.9f, 1.1f), Vec3f(-1.0f, 1.1f, 0.9f),
Vec3f(1.1f, 0.9f, -1.0f), Vec3f(1.1f, -1.0f, 0.9f)),
dnnBackendsAndTargetsWithHalide()
));
TEST_P(Test_Halide_layers, ChannelsPReLU)
{
LayerParams lp;
lp.type = "ChannelsPReLU";
lp.name = "testLayer";
lp.blobs.push_back(Mat(1, kNumChannels, CV_32F));
randu(lp.blobs[0], -1.0f, 1.0f);
testInPlaceActivation(lp, backend, target);
}
typedef TestWithParam<tuple<bool, tuple<Backend, Target> > > Scale;
TEST_P(Scale, Accuracy)
{
bool hasBias = get<0>(GetParam());
Backend backendId = get<0>(get<1>(GetParam()));
Target targetId = get<1>(get<1>(GetParam()));
LayerParams lp;
lp.set("bias_term", hasBias);
lp.type = "Scale";
lp.name = "testLayer";
lp.blobs.push_back(Mat(1, kNumChannels, CV_32F));
randu(lp.blobs[0], -1.0f, 1.0f);
if (hasBias)
{
lp.blobs.push_back(Mat(1, kNumChannels, CV_32F));
randu(lp.blobs[1], -1.0f, 1.0f);
}
testInPlaceActivation(lp, backendId, targetId);
}
INSTANTIATE_TEST_CASE_P(Layer_Test_Halide, Scale, Combine(
Bool(),
dnnBackendsAndTargetsWithHalide()
));
////////////////////////////////////////////////////////////////////////////////
// Concat layer
////////////////////////////////////////////////////////////////////////////////
//
// input --- conv --- concat --- output
// `--- conv ----^ ^ ^
// `---- ... ------' '
// `-----------------'
typedef TestWithParam<tuple<Vec3i, Vec3i, tuple<Backend, Target> > > Concat;
TEST_P(Concat, Accuracy)
{
Vec3i inSize = get<0>(GetParam());
Vec3i numChannels = get<1>(GetParam());
Backend backendId = get<0>(get<2>(GetParam()));
Target targetId = get<1>(get<2>(GetParam()));
#if defined(INF_ENGINE_RELEASE) && INF_ENGINE_VER_MAJOR_LE(2018050000)
if (backendId == DNN_BACKEND_INFERENCE_ENGINE_NN_BUILDER_2019 && targetId == DNN_TARGET_MYRIAD
&& inSize == Vec3i(1, 4, 5) && numChannels == Vec3i(1, 6, 2)
)
applyTestTag(CV_TEST_TAG_DNN_SKIP_IE_MYRIAD, CV_TEST_TAG_DNN_SKIP_IE_NN_BUILDER, CV_TEST_TAG_DNN_SKIP_IE_VERSION); // crash
#endif
#if defined(INF_ENGINE_RELEASE) && INF_ENGINE_VER_MAJOR_GE(2019010000)
if (backendId == DNN_BACKEND_INFERENCE_ENGINE_NN_BUILDER_2019 && targetId == DNN_TARGET_CPU
&& inSize == Vec3i(1, 4, 5) && numChannels == Vec3i(1, 6, 2)
)
applyTestTag(CV_TEST_TAG_DNN_SKIP_IE_NN_BUILDER, CV_TEST_TAG_DNN_SKIP_IE_VERSION); // TODO: IE_CPU
#endif
Net net;
std::vector<int> convLayerIds;
convLayerIds.reserve(numChannels.channels);
for (int i = 0, n = numChannels.channels; i < n; ++i)
{
if (!numChannels[i])
break;
int sz[] = {numChannels[i], inSize[0], 1, 1};
Mat weights(4, &sz[0], CV_32F);
randu(weights, -1.0f, 1.0f);
LayerParams convParam;
convParam.set("kernel_w", 1);
convParam.set("kernel_h", 1);
convParam.set("num_output", numChannels[i]);
convParam.set("bias_term", false);
convParam.type = "Convolution";
std::ostringstream ss;
ss << "convLayer" << i;
convParam.name = ss.str();
convParam.blobs.push_back(weights);
int layerId = net.addLayer(convParam.name, convParam.type, convParam);
convLayerIds.push_back(layerId);
net.connect(0, 0, layerId, 0);
}
LayerParams concatParam;
concatParam.type = "Concat";
concatParam.name = "testLayer";
int concatId = net.addLayer(concatParam.name, concatParam.type, concatParam);
net.connect(0, 0, concatId, 0);
for (int i = 0; i < convLayerIds.size(); ++i)
{
net.connect(convLayerIds[i], 0, concatId, i + 1);
}
int sz[] = {1, inSize[0], inSize[1], inSize[2]};
Mat input(4, &sz[0], CV_32F);
test(input, net, backendId, targetId);
}
INSTANTIATE_TEST_CASE_P(Layer_Test_Halide, Concat, Combine(
/*input size*/ Values(Vec3i(1, 4, 5), Vec3i(2, 8, 6)),
/*channels*/ Values(Vec3i(2, 0, 0), Vec3i(3, 4, 0), Vec3i(1, 6, 2)),
dnnBackendsAndTargetsWithHalide()
));
////////////////////////////////////////////////////////////////////////////////
// Element-wise layers
////////////////////////////////////////////////////////////////////////////////
//
// input --- conv --- eltwise --- output
// `--- conv ----^ ^ ^
// `---- ... ------' '
// `-----------------'
typedef TestWithParam<tuple<Vec3i, std::string, int, bool, tuple<Backend, Target> > > Eltwise;
TEST_P(Eltwise, Accuracy)
{
Vec3i inSize = get<0>(GetParam());
std::string op = get<1>(GetParam());
int numConv = get<2>(GetParam());
bool weighted = get<3>(GetParam());
Backend backendId = get<0>(get<4>(GetParam()));
Target targetId = get<1>(get<4>(GetParam()));
#if defined(INF_ENGINE_RELEASE) && INF_ENGINE_VER_MAJOR_EQ(2021040000)
// accuracy
if (backendId == DNN_BACKEND_INFERENCE_ENGINE_NGRAPH && targetId == DNN_TARGET_OPENCL &&
inSize == Vec3i(1, 4, 5) && op == "sum" && numConv == 1 && !weighted)
applyTestTag(CV_TEST_TAG_DNN_SKIP_IE_OPENCL, CV_TEST_TAG_DNN_SKIP_IE_NGRAPH, CV_TEST_TAG_DNN_SKIP_IE_VERSION);
if (backendId == DNN_BACKEND_INFERENCE_ENGINE_NGRAPH && targetId == DNN_TARGET_OPENCL &&
inSize == Vec3i(2, 8, 6) && op == "sum" && numConv == 1 && !weighted)
applyTestTag(CV_TEST_TAG_DNN_SKIP_IE_OPENCL, CV_TEST_TAG_DNN_SKIP_IE_NGRAPH, CV_TEST_TAG_DNN_SKIP_IE_VERSION);
#endif
#if defined(INF_ENGINE_RELEASE) && INF_ENGINE_VER_MAJOR_LE(2018050000)
if (backendId == DNN_BACKEND_INFERENCE_ENGINE_NN_BUILDER_2019 && targetId == DNN_TARGET_MYRIAD &&
inSize == Vec3i(1, 4, 5))
applyTestTag(CV_TEST_TAG_DNN_SKIP_IE_MYRIAD, CV_TEST_TAG_DNN_SKIP_IE_NN_BUILDER, CV_TEST_TAG_DNN_SKIP_IE_VERSION);
#endif
#if defined(INF_ENGINE_RELEASE) && INF_ENGINE_VER_MAJOR_GE(2019010000) && INF_ENGINE_VER_MAJOR_LT(2021040000)
if (backendId == DNN_BACKEND_INFERENCE_ENGINE_NN_BUILDER_2019 && numConv > 1)
applyTestTag(CV_TEST_TAG_DNN_SKIP_IE_NN_BUILDER, CV_TEST_TAG_DNN_SKIP_IE_VERSION);
#endif
#if defined(INF_ENGINE_RELEASE) && INF_ENGINE_VER_MAJOR_LT(2021040000)
if (backendId == DNN_BACKEND_INFERENCE_ENGINE_NN_BUILDER_2019 && targetId == DNN_TARGET_OPENCL &&
op == "sum" && numConv == 1 && !weighted)
applyTestTag(CV_TEST_TAG_DNN_SKIP_IE_OPENCL, CV_TEST_TAG_DNN_SKIP_IE_NN_BUILDER);
#endif
#if defined(INF_ENGINE_RELEASE) && INF_ENGINE_VER_MAJOR_LT(2021040000)
if (backendId == DNN_BACKEND_INFERENCE_ENGINE_NGRAPH && numConv > 1)
applyTestTag(CV_TEST_TAG_DNN_SKIP_IE_NGRAPH, CV_TEST_TAG_DNN_SKIP_IE_VERSION);
#endif
bool convInputShift = 1;
int numEltwiseInputs = numConv;
if (op == "div")
{
numConv = 1;
convInputShift = 0; // first input is convolution
}
Net net;
std::vector<int> convLayerIds(numConv);
for (int i = 0; i < numConv; ++i)
{
int sz[] = {inSize[0], inSize[0], 1, 1};
Mat weights(4, &sz[0], CV_32F);
randu(weights, -1.0f, 1.0f);
LayerParams convParam;
convParam.set("kernel_w", 1);
convParam.set("kernel_h", 1);
convParam.set("num_output", inSize[0]);
convParam.set("bias_term", false);
convParam.type = "Convolution";
std::ostringstream ss;
ss << "convLayer" << i;
convParam.name = ss.str();
convParam.blobs.push_back(weights);
convLayerIds[i] = net.addLayer(convParam.name, convParam.type, convParam);
net.connect(0, 0, convLayerIds[i], 0);
}
LayerParams eltwiseParam;
eltwiseParam.set("operation", op);
if (op == "sum" && weighted)
{
RNG& rng = cv::theRNG();
std::vector<float> coeff(1 + numConv);
for (int i = 0; i < coeff.size(); ++i)
{
coeff[i] = rng.uniform(-2.0f, 2.0f);
}
eltwiseParam.set("coeff", DictValue::arrayReal<float*>(&coeff[0], coeff.size()));
}
eltwiseParam.type = "Eltwise";
eltwiseParam.name = "testLayer";
int eltwiseId = net.addLayer(eltwiseParam.name, eltwiseParam.type, eltwiseParam);
if (convInputShift == 1)
net.connect(0, 0, eltwiseId, 0);
for (int i = 0; i < numConv; ++i)
{
net.connect(convLayerIds[i], 0, eltwiseId, i + convInputShift);
}
if (convInputShift == 0)
net.connect(0, 0, eltwiseId, numConv);
for (int i = numConv; i < numEltwiseInputs; ++i)
{
net.connect(0, 0, eltwiseId, i + 1);
}
int sz[] = {1, inSize[0], inSize[1], inSize[2]};
Mat input(4, &sz[0], CV_32F);
if (op == "div")
randu(input, 1.0f, 1.0f); // ensure no divisor value has absouluate value of less than 0.5
test(input, net, backendId, targetId, /*skipCheck*/false, (op == "div") ? false : true);
}
INSTANTIATE_TEST_CASE_P(Layer_Test_Halide, Eltwise, Combine(
/*input size*/ Values(Vec3i(1, 4, 5), Vec3i(2, 8, 6)),
/*operation*/ Values("prod", "sum", "div", "max", "min"),
/*num convs*/ Values(1, 2, 3),
/*weighted(for sum only)*/ Bool(),
dnnBackendsAndTargetsWithHalide()
));
////////////////////////////////////////////////////////////////////////////
// Mixed backends
////////////////////////////////////////////////////////////////////////////
#ifdef HAVE_HALIDE
TEST(MixedBackends_Halide_Default_Halide, Accuracy)
{
// Just a layer that supports Halide backend.
LayerParams lrn;
lrn.type = "LRN";
lrn.name = "testLRN";
// Some of layers that doesn't supports Halide backend yet.
LayerParams mvn;
mvn.type = "MVN";
mvn.name = "testMVN";
// Halide layer again.
LayerParams lrn2;
lrn2.type = "LRN";
lrn2.name = "testLRN2";
Net net;
int lrnId = net.addLayer(lrn.name, lrn.type, lrn);
net.connect(0, 0, lrnId, 0);
net.addLayerToPrev(mvn.name, mvn.type, mvn);
net.addLayerToPrev(lrn2.name, lrn2.type, lrn2);
int sz[] = {4, 3, 5, 6};
Mat input(4, &sz[0], CV_32F);
randu(input, -1.0f, 1.0f);
net.setInput(input);
net.setPreferableBackend(DNN_BACKEND_OPENCV);
Mat outputDefault = net.forward().clone();
net.setPreferableBackend(DNN_BACKEND_HALIDE);
net.setInput(input);
Mat outputHalide = net.forward().clone();
normAssert(outputDefault, outputHalide);
net.setPreferableTarget(DNN_TARGET_OPENCL);
net.setInput(input);
outputHalide = net.forward().clone();
normAssert(outputDefault, outputHalide);
}
#endif // HAVE_HALIDE
INSTANTIATE_TEST_CASE_P(/*nothing*/, Test_Halide_layers, dnnBackendsAndTargetsWithHalide());
}} // namespace