160 lines
5.5 KiB
C++
160 lines
5.5 KiB
C++
|
#include <algorithm>
|
||
|
#include <iostream>
|
||
|
#include <sstream>
|
||
|
|
||
|
#include <opencv2/imgproc.hpp>
|
||
|
#include <opencv2/imgcodecs.hpp>
|
||
|
|
||
|
#include <opencv2/gapi.hpp>
|
||
|
#include <opencv2/gapi/core.hpp>
|
||
|
#include <opencv2/gapi/imgproc.hpp>
|
||
|
#include <opencv2/gapi/infer.hpp>
|
||
|
#include <opencv2/gapi/render.hpp>
|
||
|
#include <opencv2/gapi/infer/onnx.hpp>
|
||
|
#include <opencv2/gapi/cpu/gcpukernel.hpp>
|
||
|
#include <opencv2/gapi/streaming/cap.hpp>
|
||
|
#include <opencv2/highgui.hpp>
|
||
|
#include <opencv2/gapi/infer/parsers.hpp>
|
||
|
|
||
|
namespace custom {
|
||
|
|
||
|
G_API_NET(ObjDetector, <cv::GMat(cv::GMat)>, "object-detector");
|
||
|
|
||
|
using GDetections = cv::GArray<cv::Rect>;
|
||
|
using GSize = cv::GOpaque<cv::Size>;
|
||
|
using GPrims = cv::GArray<cv::gapi::wip::draw::Prim>;
|
||
|
|
||
|
G_API_OP(BBoxes, <GPrims(GDetections)>, "sample.custom.b-boxes") {
|
||
|
static cv::GArrayDesc outMeta(const cv::GArrayDesc &) {
|
||
|
return cv::empty_array_desc();
|
||
|
}
|
||
|
};
|
||
|
|
||
|
GAPI_OCV_KERNEL(OCVBBoxes, BBoxes) {
|
||
|
// This kernel converts the rectangles into G-API's
|
||
|
// rendering primitives
|
||
|
static void run(const std::vector<cv::Rect> &in_obj_rcs,
|
||
|
std::vector<cv::gapi::wip::draw::Prim> &out_prims) {
|
||
|
out_prims.clear();
|
||
|
const auto cvt = [](const cv::Rect &rc, const cv::Scalar &clr) {
|
||
|
return cv::gapi::wip::draw::Rect(rc, clr, 2);
|
||
|
};
|
||
|
for (auto &&rc : in_obj_rcs) {
|
||
|
out_prims.emplace_back(cvt(rc, CV_RGB(0,255,0))); // green
|
||
|
}
|
||
|
|
||
|
std::cout << "Detections:";
|
||
|
for (auto &&rc : in_obj_rcs) std::cout << ' ' << rc;
|
||
|
std::cout << std::endl;
|
||
|
}
|
||
|
};
|
||
|
|
||
|
} // namespace custom
|
||
|
|
||
|
namespace {
|
||
|
void remap_ssd_ports(const std::unordered_map<std::string, cv::Mat> &onnx,
|
||
|
std::unordered_map<std::string, cv::Mat> &gapi) {
|
||
|
// Assemble ONNX-processed outputs back to a single 1x1x200x7 blob
|
||
|
// to preserve compatibility with OpenVINO-based SSD pipeline
|
||
|
const cv::Mat &num_detections = onnx.at("num_detections:0");
|
||
|
const cv::Mat &detection_boxes = onnx.at("detection_boxes:0");
|
||
|
const cv::Mat &detection_scores = onnx.at("detection_scores:0");
|
||
|
const cv::Mat &detection_classes = onnx.at("detection_classes:0");
|
||
|
|
||
|
GAPI_Assert(num_detections.depth() == CV_32F);
|
||
|
GAPI_Assert(detection_boxes.depth() == CV_32F);
|
||
|
GAPI_Assert(detection_scores.depth() == CV_32F);
|
||
|
GAPI_Assert(detection_classes.depth() == CV_32F);
|
||
|
|
||
|
cv::Mat &ssd_output = gapi.at("detection_output");
|
||
|
|
||
|
const int num_objects = static_cast<int>(num_detections.ptr<float>()[0]);
|
||
|
const float *in_boxes = detection_boxes.ptr<float>();
|
||
|
const float *in_scores = detection_scores.ptr<float>();
|
||
|
const float *in_classes = detection_classes.ptr<float>();
|
||
|
float *ptr = ssd_output.ptr<float>();
|
||
|
|
||
|
for (int i = 0; i < num_objects; i++) {
|
||
|
ptr[0] = 0.f; // "image_id"
|
||
|
ptr[1] = in_classes[i]; // "label"
|
||
|
ptr[2] = in_scores[i]; // "confidence"
|
||
|
ptr[3] = in_boxes[4*i + 1]; // left
|
||
|
ptr[4] = in_boxes[4*i + 0]; // top
|
||
|
ptr[5] = in_boxes[4*i + 3]; // right
|
||
|
ptr[6] = in_boxes[4*i + 2]; // bottom
|
||
|
|
||
|
ptr += 7;
|
||
|
in_boxes += 4;
|
||
|
}
|
||
|
if (num_objects < ssd_output.size[2]-1) {
|
||
|
// put a -1 mark at the end of output blob if there is space left
|
||
|
ptr[0] = -1.f;
|
||
|
}
|
||
|
}
|
||
|
} // anonymous namespace
|
||
|
|
||
|
const std::string keys =
|
||
|
"{ h help | | Print this help message }"
|
||
|
"{ input | | Path to the input video file }"
|
||
|
"{ output | | (Optional) path to output video file }"
|
||
|
"{ detm | | Path to an ONNX SSD object detection model (.onnx) }"
|
||
|
;
|
||
|
|
||
|
int main(int argc, char *argv[])
|
||
|
{
|
||
|
cv::CommandLineParser cmd(argc, argv, keys);
|
||
|
if (cmd.has("help")) {
|
||
|
cmd.printMessage();
|
||
|
return 0;
|
||
|
}
|
||
|
|
||
|
// Prepare parameters first
|
||
|
const std::string input = cmd.get<std::string>("input");
|
||
|
const std::string output = cmd.get<std::string>("output");
|
||
|
const auto obj_model_path = cmd.get<std::string>("detm");
|
||
|
|
||
|
auto obj_net = cv::gapi::onnx::Params<custom::ObjDetector>{obj_model_path}
|
||
|
.cfgOutputLayers({"detection_output"})
|
||
|
.cfgPostProc({cv::GMatDesc{CV_32F, {1,1,200,7}}}, remap_ssd_ports);
|
||
|
auto kernels = cv::gapi::kernels<custom::OCVBBoxes>();
|
||
|
auto networks = cv::gapi::networks(obj_net);
|
||
|
|
||
|
// Now build the graph
|
||
|
cv::GMat in;
|
||
|
auto blob = cv::gapi::infer<custom::ObjDetector>(in);
|
||
|
cv::GArray<cv::Rect> rcs =
|
||
|
cv::gapi::parseSSD(blob, cv::gapi::streaming::size(in), 0.5f, true, true);
|
||
|
auto out = cv::gapi::wip::draw::render3ch(in, custom::BBoxes::on(rcs));
|
||
|
cv::GStreamingCompiled pipeline = cv::GComputation(cv::GIn(in), cv::GOut(out))
|
||
|
.compileStreaming(cv::compile_args(kernels, networks));
|
||
|
|
||
|
auto inputs = cv::gin(cv::gapi::wip::make_src<cv::gapi::wip::GCaptureSource>(input));
|
||
|
|
||
|
// The execution part
|
||
|
pipeline.setSource(std::move(inputs));
|
||
|
|
||
|
cv::TickMeter tm;
|
||
|
cv::VideoWriter writer;
|
||
|
size_t frames = 0u;
|
||
|
cv::Mat outMat;
|
||
|
|
||
|
tm.start();
|
||
|
pipeline.start();
|
||
|
while (pipeline.pull(cv::gout(outMat))) {
|
||
|
++frames;
|
||
|
cv::imshow("Out", outMat);
|
||
|
cv::waitKey(1);
|
||
|
if (!output.empty()) {
|
||
|
if (!writer.isOpened()) {
|
||
|
const auto sz = cv::Size{outMat.cols, outMat.rows};
|
||
|
writer.open(output, cv::VideoWriter::fourcc('M','J','P','G'), 25.0, sz);
|
||
|
CV_Assert(writer.isOpened());
|
||
|
}
|
||
|
writer << outMat;
|
||
|
}
|
||
|
}
|
||
|
tm.stop();
|
||
|
std::cout << "Processed " << frames << " frames" << " (" << frames / tm.getTimeSec() << " FPS)" << std::endl;
|
||
|
return 0;
|
||
|
}
|