// This file is part of OpenCV project. // It is subject to the license terms in the LICENSE file found in the top-level directory // of this distribution and at http://opencv.org/license.html. #include "calibController.hpp" #include #include #include #include #include double calib::calibController::estimateCoverageQuality() { int gridSize = 10; int xGridStep = mCalibData->imageSize.width / gridSize; int yGridStep = mCalibData->imageSize.height / gridSize; std::vector pointsInCell(gridSize*gridSize); std::fill(pointsInCell.begin(), pointsInCell.end(), 0); for(std::vector >::iterator it = mCalibData->imagePoints.begin(); it != mCalibData->imagePoints.end(); ++it) for(std::vector::iterator pointIt = (*it).begin(); pointIt != (*it).end(); ++pointIt) { int i = (int)((*pointIt).x / xGridStep); int j = (int)((*pointIt).y / yGridStep); pointsInCell[i*gridSize + j]++; } for(std::vector::iterator it = mCalibData->allCharucoCorners.begin(); it != mCalibData->allCharucoCorners.end(); ++it) for(int l = 0; l < (*it).size[0]; l++) { int i = (int)((*it).at(l, 0) / xGridStep); int j = (int)((*it).at(l, 1) / yGridStep); pointsInCell[i*gridSize + j]++; } cv::Mat mean, stdDev; cv::meanStdDev(pointsInCell, mean, stdDev); return mean.at(0) / (stdDev.at(0) + 1e-7); } calib::calibController::calibController() { mCalibFlags = 0; } calib::calibController::calibController(cv::Ptr data, int initialFlags, bool autoTuning, int minFramesNum) : mCalibData(data) { mCalibFlags = initialFlags; mNeedTuning = autoTuning; mMinFramesNum = minFramesNum; mConfIntervalsState = false; mCoverageQualityState = false; } void calib::calibController::updateState() { if(mCalibData->cameraMatrix.total()) { const double relErrEps = 0.05; bool fConfState = false, cConfState = false, dConfState = true; if(sigmaMult*mCalibData->stdDeviations.at(0) / mCalibData->cameraMatrix.at(0,0) < relErrEps && sigmaMult*mCalibData->stdDeviations.at(1) / mCalibData->cameraMatrix.at(1,1) < relErrEps) fConfState = true; if(sigmaMult*mCalibData->stdDeviations.at(2) / mCalibData->cameraMatrix.at(0,2) < relErrEps && sigmaMult*mCalibData->stdDeviations.at(3) / mCalibData->cameraMatrix.at(1,2) < relErrEps) cConfState = true; for(int i = 0; i < 5; i++) if(mCalibData->stdDeviations.at(4+i) / fabs(mCalibData->distCoeffs.at(i)) > 1) dConfState = false; mConfIntervalsState = fConfState && cConfState && dConfState; } if(getFramesNumberState()) mCoverageQualityState = estimateCoverageQuality() > 1.8 ? true : false; if (getFramesNumberState() && mNeedTuning) { if( !(mCalibFlags & cv::CALIB_FIX_ASPECT_RATIO) && mCalibData->cameraMatrix.total()) { double fDiff = fabs(mCalibData->cameraMatrix.at(0,0) - mCalibData->cameraMatrix.at(1,1)); if (fDiff < 3*mCalibData->stdDeviations.at(0) && fDiff < 3*mCalibData->stdDeviations.at(1)) { mCalibFlags |= cv::CALIB_FIX_ASPECT_RATIO; mCalibData->cameraMatrix.at(0,0) = mCalibData->cameraMatrix.at(1,1); } } if(!(mCalibFlags & cv::CALIB_ZERO_TANGENT_DIST)) { const double eps = 0.005; if(fabs(mCalibData->distCoeffs.at(2)) < eps && fabs(mCalibData->distCoeffs.at(3)) < eps) mCalibFlags |= cv::CALIB_ZERO_TANGENT_DIST; } if(!(mCalibFlags & cv::CALIB_FIX_K1)) { const double eps = 0.005; if(fabs(mCalibData->distCoeffs.at(0)) < eps) mCalibFlags |= cv::CALIB_FIX_K1; } if(!(mCalibFlags & cv::CALIB_FIX_K2)) { const double eps = 0.005; if(fabs(mCalibData->distCoeffs.at(1)) < eps) mCalibFlags |= cv::CALIB_FIX_K2; } if(!(mCalibFlags & cv::CALIB_FIX_K3)) { const double eps = 0.005; if(fabs(mCalibData->distCoeffs.at(4)) < eps) mCalibFlags |= cv::CALIB_FIX_K3; } } } bool calib::calibController::getCommonCalibrationState() const { int rating = (int)getFramesNumberState() + (int)getConfidenceIntrervalsState() + (int)getRMSState() + (int)mCoverageQualityState; return rating == 4; } bool calib::calibController::getFramesNumberState() const { return std::max(mCalibData->imagePoints.size(), mCalibData->allCharucoCorners.size()) > mMinFramesNum; } bool calib::calibController::getConfidenceIntrervalsState() const { return mConfIntervalsState; } bool calib::calibController::getRMSState() const { return mCalibData->totalAvgErr < 0.5; } int calib::calibController::getNewFlags() const { return mCalibFlags; } //////////////////// calibDataController double calib::calibDataController::estimateGridSubsetQuality(size_t excludedIndex) { { int gridSize = 10; int xGridStep = mCalibData->imageSize.width / gridSize; int yGridStep = mCalibData->imageSize.height / gridSize; std::vector pointsInCell(gridSize*gridSize); std::fill(pointsInCell.begin(), pointsInCell.end(), 0); for(size_t k = 0; k < mCalibData->imagePoints.size(); k++) if(k != excludedIndex) for(std::vector::iterator pointIt = mCalibData->imagePoints[k].begin(); pointIt != mCalibData->imagePoints[k].end(); ++pointIt) { int i = (int)((*pointIt).x / xGridStep); int j = (int)((*pointIt).y / yGridStep); pointsInCell[i*gridSize + j]++; } for(size_t k = 0; k < mCalibData->allCharucoCorners.size(); k++) if(k != excludedIndex) for(int l = 0; l < mCalibData->allCharucoCorners[k].size[0]; l++) { int i = (int)(mCalibData->allCharucoCorners[k].at(l, 0) / xGridStep); int j = (int)(mCalibData->allCharucoCorners[k].at(l, 1) / yGridStep); pointsInCell[i*gridSize + j]++; } cv::Mat mean, stdDev; cv::meanStdDev(pointsInCell, mean, stdDev); return mean.at(0) / (stdDev.at(0) + 1e-7); } } calib::calibDataController::calibDataController(cv::Ptr data, int maxFrames, double convParameter) : mCalibData(data), mParamsFileName("CamParams.xml") { mMaxFramesNum = maxFrames; mAlpha = convParameter; } calib::calibDataController::calibDataController() { } void calib::calibDataController::filterFrames() { size_t numberOfFrames = std::max(mCalibData->allCharucoIds.size(), mCalibData->imagePoints.size()); CV_Assert(numberOfFrames == mCalibData->perViewErrors.total()); if(numberOfFrames >= mMaxFramesNum) { double worstValue = -HUGE_VAL, maxQuality = estimateGridSubsetQuality(numberOfFrames); size_t worstElemIndex = 0; for(size_t i = 0; i < numberOfFrames; i++) { double gridQDelta = estimateGridSubsetQuality(i) - maxQuality; double currentValue = mCalibData->perViewErrors.at((int)i)*mAlpha + gridQDelta*(1. - mAlpha); if(currentValue > worstValue) { worstValue = currentValue; worstElemIndex = i; } } showOverlayMessage(cv::format("Frame %zu is worst", worstElemIndex + 1)); if(mCalibData->imagePoints.size()) { mCalibData->imagePoints.erase(mCalibData->imagePoints.begin() + worstElemIndex); mCalibData->objectPoints.erase(mCalibData->objectPoints.begin() + worstElemIndex); } else { mCalibData->allCharucoCorners.erase(mCalibData->allCharucoCorners.begin() + worstElemIndex); mCalibData->allCharucoIds.erase(mCalibData->allCharucoIds.begin() + worstElemIndex); } cv::Mat newErrorsVec = cv::Mat((int)numberOfFrames - 1, 1, CV_64F); std::copy(mCalibData->perViewErrors.ptr(0), mCalibData->perViewErrors.ptr((int)worstElemIndex), newErrorsVec.ptr(0)); if((int)worstElemIndex < (int)numberOfFrames-1) { std::copy(mCalibData->perViewErrors.ptr((int)worstElemIndex + 1), mCalibData->perViewErrors.ptr((int)numberOfFrames), newErrorsVec.ptr((int)worstElemIndex)); } mCalibData->perViewErrors = newErrorsVec; } } void calib::calibDataController::setParametersFileName(const std::string &name) { mParamsFileName = name; } void calib::calibDataController::deleteLastFrame() { if( !mCalibData->imagePoints.empty()) { mCalibData->imagePoints.pop_back(); mCalibData->objectPoints.pop_back(); } if (!mCalibData->allCharucoCorners.empty()) { mCalibData->allCharucoCorners.pop_back(); mCalibData->allCharucoIds.pop_back(); } if(!mParamsStack.empty()) { mCalibData->cameraMatrix = (mParamsStack.top()).cameraMatrix; mCalibData->distCoeffs = (mParamsStack.top()).distCoeffs; mCalibData->stdDeviations = (mParamsStack.top()).stdDeviations; mCalibData->totalAvgErr = (mParamsStack.top()).avgError; mParamsStack.pop(); } } void calib::calibDataController::rememberCurrentParameters() { cv::Mat oldCameraMat, oldDistcoeefs, oldStdDevs; mCalibData->cameraMatrix.copyTo(oldCameraMat); mCalibData->distCoeffs.copyTo(oldDistcoeefs); mCalibData->stdDeviations.copyTo(oldStdDevs); mParamsStack.push(cameraParameters(oldCameraMat, oldDistcoeefs, oldStdDevs, mCalibData->totalAvgErr)); } void calib::calibDataController::deleteAllData() { mCalibData->imagePoints.clear(); mCalibData->objectPoints.clear(); mCalibData->allCharucoCorners.clear(); mCalibData->allCharucoIds.clear(); mCalibData->cameraMatrix = mCalibData->distCoeffs = cv::Mat(); mParamsStack = std::stack(); rememberCurrentParameters(); } bool calib::calibDataController::saveCurrentCameraParameters() const { bool success = false; if(mCalibData->cameraMatrix.total()) { cv::FileStorage parametersWriter(mParamsFileName, cv::FileStorage::WRITE); if(parametersWriter.isOpened()) { time_t rawtime; time(&rawtime); char buf[256]; strftime(buf, sizeof(buf)-1, "%c", localtime(&rawtime)); parametersWriter << "calibrationDate" << buf; parametersWriter << "framesCount" << std::max((int)mCalibData->objectPoints.size(), (int)mCalibData->allCharucoCorners.size()); parametersWriter << "cameraResolution" << mCalibData->imageSize; parametersWriter << "cameraMatrix" << mCalibData->cameraMatrix; parametersWriter << "cameraMatrix_std_dev" << mCalibData->stdDeviations.rowRange(cv::Range(0, 4)); parametersWriter << "dist_coeffs" << mCalibData->distCoeffs; parametersWriter << "dist_coeffs_std_dev" << mCalibData->stdDeviations.rowRange(cv::Range(4, 9)); parametersWriter << "avg_reprojection_error" << mCalibData->totalAvgErr; parametersWriter.release(); success = true; } } return success; } void calib::calibDataController::printParametersToConsole(std::ostream &output) const { const char* border = "---------------------------------------------------"; output << border << std::endl; output << "Frames used for calibration: " << std::max(mCalibData->objectPoints.size(), mCalibData->allCharucoCorners.size()) << " \t RMS = " << mCalibData->totalAvgErr << std::endl; if(mCalibData->cameraMatrix.at(0,0) == mCalibData->cameraMatrix.at(1,1)) output << "F = " << mCalibData->cameraMatrix.at(1,1) << " +- " << sigmaMult*mCalibData->stdDeviations.at(1) << std::endl; else output << "Fx = " << mCalibData->cameraMatrix.at(0,0) << " +- " << sigmaMult*mCalibData->stdDeviations.at(0) << " \t " << "Fy = " << mCalibData->cameraMatrix.at(1,1) << " +- " << sigmaMult*mCalibData->stdDeviations.at(1) << std::endl; output << "Cx = " << mCalibData->cameraMatrix.at(0,2) << " +- " << sigmaMult*mCalibData->stdDeviations.at(2) << " \t" << "Cy = " << mCalibData->cameraMatrix.at(1,2) << " +- " << sigmaMult*mCalibData->stdDeviations.at(3) << std::endl; output << "K1 = " << mCalibData->distCoeffs.at(0) << " +- " << sigmaMult*mCalibData->stdDeviations.at(4) << std::endl; output << "K2 = " << mCalibData->distCoeffs.at(1) << " +- " << sigmaMult*mCalibData->stdDeviations.at(5) << std::endl; output << "K3 = " << mCalibData->distCoeffs.at(4) << " +- " << sigmaMult*mCalibData->stdDeviations.at(8) << std::endl; output << "TD1 = " << mCalibData->distCoeffs.at(2) << " +- " << sigmaMult*mCalibData->stdDeviations.at(6) << std::endl; output << "TD2 = " << mCalibData->distCoeffs.at(3) << " +- " << sigmaMult*mCalibData->stdDeviations.at(7) << std::endl; } void calib::calibDataController::updateUndistortMap() { cv::initUndistortRectifyMap(mCalibData->cameraMatrix, mCalibData->distCoeffs, cv::noArray(), cv::getOptimalNewCameraMatrix(mCalibData->cameraMatrix, mCalibData->distCoeffs, mCalibData->imageSize, 0.0, mCalibData->imageSize), mCalibData->imageSize, CV_16SC2, mCalibData->undistMap1, mCalibData->undistMap2); }