cameracv/libs/opencv/modules/ml/test/test_knearest.cpp

113 lines
4.1 KiB
C++
Raw Normal View History

2023-05-18 21:39:43 +03:00
// This file is part of OpenCV project.
// It is subject to the license terms in the LICENSE file found in the top-level directory
// of this distribution and at http://opencv.org/license.html.
#include "test_precomp.hpp"
namespace opencv_test { namespace {
using cv::ml::TrainData;
using cv::ml::EM;
using cv::ml::KNearest;
TEST(ML_KNearest, accuracy)
{
int sizesArr[] = { 500, 700, 800 };
int pointsCount = sizesArr[0]+ sizesArr[1] + sizesArr[2];
Mat trainData( pointsCount, 2, CV_32FC1 ), trainLabels;
vector<int> sizes( sizesArr, sizesArr + sizeof(sizesArr) / sizeof(sizesArr[0]) );
Mat means;
vector<Mat> covs;
defaultDistribs( means, covs );
generateData( trainData, trainLabels, sizes, means, covs, CV_32FC1, CV_32FC1 );
Mat testData( pointsCount, 2, CV_32FC1 );
Mat testLabels;
generateData( testData, testLabels, sizes, means, covs, CV_32FC1, CV_32FC1 );
{
SCOPED_TRACE("Default");
Mat bestLabels;
float err = 1000;
Ptr<KNearest> knn = KNearest::create();
knn->train(trainData, ml::ROW_SAMPLE, trainLabels);
knn->findNearest(testData, 4, bestLabels);
EXPECT_TRUE(calcErr( bestLabels, testLabels, sizes, err, true ));
EXPECT_LE(err, 0.01f);
}
{
SCOPED_TRACE("KDTree");
Mat neighborIndexes;
float err = 1000;
Ptr<KNearest> knn = KNearest::create();
knn->setAlgorithmType(KNearest::KDTREE);
knn->train(trainData, ml::ROW_SAMPLE, trainLabels);
knn->findNearest(testData, 4, neighborIndexes);
Mat bestLabels;
// The output of the KDTree are the neighbor indexes, not actual class labels
// so we need to do some extra work to get actual predictions
for(int row_num = 0; row_num < neighborIndexes.rows; ++row_num){
vector<float> labels;
for(int index = 0; index < neighborIndexes.row(row_num).cols; ++index) {
labels.push_back(trainLabels.at<float>(neighborIndexes.row(row_num).at<int>(0, index) , 0));
}
// computing the mode of the output class predictions to determine overall prediction
std::vector<int> histogram(3,0);
for( int i=0; i<3; ++i )
++histogram[ static_cast<int>(labels[i]) ];
int bestLabel = static_cast<int>(std::max_element( histogram.begin(), histogram.end() ) - histogram.begin());
bestLabels.push_back(bestLabel);
}
bestLabels.convertTo(bestLabels, testLabels.type());
EXPECT_TRUE(calcErr( bestLabels, testLabels, sizes, err, true ));
EXPECT_LE(err, 0.01f);
}
}
TEST(ML_KNearest, regression_12347)
{
Mat xTrainData = (Mat_<float>(5,2) << 1, 1.1, 1.1, 1, 2, 2, 2.1, 2, 2.1, 2.1);
Mat yTrainLabels = (Mat_<float>(5,1) << 1, 1, 2, 2, 2);
Ptr<KNearest> knn = KNearest::create();
knn->train(xTrainData, ml::ROW_SAMPLE, yTrainLabels);
Mat xTestData = (Mat_<float>(2,2) << 1.1, 1.1, 2, 2.2);
Mat zBestLabels, neighbours, dist;
// check output shapes:
int K = 16, Kexp = std::min(K, xTrainData.rows);
knn->findNearest(xTestData, K, zBestLabels, neighbours, dist);
EXPECT_EQ(xTestData.rows, zBestLabels.rows);
EXPECT_EQ(neighbours.cols, Kexp);
EXPECT_EQ(dist.cols, Kexp);
// see if the result is still correct:
K = 2;
knn->findNearest(xTestData, K, zBestLabels, neighbours, dist);
EXPECT_EQ(1, zBestLabels.at<float>(0,0));
EXPECT_EQ(2, zBestLabels.at<float>(1,0));
}
TEST(ML_KNearest, bug_11877)
{
Mat trainData = (Mat_<float>(5,2) << 3, 3, 3, 3, 4, 4, 4, 4, 4, 4);
Mat trainLabels = (Mat_<float>(5,1) << 0, 0, 1, 1, 1);
Ptr<KNearest> knnKdt = KNearest::create();
knnKdt->setAlgorithmType(KNearest::KDTREE);
knnKdt->setIsClassifier(true);
knnKdt->train(trainData, ml::ROW_SAMPLE, trainLabels);
Mat testData = (Mat_<float>(2,2) << 3.1, 3.1, 4, 4.1);
Mat testLabels = (Mat_<int>(2,1) << 0, 1);
Mat result;
knnKdt->findNearest(testData, 1, result);
EXPECT_EQ(1, int(result.at<int>(0, 0)));
EXPECT_EQ(2, int(result.at<int>(1, 0)));
EXPECT_EQ(0, trainLabels.at<int>(result.at<int>(0, 0), 0));
}
}} // namespace