48 lines
1.2 KiB
Python
48 lines
1.2 KiB
Python
|
#!/usr/bin/env python
|
||
|
|
||
|
'''
|
||
|
Texture flow direction estimation.
|
||
|
|
||
|
Sample shows how cv.cornerEigenValsAndVecs function can be used
|
||
|
to estimate image texture flow direction.
|
||
|
'''
|
||
|
|
||
|
# Python 2/3 compatibility
|
||
|
from __future__ import print_function
|
||
|
|
||
|
import numpy as np
|
||
|
import cv2 as cv
|
||
|
import sys
|
||
|
|
||
|
from tests_common import NewOpenCVTests
|
||
|
|
||
|
|
||
|
class texture_flow_test(NewOpenCVTests):
|
||
|
|
||
|
def test_texture_flow(self):
|
||
|
|
||
|
img = self.get_sample('samples/data/chessboard.png')
|
||
|
|
||
|
gray = cv.cvtColor(img, cv.COLOR_BGR2GRAY)
|
||
|
h, w = img.shape[:2]
|
||
|
|
||
|
eigen = cv.cornerEigenValsAndVecs(gray, 5, 3)
|
||
|
eigen = eigen.reshape(h, w, 3, 2) # [[e1, e2], v1, v2]
|
||
|
flow = eigen[:,:,2]
|
||
|
|
||
|
d = 300
|
||
|
eps = d / 30
|
||
|
|
||
|
points = np.dstack( np.mgrid[d/2:w:d, d/2:h:d] ).reshape(-1, 2)
|
||
|
|
||
|
textureVectors = []
|
||
|
for x, y in np.int32(points):
|
||
|
textureVectors.append(np.int32(flow[y, x]*d))
|
||
|
|
||
|
for i in range(len(textureVectors)):
|
||
|
self.assertTrue(cv.norm(textureVectors[i], cv.NORM_L2) < eps
|
||
|
or abs(cv.norm(textureVectors[i], cv.NORM_L2) - d) < eps)
|
||
|
|
||
|
if __name__ == '__main__':
|
||
|
NewOpenCVTests.bootstrap()
|