108 lines
3.2 KiB
C++
108 lines
3.2 KiB
C++
|
#include "opencv2/objdetect.hpp"
|
||
|
#include "opencv2/highgui.hpp"
|
||
|
#include "opencv2/imgproc.hpp"
|
||
|
#include "opencv2/videoio.hpp"
|
||
|
#include <iostream>
|
||
|
|
||
|
using namespace std;
|
||
|
using namespace cv;
|
||
|
|
||
|
/** Function Headers */
|
||
|
void detectAndDisplay( Mat frame );
|
||
|
|
||
|
/** Global variables */
|
||
|
CascadeClassifier face_cascade;
|
||
|
CascadeClassifier eyes_cascade;
|
||
|
|
||
|
/** @function main */
|
||
|
int main( int argc, const char** argv )
|
||
|
{
|
||
|
CommandLineParser parser(argc, argv,
|
||
|
"{help h||}"
|
||
|
"{face_cascade|data/haarcascades/haarcascade_frontalface_alt.xml|Path to face cascade.}"
|
||
|
"{eyes_cascade|data/haarcascades/haarcascade_eye_tree_eyeglasses.xml|Path to eyes cascade.}"
|
||
|
"{camera|0|Camera device number.}");
|
||
|
|
||
|
parser.about( "\nThis program demonstrates using the cv::CascadeClassifier class to detect objects (Face + eyes) in a video stream.\n"
|
||
|
"You can use Haar or LBP features.\n\n" );
|
||
|
parser.printMessage();
|
||
|
|
||
|
String face_cascade_name = samples::findFile( parser.get<String>("face_cascade") );
|
||
|
String eyes_cascade_name = samples::findFile( parser.get<String>("eyes_cascade") );
|
||
|
|
||
|
//-- 1. Load the cascades
|
||
|
if( !face_cascade.load( face_cascade_name ) )
|
||
|
{
|
||
|
cout << "--(!)Error loading face cascade\n";
|
||
|
return -1;
|
||
|
};
|
||
|
if( !eyes_cascade.load( eyes_cascade_name ) )
|
||
|
{
|
||
|
cout << "--(!)Error loading eyes cascade\n";
|
||
|
return -1;
|
||
|
};
|
||
|
|
||
|
int camera_device = parser.get<int>("camera");
|
||
|
VideoCapture capture;
|
||
|
//-- 2. Read the video stream
|
||
|
capture.open( camera_device );
|
||
|
if ( ! capture.isOpened() )
|
||
|
{
|
||
|
cout << "--(!)Error opening video capture\n";
|
||
|
return -1;
|
||
|
}
|
||
|
|
||
|
Mat frame;
|
||
|
while ( capture.read(frame) )
|
||
|
{
|
||
|
if( frame.empty() )
|
||
|
{
|
||
|
cout << "--(!) No captured frame -- Break!\n";
|
||
|
break;
|
||
|
}
|
||
|
|
||
|
//-- 3. Apply the classifier to the frame
|
||
|
detectAndDisplay( frame );
|
||
|
|
||
|
if( waitKey(10) == 27 )
|
||
|
{
|
||
|
break; // escape
|
||
|
}
|
||
|
}
|
||
|
return 0;
|
||
|
}
|
||
|
|
||
|
/** @function detectAndDisplay */
|
||
|
void detectAndDisplay( Mat frame )
|
||
|
{
|
||
|
Mat frame_gray;
|
||
|
cvtColor( frame, frame_gray, COLOR_BGR2GRAY );
|
||
|
equalizeHist( frame_gray, frame_gray );
|
||
|
|
||
|
//-- Detect faces
|
||
|
std::vector<Rect> faces;
|
||
|
face_cascade.detectMultiScale( frame_gray, faces );
|
||
|
|
||
|
for ( size_t i = 0; i < faces.size(); i++ )
|
||
|
{
|
||
|
Point center( faces[i].x + faces[i].width/2, faces[i].y + faces[i].height/2 );
|
||
|
ellipse( frame, center, Size( faces[i].width/2, faces[i].height/2 ), 0, 0, 360, Scalar( 255, 0, 255 ), 4 );
|
||
|
|
||
|
Mat faceROI = frame_gray( faces[i] );
|
||
|
|
||
|
//-- In each face, detect eyes
|
||
|
std::vector<Rect> eyes;
|
||
|
eyes_cascade.detectMultiScale( faceROI, eyes );
|
||
|
|
||
|
for ( size_t j = 0; j < eyes.size(); j++ )
|
||
|
{
|
||
|
Point eye_center( faces[i].x + eyes[j].x + eyes[j].width/2, faces[i].y + eyes[j].y + eyes[j].height/2 );
|
||
|
int radius = cvRound( (eyes[j].width + eyes[j].height)*0.25 );
|
||
|
circle( frame, eye_center, radius, Scalar( 255, 0, 0 ), 4 );
|
||
|
}
|
||
|
}
|
||
|
|
||
|
//-- Show what you got
|
||
|
imshow( "Capture - Face detection", frame );
|
||
|
}
|