744 lines
28 KiB
C++
744 lines
28 KiB
C++
|
// This file is part of OpenCV project.
|
||
|
// It is subject to the license terms in the LICENSE file found in the top-level directory
|
||
|
// of this distribution and at http://opencv.org/license.html.
|
||
|
|
||
|
#include "test_precomp.hpp"
|
||
|
#include <opencv2/dnn/shape_utils.hpp>
|
||
|
#include "npy_blob.hpp"
|
||
|
namespace opencv_test { namespace {
|
||
|
|
||
|
template<typename TString>
|
||
|
static std::string _tf(TString filename, bool required = true)
|
||
|
{
|
||
|
String rootFolder = "dnn/";
|
||
|
return findDataFile(rootFolder + filename, required);
|
||
|
}
|
||
|
|
||
|
|
||
|
class Test_Model : public DNNTestLayer
|
||
|
{
|
||
|
public:
|
||
|
void testDetectModel(const std::string& weights, const std::string& cfg,
|
||
|
const std::string& imgPath, const std::vector<int>& refClassIds,
|
||
|
const std::vector<float>& refConfidences,
|
||
|
const std::vector<Rect2d>& refBoxes,
|
||
|
double scoreDiff, double iouDiff,
|
||
|
double confThreshold = 0.24, double nmsThreshold = 0.0,
|
||
|
const Size& size = {-1, -1}, Scalar mean = Scalar(),
|
||
|
double scale = 1.0, bool swapRB = false, bool crop = false,
|
||
|
bool nmsAcrossClasses = false)
|
||
|
{
|
||
|
checkBackend();
|
||
|
|
||
|
Mat frame = imread(imgPath);
|
||
|
DetectionModel model(weights, cfg);
|
||
|
|
||
|
model.setInputSize(size).setInputMean(mean).setInputScale(scale)
|
||
|
.setInputSwapRB(swapRB).setInputCrop(crop);
|
||
|
|
||
|
model.setPreferableBackend(backend);
|
||
|
model.setPreferableTarget(target);
|
||
|
|
||
|
model.setNmsAcrossClasses(nmsAcrossClasses);
|
||
|
|
||
|
std::vector<int> classIds;
|
||
|
std::vector<float> confidences;
|
||
|
std::vector<Rect> boxes;
|
||
|
|
||
|
model.detect(frame, classIds, confidences, boxes, confThreshold, nmsThreshold);
|
||
|
|
||
|
std::vector<Rect2d> boxesDouble(boxes.size());
|
||
|
for (int i = 0; i < boxes.size(); i++) {
|
||
|
boxesDouble[i] = boxes[i];
|
||
|
}
|
||
|
normAssertDetections(refClassIds, refConfidences, refBoxes, classIds,
|
||
|
confidences, boxesDouble, "",
|
||
|
confThreshold, scoreDiff, iouDiff);
|
||
|
}
|
||
|
|
||
|
void testClassifyModel(const std::string& weights, const std::string& cfg,
|
||
|
const std::string& imgPath, std::pair<int, float> ref, float norm,
|
||
|
const Size& size = {-1, -1}, Scalar mean = Scalar(),
|
||
|
double scale = 1.0, bool swapRB = false, bool crop = false)
|
||
|
{
|
||
|
checkBackend();
|
||
|
|
||
|
Mat frame = imread(imgPath);
|
||
|
ClassificationModel model(weights, cfg);
|
||
|
model.setInputSize(size).setInputMean(mean).setInputScale(scale)
|
||
|
.setInputSwapRB(swapRB).setInputCrop(crop);
|
||
|
|
||
|
std::pair<int, float> prediction = model.classify(frame);
|
||
|
EXPECT_EQ(prediction.first, ref.first);
|
||
|
ASSERT_NEAR(prediction.second, ref.second, norm);
|
||
|
}
|
||
|
|
||
|
void testKeypointsModel(const std::string& weights, const std::string& cfg,
|
||
|
const Mat& frame, const Mat& exp, float norm,
|
||
|
const Size& size = {-1, -1}, Scalar mean = Scalar(),
|
||
|
double scale = 1.0, bool swapRB = false, bool crop = false)
|
||
|
{
|
||
|
checkBackend();
|
||
|
|
||
|
std::vector<Point2f> points;
|
||
|
|
||
|
KeypointsModel model(weights, cfg);
|
||
|
model.setInputSize(size).setInputMean(mean).setInputScale(scale)
|
||
|
.setInputSwapRB(swapRB).setInputCrop(crop);
|
||
|
|
||
|
model.setPreferableBackend(backend);
|
||
|
model.setPreferableTarget(target);
|
||
|
|
||
|
points = model.estimate(frame, 0.5);
|
||
|
|
||
|
Mat out = Mat(points).reshape(1);
|
||
|
normAssert(exp, out, "", norm, norm);
|
||
|
}
|
||
|
|
||
|
void testSegmentationModel(const std::string& weights_file, const std::string& config_file,
|
||
|
const std::string& inImgPath, const std::string& outImgPath,
|
||
|
float norm, const Size& size = {-1, -1}, Scalar mean = Scalar(),
|
||
|
double scale = 1.0, bool swapRB = false, bool crop = false)
|
||
|
{
|
||
|
checkBackend();
|
||
|
|
||
|
Mat frame = imread(inImgPath);
|
||
|
Mat mask;
|
||
|
Mat exp = imread(outImgPath, 0);
|
||
|
|
||
|
SegmentationModel model(weights_file, config_file);
|
||
|
model.setInputSize(size).setInputMean(mean).setInputScale(scale)
|
||
|
.setInputSwapRB(swapRB).setInputCrop(crop);
|
||
|
|
||
|
model.segment(frame, mask);
|
||
|
normAssert(mask, exp, "", norm, norm);
|
||
|
}
|
||
|
|
||
|
void testTextRecognitionModel(const std::string& weights, const std::string& cfg,
|
||
|
const std::string& imgPath, const std::string& seq,
|
||
|
const std::string& decodeType, const std::vector<std::string>& vocabulary,
|
||
|
const Size& size = {-1, -1}, Scalar mean = Scalar(),
|
||
|
double scale = 1.0, bool swapRB = false, bool crop = false)
|
||
|
{
|
||
|
checkBackend();
|
||
|
|
||
|
Mat frame = imread(imgPath, IMREAD_GRAYSCALE);
|
||
|
|
||
|
TextRecognitionModel model(weights, cfg);
|
||
|
model.setDecodeType(decodeType)
|
||
|
.setVocabulary(vocabulary)
|
||
|
.setInputSize(size).setInputMean(mean).setInputScale(scale)
|
||
|
.setInputSwapRB(swapRB).setInputCrop(crop);
|
||
|
|
||
|
model.setPreferableBackend(backend);
|
||
|
model.setPreferableTarget(target);
|
||
|
|
||
|
std::string result = model.recognize(frame);
|
||
|
EXPECT_EQ(result, seq) << "Full frame: " << imgPath;
|
||
|
|
||
|
std::vector<Rect> rois;
|
||
|
rois.push_back(Rect(0, 0, frame.cols, frame.rows));
|
||
|
rois.push_back(Rect(0, 0, frame.cols, frame.rows)); // twice
|
||
|
std::vector<std::string> results;
|
||
|
model.recognize(frame, rois, results);
|
||
|
EXPECT_EQ((size_t)2u, results.size()) << "ROI: " << imgPath;
|
||
|
EXPECT_EQ(results[0], seq) << "ROI[0]: " << imgPath;
|
||
|
EXPECT_EQ(results[1], seq) << "ROI[1]: " << imgPath;
|
||
|
}
|
||
|
|
||
|
void testTextDetectionModelByDB(const std::string& weights, const std::string& cfg,
|
||
|
const std::string& imgPath, const std::vector<std::vector<Point>>& gt,
|
||
|
float binThresh, float polyThresh,
|
||
|
uint maxCandidates, double unclipRatio,
|
||
|
const Size& size = {-1, -1}, Scalar mean = Scalar(),
|
||
|
double scale = 1.0, bool swapRB = false, bool crop = false)
|
||
|
{
|
||
|
checkBackend();
|
||
|
|
||
|
Mat frame = imread(imgPath);
|
||
|
|
||
|
TextDetectionModel_DB model(weights, cfg);
|
||
|
model.setBinaryThreshold(binThresh)
|
||
|
.setPolygonThreshold(polyThresh)
|
||
|
.setUnclipRatio(unclipRatio)
|
||
|
.setMaxCandidates(maxCandidates)
|
||
|
.setInputSize(size).setInputMean(mean).setInputScale(scale)
|
||
|
.setInputSwapRB(swapRB).setInputCrop(crop);
|
||
|
|
||
|
model.setPreferableBackend(backend);
|
||
|
model.setPreferableTarget(target);
|
||
|
|
||
|
// 1. Check common TextDetectionModel API through RotatedRect
|
||
|
std::vector<cv::RotatedRect> results;
|
||
|
model.detectTextRectangles(frame, results);
|
||
|
|
||
|
EXPECT_GT(results.size(), (size_t)0);
|
||
|
|
||
|
std::vector< std::vector<Point> > contours;
|
||
|
for (size_t i = 0; i < results.size(); i++)
|
||
|
{
|
||
|
const RotatedRect& box = results[i];
|
||
|
Mat contour;
|
||
|
boxPoints(box, contour);
|
||
|
std::vector<Point> contour2i(4);
|
||
|
for (int i = 0; i < 4; i++)
|
||
|
{
|
||
|
contour2i[i].x = cvRound(contour.at<float>(i, 0));
|
||
|
contour2i[i].y = cvRound(contour.at<float>(i, 1));
|
||
|
}
|
||
|
contours.push_back(contour2i);
|
||
|
}
|
||
|
#if 0 // test debug
|
||
|
Mat result = frame.clone();
|
||
|
drawContours(result, contours, -1, Scalar(0, 0, 255), 1);
|
||
|
imshow("result", result); // imwrite("result.png", result);
|
||
|
waitKey(0);
|
||
|
#endif
|
||
|
normAssertTextDetections(gt, contours, "", 0.05f);
|
||
|
|
||
|
// 2. Check quadrangle-based API
|
||
|
// std::vector< std::vector<Point> > contours;
|
||
|
model.detect(frame, contours);
|
||
|
|
||
|
#if 0 // test debug
|
||
|
Mat result = frame.clone();
|
||
|
drawContours(result, contours, -1, Scalar(0, 0, 255), 1);
|
||
|
imshow("result_contours", result); // imwrite("result_contours.png", result);
|
||
|
waitKey(0);
|
||
|
#endif
|
||
|
normAssertTextDetections(gt, contours, "", 0.05f);
|
||
|
}
|
||
|
|
||
|
void testTextDetectionModelByEAST(
|
||
|
const std::string& weights, const std::string& cfg,
|
||
|
const std::string& imgPath, const std::vector<RotatedRect>& gt,
|
||
|
float confThresh, float nmsThresh,
|
||
|
const Size& size = {-1, -1}, Scalar mean = Scalar(),
|
||
|
double scale = 1.0, bool swapRB = false, bool crop = false,
|
||
|
double eps_center = 5/*pixels*/, double eps_size = 5/*pixels*/, double eps_angle = 1
|
||
|
)
|
||
|
{
|
||
|
checkBackend();
|
||
|
|
||
|
Mat frame = imread(imgPath);
|
||
|
|
||
|
TextDetectionModel_EAST model(weights, cfg);
|
||
|
model.setConfidenceThreshold(confThresh)
|
||
|
.setNMSThreshold(nmsThresh)
|
||
|
.setInputSize(size).setInputMean(mean).setInputScale(scale)
|
||
|
.setInputSwapRB(swapRB).setInputCrop(crop);
|
||
|
|
||
|
model.setPreferableBackend(backend);
|
||
|
model.setPreferableTarget(target);
|
||
|
|
||
|
std::vector<cv::RotatedRect> results;
|
||
|
model.detectTextRectangles(frame, results);
|
||
|
|
||
|
EXPECT_EQ(results.size(), (size_t)1);
|
||
|
for (size_t i = 0; i < results.size(); i++)
|
||
|
{
|
||
|
const RotatedRect& box = results[i];
|
||
|
#if 0 // test debug
|
||
|
Mat contour;
|
||
|
boxPoints(box, contour);
|
||
|
std::vector<Point> contour2i(4);
|
||
|
for (int i = 0; i < 4; i++)
|
||
|
{
|
||
|
contour2i[i].x = cvRound(contour.at<float>(i, 0));
|
||
|
contour2i[i].y = cvRound(contour.at<float>(i, 1));
|
||
|
}
|
||
|
std::vector< std::vector<Point> > contours;
|
||
|
contours.push_back(contour2i);
|
||
|
|
||
|
Mat result = frame.clone();
|
||
|
drawContours(result, contours, -1, Scalar(0, 0, 255), 1);
|
||
|
imshow("result", result); //imwrite("result.png", result);
|
||
|
waitKey(0);
|
||
|
#endif
|
||
|
const RotatedRect& gtBox = gt[i];
|
||
|
EXPECT_NEAR(box.center.x, gtBox.center.x, eps_center);
|
||
|
EXPECT_NEAR(box.center.y, gtBox.center.y, eps_center);
|
||
|
EXPECT_NEAR(box.size.width, gtBox.size.width, eps_size);
|
||
|
EXPECT_NEAR(box.size.height, gtBox.size.height, eps_size);
|
||
|
EXPECT_NEAR(box.angle, gtBox.angle, eps_angle);
|
||
|
}
|
||
|
}
|
||
|
};
|
||
|
|
||
|
TEST_P(Test_Model, Classify)
|
||
|
{
|
||
|
std::pair<int, float> ref(652, 0.641789);
|
||
|
|
||
|
std::string img_path = _tf("grace_hopper_227.png");
|
||
|
std::string config_file = _tf("bvlc_alexnet.prototxt");
|
||
|
std::string weights_file = _tf("bvlc_alexnet.caffemodel", false);
|
||
|
|
||
|
Size size{227, 227};
|
||
|
float norm = 1e-4;
|
||
|
|
||
|
testClassifyModel(weights_file, config_file, img_path, ref, norm, size);
|
||
|
}
|
||
|
|
||
|
|
||
|
TEST_P(Test_Model, DetectRegion)
|
||
|
{
|
||
|
applyTestTag(
|
||
|
CV_TEST_TAG_LONG,
|
||
|
CV_TEST_TAG_MEMORY_2GB
|
||
|
);
|
||
|
|
||
|
#if defined(INF_ENGINE_RELEASE) && INF_ENGINE_VER_MAJOR_EQ(2021040000)
|
||
|
// accuracy
|
||
|
if (backend == DNN_BACKEND_INFERENCE_ENGINE_NGRAPH && target == DNN_TARGET_OPENCL_FP16)
|
||
|
applyTestTag(CV_TEST_TAG_DNN_SKIP_IE_OPENCL_FP16, CV_TEST_TAG_DNN_SKIP_IE_NGRAPH, CV_TEST_TAG_DNN_SKIP_IE_VERSION);
|
||
|
#endif
|
||
|
|
||
|
#if defined(INF_ENGINE_RELEASE) && INF_ENGINE_VER_MAJOR_EQ(2020040000) // nGraph compilation failure
|
||
|
if (backend == DNN_BACKEND_INFERENCE_ENGINE_NGRAPH && target == DNN_TARGET_OPENCL)
|
||
|
applyTestTag(CV_TEST_TAG_DNN_SKIP_IE_OPENCL, CV_TEST_TAG_DNN_SKIP_IE_VERSION);
|
||
|
if (backend == DNN_BACKEND_INFERENCE_ENGINE_NGRAPH && target == DNN_TARGET_OPENCL_FP16)
|
||
|
applyTestTag(CV_TEST_TAG_DNN_SKIP_IE_OPENCL_FP16, CV_TEST_TAG_DNN_SKIP_IE_VERSION);
|
||
|
#endif
|
||
|
|
||
|
#if defined(INF_ENGINE_RELEASE) && INF_ENGINE_VER_MAJOR_GE(2019010000)
|
||
|
// FIXIT DNN_BACKEND_INFERENCE_ENGINE is misused
|
||
|
if (backend == DNN_BACKEND_INFERENCE_ENGINE && target == DNN_TARGET_OPENCL_FP16)
|
||
|
applyTestTag(CV_TEST_TAG_DNN_SKIP_IE_OPENCL_FP16);
|
||
|
#endif
|
||
|
|
||
|
#if defined(INF_ENGINE_RELEASE)
|
||
|
if (target == DNN_TARGET_MYRIAD
|
||
|
&& getInferenceEngineVPUType() == CV_DNN_INFERENCE_ENGINE_VPU_TYPE_MYRIAD_X)
|
||
|
applyTestTag(CV_TEST_TAG_DNN_SKIP_IE_MYRIAD_X);
|
||
|
#endif
|
||
|
|
||
|
std::vector<int> refClassIds = {6, 1, 11};
|
||
|
std::vector<float> refConfidences = {0.750469f, 0.780879f, 0.901615f};
|
||
|
std::vector<Rect2d> refBoxes = {Rect2d(240, 53, 135, 72),
|
||
|
Rect2d(112, 109, 192, 200),
|
||
|
Rect2d(58, 141, 117, 249)};
|
||
|
|
||
|
std::string img_path = _tf("dog416.png");
|
||
|
std::string weights_file = _tf("yolo-voc.weights", false);
|
||
|
std::string config_file = _tf("yolo-voc.cfg");
|
||
|
|
||
|
double scale = 1.0 / 255.0;
|
||
|
Size size{416, 416};
|
||
|
bool swapRB = true;
|
||
|
|
||
|
double confThreshold = 0.24;
|
||
|
double nmsThreshold = (target == DNN_TARGET_MYRIAD) ? 0.397 : 0.4;
|
||
|
double scoreDiff = 8e-5, iouDiff = 1e-5;
|
||
|
if (target == DNN_TARGET_OPENCL_FP16 || target == DNN_TARGET_MYRIAD || target == DNN_TARGET_CUDA_FP16)
|
||
|
{
|
||
|
scoreDiff = 1e-2;
|
||
|
iouDiff = 1.6e-2;
|
||
|
}
|
||
|
|
||
|
testDetectModel(weights_file, config_file, img_path, refClassIds, refConfidences,
|
||
|
refBoxes, scoreDiff, iouDiff, confThreshold, nmsThreshold, size,
|
||
|
Scalar(), scale, swapRB);
|
||
|
}
|
||
|
|
||
|
TEST_P(Test_Model, DetectRegionWithNmsAcrossClasses)
|
||
|
{
|
||
|
applyTestTag(
|
||
|
CV_TEST_TAG_LONG,
|
||
|
CV_TEST_TAG_MEMORY_2GB
|
||
|
);
|
||
|
|
||
|
#if defined(INF_ENGINE_RELEASE) && INF_ENGINE_VER_MAJOR_EQ(2021040000)
|
||
|
// accuracy
|
||
|
if (backend == DNN_BACKEND_INFERENCE_ENGINE_NGRAPH && target == DNN_TARGET_OPENCL_FP16)
|
||
|
applyTestTag(CV_TEST_TAG_DNN_SKIP_IE_OPENCL_FP16, CV_TEST_TAG_DNN_SKIP_IE_NGRAPH, CV_TEST_TAG_DNN_SKIP_IE_VERSION);
|
||
|
#endif
|
||
|
|
||
|
#if defined(INF_ENGINE_RELEASE) && INF_ENGINE_VER_MAJOR_EQ(2020040000) // nGraph compilation failure
|
||
|
if (backend == DNN_BACKEND_INFERENCE_ENGINE_NGRAPH && target == DNN_TARGET_OPENCL)
|
||
|
applyTestTag(CV_TEST_TAG_DNN_SKIP_IE_OPENCL, CV_TEST_TAG_DNN_SKIP_IE_VERSION);
|
||
|
if (backend == DNN_BACKEND_INFERENCE_ENGINE_NGRAPH && target == DNN_TARGET_OPENCL_FP16)
|
||
|
applyTestTag(CV_TEST_TAG_DNN_SKIP_IE_OPENCL_FP16, CV_TEST_TAG_DNN_SKIP_IE_VERSION);
|
||
|
#endif
|
||
|
|
||
|
#if defined(INF_ENGINE_RELEASE) && INF_ENGINE_VER_MAJOR_GE(2019010000)
|
||
|
if (backend == DNN_BACKEND_INFERENCE_ENGINE && target == DNN_TARGET_OPENCL_FP16)
|
||
|
applyTestTag(CV_TEST_TAG_DNN_SKIP_IE_OPENCL_FP16);
|
||
|
#endif
|
||
|
|
||
|
#if defined(INF_ENGINE_RELEASE)
|
||
|
if (target == DNN_TARGET_MYRIAD
|
||
|
&& getInferenceEngineVPUType() == CV_DNN_INFERENCE_ENGINE_VPU_TYPE_MYRIAD_X)
|
||
|
applyTestTag(CV_TEST_TAG_DNN_SKIP_IE_MYRIAD_X);
|
||
|
#endif
|
||
|
|
||
|
std::vector<int> refClassIds = { 6, 11 };
|
||
|
std::vector<float> refConfidences = { 0.750469f, 0.901615f };
|
||
|
std::vector<Rect2d> refBoxes = { Rect2d(240, 53, 135, 72),
|
||
|
Rect2d(58, 141, 117, 249) };
|
||
|
|
||
|
std::string img_path = _tf("dog416.png");
|
||
|
std::string weights_file = _tf("yolo-voc.weights", false);
|
||
|
std::string config_file = _tf("yolo-voc.cfg");
|
||
|
|
||
|
double scale = 1.0 / 255.0;
|
||
|
Size size{ 416, 416 };
|
||
|
bool swapRB = true;
|
||
|
bool crop = false;
|
||
|
bool nmsAcrossClasses = true;
|
||
|
|
||
|
double confThreshold = 0.24;
|
||
|
double nmsThreshold = (target == DNN_TARGET_MYRIAD) ? 0.15: 0.15;
|
||
|
double scoreDiff = 8e-5, iouDiff = 1e-5;
|
||
|
if (target == DNN_TARGET_OPENCL_FP16 || target == DNN_TARGET_MYRIAD || target == DNN_TARGET_CUDA_FP16)
|
||
|
{
|
||
|
scoreDiff = 1e-2;
|
||
|
iouDiff = 1.6e-2;
|
||
|
}
|
||
|
|
||
|
testDetectModel(weights_file, config_file, img_path, refClassIds, refConfidences,
|
||
|
refBoxes, scoreDiff, iouDiff, confThreshold, nmsThreshold, size,
|
||
|
Scalar(), scale, swapRB, crop,
|
||
|
nmsAcrossClasses);
|
||
|
}
|
||
|
|
||
|
TEST_P(Test_Model, DetectionOutput)
|
||
|
{
|
||
|
#if defined(INF_ENGINE_RELEASE) && INF_ENGINE_VER_MAJOR_EQ(2021040000)
|
||
|
// Exception: Function contains several inputs and outputs with one friendly name! (HETERO bug?)
|
||
|
if (backend == DNN_BACKEND_INFERENCE_ENGINE_NGRAPH && target != DNN_TARGET_CPU)
|
||
|
applyTestTag(CV_TEST_TAG_DNN_SKIP_IE_NGRAPH, CV_TEST_TAG_DNN_SKIP_IE_VERSION);
|
||
|
#endif
|
||
|
|
||
|
#if defined(INF_ENGINE_RELEASE)
|
||
|
// FIXIT DNN_BACKEND_INFERENCE_ENGINE is misused
|
||
|
if (backend == DNN_BACKEND_INFERENCE_ENGINE && target == DNN_TARGET_OPENCL_FP16)
|
||
|
applyTestTag(CV_TEST_TAG_DNN_SKIP_IE_OPENCL_FP16);
|
||
|
|
||
|
if (target == DNN_TARGET_MYRIAD)
|
||
|
applyTestTag(CV_TEST_TAG_DNN_SKIP_IE_MYRIAD);
|
||
|
#endif
|
||
|
|
||
|
std::vector<int> refClassIds = {7, 12};
|
||
|
std::vector<float> refConfidences = {0.991359f, 0.94786f};
|
||
|
std::vector<Rect2d> refBoxes = {Rect2d(491, 81, 212, 98),
|
||
|
Rect2d(132, 223, 207, 344)};
|
||
|
|
||
|
std::string img_path = _tf("dog416.png");
|
||
|
std::string weights_file = _tf("resnet50_rfcn_final.caffemodel", false);
|
||
|
std::string config_file = _tf("rfcn_pascal_voc_resnet50.prototxt");
|
||
|
|
||
|
Scalar mean = Scalar(102.9801, 115.9465, 122.7717);
|
||
|
Size size{800, 600};
|
||
|
|
||
|
double scoreDiff = default_l1, iouDiff = 1e-5;
|
||
|
float confThreshold = 0.8;
|
||
|
double nmsThreshold = 0.0;
|
||
|
if (target == DNN_TARGET_OPENCL_FP16 || target == DNN_TARGET_CUDA_FP16)
|
||
|
{
|
||
|
if (backend == DNN_BACKEND_OPENCV)
|
||
|
scoreDiff = 4e-3;
|
||
|
else
|
||
|
scoreDiff = 2e-2;
|
||
|
iouDiff = 1.8e-1;
|
||
|
}
|
||
|
|
||
|
testDetectModel(weights_file, config_file, img_path, refClassIds, refConfidences, refBoxes,
|
||
|
scoreDiff, iouDiff, confThreshold, nmsThreshold, size, mean);
|
||
|
}
|
||
|
|
||
|
|
||
|
TEST_P(Test_Model, DetectionMobilenetSSD)
|
||
|
{
|
||
|
Mat ref = blobFromNPY(_tf("mobilenet_ssd_caffe_out.npy"));
|
||
|
ref = ref.reshape(1, ref.size[2]);
|
||
|
|
||
|
std::string img_path = _tf("street.png");
|
||
|
Mat frame = imread(img_path);
|
||
|
int frameWidth = frame.cols;
|
||
|
int frameHeight = frame.rows;
|
||
|
|
||
|
std::vector<int> refClassIds;
|
||
|
std::vector<float> refConfidences;
|
||
|
std::vector<Rect2d> refBoxes;
|
||
|
for (int i = 0; i < ref.rows; i++)
|
||
|
{
|
||
|
refClassIds.emplace_back(ref.at<float>(i, 1));
|
||
|
refConfidences.emplace_back(ref.at<float>(i, 2));
|
||
|
int left = ref.at<float>(i, 3) * frameWidth;
|
||
|
int top = ref.at<float>(i, 4) * frameHeight;
|
||
|
int right = ref.at<float>(i, 5) * frameWidth;
|
||
|
int bottom = ref.at<float>(i, 6) * frameHeight;
|
||
|
int width = right - left + 1;
|
||
|
int height = bottom - top + 1;
|
||
|
refBoxes.emplace_back(left, top, width, height);
|
||
|
}
|
||
|
|
||
|
std::string weights_file = _tf("MobileNetSSD_deploy.caffemodel", false);
|
||
|
std::string config_file = _tf("MobileNetSSD_deploy.prototxt");
|
||
|
|
||
|
Scalar mean = Scalar(127.5, 127.5, 127.5);
|
||
|
double scale = 1.0 / 127.5;
|
||
|
Size size{300, 300};
|
||
|
|
||
|
double scoreDiff = 1e-5, iouDiff = 1e-5;
|
||
|
if (target == DNN_TARGET_OPENCL_FP16)
|
||
|
{
|
||
|
scoreDiff = 1.7e-2;
|
||
|
iouDiff = 6.91e-2;
|
||
|
}
|
||
|
else if (target == DNN_TARGET_MYRIAD)
|
||
|
{
|
||
|
scoreDiff = 0.017;
|
||
|
if (getInferenceEngineVPUType() == CV_DNN_INFERENCE_ENGINE_VPU_TYPE_MYRIAD_X)
|
||
|
iouDiff = 0.1;
|
||
|
}
|
||
|
else if (target == DNN_TARGET_CUDA_FP16)
|
||
|
{
|
||
|
scoreDiff = 0.002;
|
||
|
iouDiff = 1e-2;
|
||
|
}
|
||
|
float confThreshold = FLT_MIN;
|
||
|
double nmsThreshold = 0.0;
|
||
|
|
||
|
testDetectModel(weights_file, config_file, img_path, refClassIds, refConfidences, refBoxes,
|
||
|
scoreDiff, iouDiff, confThreshold, nmsThreshold, size, mean, scale);
|
||
|
}
|
||
|
|
||
|
TEST_P(Test_Model, Keypoints_pose)
|
||
|
{
|
||
|
if (target == DNN_TARGET_OPENCL_FP16)
|
||
|
applyTestTag(CV_TEST_TAG_DNN_SKIP_OPENCL_FP16);
|
||
|
#ifdef HAVE_INF_ENGINE
|
||
|
if (target == DNN_TARGET_MYRIAD)
|
||
|
applyTestTag(CV_TEST_TAG_DNN_SKIP_IE_MYRIAD, CV_TEST_TAG_DNN_SKIP_IE_VERSION);
|
||
|
#endif
|
||
|
|
||
|
Mat inp = imread(_tf("pose.png"));
|
||
|
std::string weights = _tf("onnx/models/lightweight_pose_estimation_201912.onnx", false);
|
||
|
float kpdata[] = {
|
||
|
237.65625f, 78.25f, 237.65625f, 136.9375f,
|
||
|
190.125f, 136.9375f, 142.59375f, 195.625f, 79.21875f, 176.0625f, 285.1875f, 117.375f,
|
||
|
348.5625f, 195.625f, 396.09375f, 176.0625f, 205.96875f, 313.0f, 205.96875f, 430.375f,
|
||
|
205.96875f, 528.1875f, 269.34375f, 293.4375f, 253.5f, 430.375f, 237.65625f, 528.1875f,
|
||
|
221.8125f, 58.6875f, 253.5f, 58.6875f, 205.96875f, 78.25f, 253.5f, 58.6875f
|
||
|
};
|
||
|
Mat exp(18, 2, CV_32FC1, kpdata);
|
||
|
|
||
|
Size size{256, 256};
|
||
|
float norm = 1e-4;
|
||
|
double scale = 1.0/255;
|
||
|
Scalar mean = Scalar(128, 128, 128);
|
||
|
bool swapRB = false;
|
||
|
|
||
|
// Ref. Range: [58.6875, 508.625]
|
||
|
if (target == DNN_TARGET_CUDA_FP16)
|
||
|
norm = 20; // l1 = 1.5, lInf = 20
|
||
|
|
||
|
testKeypointsModel(weights, "", inp, exp, norm, size, mean, scale, swapRB);
|
||
|
}
|
||
|
|
||
|
TEST_P(Test_Model, Keypoints_face)
|
||
|
{
|
||
|
#if defined(INF_ENGINE_RELEASE)
|
||
|
if (backend == DNN_BACKEND_INFERENCE_ENGINE_NN_BUILDER_2019)
|
||
|
applyTestTag(CV_TEST_TAG_DNN_SKIP_IE_NN_BUILDER, CV_TEST_TAG_DNN_SKIP_IE_VERSION);
|
||
|
#endif
|
||
|
|
||
|
Mat inp = imread(_tf("gray_face.png"), 0);
|
||
|
std::string weights = _tf("onnx/models/facial_keypoints.onnx", false);
|
||
|
Mat exp = blobFromNPY(_tf("facial_keypoints_exp.npy"));
|
||
|
|
||
|
Size size{224, 224};
|
||
|
double scale = 1.0/255;
|
||
|
Scalar mean = Scalar();
|
||
|
bool swapRB = false;
|
||
|
|
||
|
// Ref. Range: [-1.1784188, 1.7758257]
|
||
|
float norm = 1e-4;
|
||
|
if (target == DNN_TARGET_OPENCL_FP16)
|
||
|
norm = 5e-3;
|
||
|
if (target == DNN_TARGET_MYRIAD)
|
||
|
{
|
||
|
// Myriad2: l1 = 0.0004, lInf = 0.002
|
||
|
// MyriadX: l1 = 0.003, lInf = 0.009
|
||
|
norm = 0.009;
|
||
|
}
|
||
|
if (target == DNN_TARGET_CUDA_FP16)
|
||
|
norm = 0.004; // l1 = 0.0006, lInf = 0.004
|
||
|
|
||
|
testKeypointsModel(weights, "", inp, exp, norm, size, mean, scale, swapRB);
|
||
|
}
|
||
|
|
||
|
TEST_P(Test_Model, Detection_normalized)
|
||
|
{
|
||
|
std::string img_path = _tf("grace_hopper_227.png");
|
||
|
std::vector<int> refClassIds = {15};
|
||
|
std::vector<float> refConfidences = {0.999222f};
|
||
|
std::vector<Rect2d> refBoxes = {Rect2d(0, 4, 227, 222)};
|
||
|
|
||
|
std::string weights_file = _tf("MobileNetSSD_deploy.caffemodel", false);
|
||
|
std::string config_file = _tf("MobileNetSSD_deploy.prototxt");
|
||
|
|
||
|
Scalar mean = Scalar(127.5, 127.5, 127.5);
|
||
|
double scale = 1.0 / 127.5;
|
||
|
Size size{300, 300};
|
||
|
|
||
|
double scoreDiff = 1e-5, iouDiff = 1e-5;
|
||
|
float confThreshold = FLT_MIN;
|
||
|
double nmsThreshold = 0.0;
|
||
|
if (target == DNN_TARGET_CUDA)
|
||
|
{
|
||
|
scoreDiff = 3e-4;
|
||
|
iouDiff = 0.018;
|
||
|
}
|
||
|
if (target == DNN_TARGET_OPENCL_FP16 || target == DNN_TARGET_MYRIAD || target == DNN_TARGET_CUDA_FP16)
|
||
|
{
|
||
|
scoreDiff = 5e-3;
|
||
|
iouDiff = 0.09;
|
||
|
}
|
||
|
#if defined(INF_ENGINE_RELEASE) && INF_ENGINE_VER_MAJOR_GE(2020040000)
|
||
|
if (backend == DNN_BACKEND_INFERENCE_ENGINE_NGRAPH && target == DNN_TARGET_MYRIAD)
|
||
|
{
|
||
|
scoreDiff = 0.02;
|
||
|
iouDiff = 0.1f;
|
||
|
}
|
||
|
#endif
|
||
|
testDetectModel(weights_file, config_file, img_path, refClassIds, refConfidences, refBoxes,
|
||
|
scoreDiff, iouDiff, confThreshold, nmsThreshold, size, mean, scale);
|
||
|
}
|
||
|
|
||
|
TEST_P(Test_Model, Segmentation)
|
||
|
{
|
||
|
applyTestTag(
|
||
|
CV_TEST_TAG_MEMORY_2GB
|
||
|
);
|
||
|
|
||
|
std::string inp = _tf("dog416.png");
|
||
|
std::string weights_file = _tf("fcn8s-heavy-pascal.prototxt");
|
||
|
std::string config_file = _tf("fcn8s-heavy-pascal.caffemodel", false);
|
||
|
std::string exp = _tf("segmentation_exp.png");
|
||
|
|
||
|
Size size{128, 128};
|
||
|
float norm = 0;
|
||
|
double scale = 1.0;
|
||
|
Scalar mean = Scalar();
|
||
|
bool swapRB = false;
|
||
|
|
||
|
testSegmentationModel(weights_file, config_file, inp, exp, norm, size, mean, scale, swapRB);
|
||
|
}
|
||
|
|
||
|
TEST_P(Test_Model, TextRecognition)
|
||
|
{
|
||
|
#if defined(INF_ENGINE_RELEASE) && INF_ENGINE_VER_MAJOR_EQ(2021040000)
|
||
|
// IE Exception: Ngraph operation Reshape with name 71 has dynamic output shape on 0 port, but CPU plug-in supports only static shape
|
||
|
if (backend == DNN_BACKEND_INFERENCE_ENGINE_NGRAPH && (target == DNN_TARGET_OPENCL || target == DNN_TARGET_OPENCL_FP16))
|
||
|
applyTestTag(target == DNN_TARGET_OPENCL ? CV_TEST_TAG_DNN_SKIP_IE_OPENCL : CV_TEST_TAG_DNN_SKIP_IE_OPENCL_FP16,
|
||
|
CV_TEST_TAG_DNN_SKIP_IE_NGRAPH, CV_TEST_TAG_DNN_SKIP_IE_VERSION
|
||
|
);
|
||
|
#endif
|
||
|
|
||
|
std::string imgPath = _tf("text_rec_test.png");
|
||
|
std::string weightPath = _tf("onnx/models/crnn.onnx", false);
|
||
|
std::string seq = "welcome";
|
||
|
|
||
|
Size size{100, 32};
|
||
|
double scale = 1.0 / 127.5;
|
||
|
Scalar mean = Scalar(127.5);
|
||
|
std::string decodeType = "CTC-greedy";
|
||
|
std::vector<std::string> vocabulary = {"0","1","2","3","4","5","6","7","8","9",
|
||
|
"a","b","c","d","e","f","g","h","i","j","k","l","m","n","o","p","q","r","s","t","u","v","w","x","y","z"};
|
||
|
|
||
|
testTextRecognitionModel(weightPath, "", imgPath, seq, decodeType, vocabulary, size, mean, scale);
|
||
|
}
|
||
|
|
||
|
TEST_P(Test_Model, TextRecognitionWithCTCPrefixBeamSearch)
|
||
|
{
|
||
|
#if defined(INF_ENGINE_RELEASE) && INF_ENGINE_VER_MAJOR_EQ(2021040000)
|
||
|
// IE Exception: Ngraph operation Reshape with name 71 has dynamic output shape on 0 port, but CPU plug-in supports only static shape
|
||
|
if (backend == DNN_BACKEND_INFERENCE_ENGINE_NGRAPH && (target == DNN_TARGET_OPENCL || target == DNN_TARGET_OPENCL_FP16))
|
||
|
applyTestTag(target == DNN_TARGET_OPENCL ? CV_TEST_TAG_DNN_SKIP_IE_OPENCL : CV_TEST_TAG_DNN_SKIP_IE_OPENCL_FP16,
|
||
|
CV_TEST_TAG_DNN_SKIP_IE_NGRAPH, CV_TEST_TAG_DNN_SKIP_IE_VERSION
|
||
|
);
|
||
|
#endif
|
||
|
|
||
|
|
||
|
std::string imgPath = _tf("text_rec_test.png");
|
||
|
std::string weightPath = _tf("onnx/models/crnn.onnx", false);
|
||
|
std::string seq = "welcome";
|
||
|
|
||
|
Size size{100, 32};
|
||
|
double scale = 1.0 / 127.5;
|
||
|
Scalar mean = Scalar(127.5);
|
||
|
std::string decodeType = "CTC-prefix-beam-search";
|
||
|
std::vector<std::string> vocabulary = {"0","1","2","3","4","5","6","7","8","9",
|
||
|
"a","b","c","d","e","f","g","h","i","j","k","l","m","n","o","p","q","r","s","t","u","v","w","x","y","z"};
|
||
|
|
||
|
testTextRecognitionModel(weightPath, "", imgPath, seq, decodeType, vocabulary, size, mean, scale);
|
||
|
}
|
||
|
|
||
|
TEST_P(Test_Model, TextDetectionByDB)
|
||
|
{
|
||
|
if (target == DNN_TARGET_OPENCL_FP16)
|
||
|
applyTestTag(CV_TEST_TAG_DNN_SKIP_OPENCL_FP16);
|
||
|
|
||
|
std::string imgPath = _tf("text_det_test1.png");
|
||
|
std::string weightPath = _tf("onnx/models/DB_TD500_resnet50.onnx", false);
|
||
|
|
||
|
// GroundTruth
|
||
|
std::vector<std::vector<Point>> gt = {
|
||
|
{ Point(142, 193), Point(136, 164), Point(213, 150), Point(219, 178) },
|
||
|
{ Point(136, 165), Point(122, 114), Point(319, 71), Point(330, 122) }
|
||
|
};
|
||
|
|
||
|
Size size{736, 736};
|
||
|
double scale = 1.0 / 255.0;
|
||
|
Scalar mean = Scalar(122.67891434, 116.66876762, 104.00698793);
|
||
|
|
||
|
float binThresh = 0.3;
|
||
|
float polyThresh = 0.5;
|
||
|
uint maxCandidates = 200;
|
||
|
double unclipRatio = 2.0;
|
||
|
|
||
|
testTextDetectionModelByDB(weightPath, "", imgPath, gt, binThresh, polyThresh, maxCandidates, unclipRatio, size, mean, scale);
|
||
|
}
|
||
|
|
||
|
TEST_P(Test_Model, TextDetectionByEAST)
|
||
|
{
|
||
|
std::string imgPath = _tf("text_det_test2.jpg");
|
||
|
std::string weightPath = _tf("frozen_east_text_detection.pb", false);
|
||
|
|
||
|
// GroundTruth
|
||
|
std::vector<RotatedRect> gt = {
|
||
|
RotatedRect(Point2f(657.55f, 409.5f), Size2f(316.84f, 62.45f), -4.79)
|
||
|
};
|
||
|
|
||
|
// Model parameters
|
||
|
Size size{320, 320};
|
||
|
double scale = 1.0;
|
||
|
Scalar mean = Scalar(123.68, 116.78, 103.94);
|
||
|
bool swapRB = true;
|
||
|
|
||
|
// Detection algorithm parameters
|
||
|
float confThresh = 0.5;
|
||
|
float nmsThresh = 0.4;
|
||
|
|
||
|
double eps_center = 5/*pixels*/;
|
||
|
double eps_size = 5/*pixels*/;
|
||
|
double eps_angle = 1;
|
||
|
|
||
|
if (target == DNN_TARGET_OPENCL_FP16 || target == DNN_TARGET_CUDA_FP16 || target == DNN_TARGET_MYRIAD)
|
||
|
{
|
||
|
eps_center = 10;
|
||
|
eps_size = 25;
|
||
|
eps_angle = 3;
|
||
|
}
|
||
|
|
||
|
testTextDetectionModelByEAST(weightPath, "", imgPath, gt, confThresh, nmsThresh, size, mean, scale, swapRB, false/*crop*/,
|
||
|
eps_center, eps_size, eps_angle
|
||
|
);
|
||
|
}
|
||
|
|
||
|
INSTANTIATE_TEST_CASE_P(/**/, Test_Model, dnnBackendsAndTargets());
|
||
|
|
||
|
}} // namespace
|