// This file is part of OpenCV project. // It is subject to the license terms in the LICENSE file found in the top-level directory // of this distribution and at http://opencv.org/license.html. // // Copyright (C) 2017, Intel Corporation, all rights reserved. // Third party copyrights are property of their respective owners. #include "test_precomp.hpp" #include #include #include // CV_DNN_REGISTER_LAYER_CLASS namespace opencv_test { namespace { TEST(blobFromImage_4ch, Regression) { Mat ch[4]; for(int i = 0; i < 4; i++) ch[i] = Mat::ones(10, 10, CV_8U)*i; Mat img; merge(ch, 4, img); Mat blob = dnn::blobFromImage(img, 1., Size(), Scalar(), false, false); for(int i = 0; i < 4; i++) { ch[i] = Mat(img.rows, img.cols, CV_32F, blob.ptr(0, i)); ASSERT_DOUBLE_EQ(cvtest::norm(ch[i], cv::NORM_INF), i); } } TEST(blobFromImage, allocated) { int size[] = {1, 3, 4, 5}; Mat img(size[2], size[3], CV_32FC(size[1])); Mat blob(4, size, CV_32F); void* blobData = blob.data; dnn::blobFromImage(img, blob, 1.0 / 255, Size(), Scalar(), false, false); ASSERT_EQ(blobData, blob.data); } TEST(imagesFromBlob, Regression) { int nbOfImages = 8; std::vector inputImgs(nbOfImages); for (int i = 0; i < nbOfImages; i++) { inputImgs[i] = cv::Mat::ones(100, 100, CV_32FC3); cv::randu(inputImgs[i], cv::Scalar::all(0), cv::Scalar::all(1)); } cv::Mat blob = cv::dnn::blobFromImages(inputImgs, 1., cv::Size(), cv::Scalar(), false, false); std::vector outputImgs; cv::dnn::imagesFromBlob(blob, outputImgs); for (int i = 0; i < nbOfImages; i++) { EXPECT_EQ(0, cvtest::norm(inputImgs[i], outputImgs[i], NORM_INF)) << "i=" << i << " inputImgs[i]=" << inputImgs[i].size << " outputImgs[i]=" << outputImgs[i].size; } } TEST(readNet, Regression) { Net net = readNet(findDataFile("dnn/squeezenet_v1.1.prototxt"), findDataFile("dnn/squeezenet_v1.1.caffemodel", false)); EXPECT_FALSE(net.empty()); net = readNet(findDataFile("dnn/opencv_face_detector.caffemodel", false), findDataFile("dnn/opencv_face_detector.prototxt")); EXPECT_FALSE(net.empty()); net = readNet(findDataFile("dnn/openface_nn4.small2.v1.t7", false)); EXPECT_FALSE(net.empty()); net = readNet(findDataFile("dnn/tiny-yolo-voc.cfg"), findDataFile("dnn/tiny-yolo-voc.weights", false)); EXPECT_FALSE(net.empty()); net = readNet(findDataFile("dnn/ssd_mobilenet_v1_coco.pbtxt"), findDataFile("dnn/ssd_mobilenet_v1_coco.pb", false)); EXPECT_FALSE(net.empty()); } TEST(readNet, do_not_call_setInput) // https://github.com/opencv/opencv/issues/16618 { // 1. load network const string proto = findDataFile("dnn/squeezenet_v1.1.prototxt"); const string model = findDataFile("dnn/squeezenet_v1.1.caffemodel", false); Net net = readNetFromCaffe(proto, model); // 2. mistake: no inputs are specified through .setInput() // 3. try inference Mat res; EXPECT_THROW( { res = net.forward(); // no inputs after loading => should fail }, cv::Exception); EXPECT_TRUE(res.empty()) << res.size; } TEST(Net, empty_forward_18392) { cv::dnn::Net net; Mat image(Size(512, 512), CV_8UC3, Scalar::all(0)); Mat inputBlob = cv::dnn::blobFromImage(image, 1.0, Size(512, 512), Scalar(0,0,0), true, false); net.setInput(inputBlob); EXPECT_ANY_THROW(Mat output = net.forward()); } #ifdef HAVE_INF_ENGINE static void test_readNet_IE_do_not_call_setInput(Backend backendId) { const Target targetId = DNN_TARGET_CPU; const std::string& model = findDataFile("dnn/layers/layer_convolution.bin"); const std::string& proto = findDataFile("dnn/layers/layer_convolution.xml"); ASSERT_EQ(DNN_BACKEND_INFERENCE_ENGINE_NGRAPH, backendId); Net net = readNet(model, proto); net.setPreferableBackend(backendId); net.setPreferableTarget(targetId); // 2. mistake: no inputs are specified through .setInput() // 3. try inference Mat res; EXPECT_THROW( { res = net.forward(); // no inputs after loading => should fail }, cv::Exception); EXPECT_TRUE(res.empty()) << res.size; } #ifdef HAVE_DNN_IE_NN_BUILDER_2019 TEST(readNet, do_not_call_setInput_IE_NN_BUILDER_2019) { test_readNet_IE_do_not_call_setInput(DNN_BACKEND_INFERENCE_ENGINE_NN_BUILDER_2019); } #endif #ifdef HAVE_DNN_NGRAPH TEST(readNet, do_not_call_setInput_IE_NGRAPH) { test_readNet_IE_do_not_call_setInput(DNN_BACKEND_INFERENCE_ENGINE_NGRAPH); } #endif #endif // HAVE_INF_ENGINE typedef testing::TestWithParam > dump; TEST_P(dump, Regression) { const int backend = get<0>(GetParam()); const int target = get<1>(GetParam()); Net net = readNet(findDataFile("dnn/squeezenet_v1.1.prototxt"), findDataFile("dnn/squeezenet_v1.1.caffemodel", false)); ASSERT_EQ(net.getLayerInputs(net.getLayerId("fire2/concat")).size(), 2); int size[] = {1, 3, 227, 227}; Mat input = cv::Mat::ones(4, size, CV_32F); net.setInput(input); net.setPreferableBackend(backend); net.setPreferableTarget(target); EXPECT_FALSE(net.dump().empty()); net.forward(); EXPECT_FALSE(net.dump().empty()); } INSTANTIATE_TEST_CASE_P(/**/, dump, dnnBackendsAndTargets()); class FirstCustomLayer CV_FINAL : public Layer { public: FirstCustomLayer(const LayerParams ¶ms) : Layer(params) {} static Ptr create(LayerParams& params) { return Ptr(new FirstCustomLayer(params)); } void forward(InputArrayOfArrays, OutputArrayOfArrays outputs_arr, OutputArrayOfArrays) CV_OVERRIDE { CV_TRACE_FUNCTION(); CV_TRACE_ARG_VALUE(name, "name", name.c_str()); std::vector outputs; outputs_arr.getMatVector(outputs); outputs[0].setTo(1); } }; class SecondCustomLayer CV_FINAL : public Layer { public: SecondCustomLayer(const LayerParams ¶ms) : Layer(params) {} static Ptr create(LayerParams& params) { return Ptr(new SecondCustomLayer(params)); } void forward(InputArrayOfArrays, OutputArrayOfArrays outputs_arr, OutputArrayOfArrays) CV_OVERRIDE { CV_TRACE_FUNCTION(); CV_TRACE_ARG_VALUE(name, "name", name.c_str()); std::vector outputs; outputs_arr.getMatVector(outputs); outputs[0].setTo(2); } }; TEST(LayerFactory, custom_layers) { LayerParams lp; lp.name = "name"; lp.type = "CustomType"; Mat inp(1, 1, CV_32FC1); for (int i = 0; i < 3; ++i) { if (i == 0) { CV_DNN_REGISTER_LAYER_CLASS(CustomType, FirstCustomLayer); } else if (i == 1) { CV_DNN_REGISTER_LAYER_CLASS(CustomType, SecondCustomLayer); } else if (i == 2) { LayerFactory::unregisterLayer("CustomType"); } Net net; net.addLayerToPrev(lp.name, lp.type, lp); net.setInput(inp); net.setPreferableBackend(DNN_BACKEND_OPENCV); Mat output = net.forward(); if (i == 0) { EXPECT_EQ(output.at(0), 1); } else if (i == 1) { EXPECT_EQ(output.at(0), 2); } else if (i == 2) { EXPECT_EQ(output.at(0), 1); } } LayerFactory::unregisterLayer("CustomType"); } typedef testing::TestWithParam > > setInput; TEST_P(setInput, normalization) { const float kScale = get<0>(GetParam()); const Scalar kMean = get<1>(GetParam()); const int dtype = get<2>(GetParam()); const int backend = get<0>(get<3>(GetParam())); const int target = get<1>(get<3>(GetParam())); const bool kSwapRB = true; if(backend == DNN_BACKEND_CUDA) applyTestTag(CV_TEST_TAG_DNN_SKIP_CUDA); if (backend == DNN_BACKEND_OPENCV && target == DNN_TARGET_OPENCL_FP16 && dtype != CV_32F) applyTestTag(CV_TEST_TAG_DNN_SKIP_OPENCL_FP16); if (backend == DNN_BACKEND_VKCOM && dtype != CV_32F) applyTestTag(CV_TEST_TAG_DNN_SKIP_VULKAN); Mat inp(5, 5, CV_8UC3); randu(inp, 0, 255); Mat ref = blobFromImage(inp, kScale, Size(), kMean, kSwapRB, /*crop*/false); LayerParams lp; Net net; net.addLayerToPrev("testLayer", "Identity", lp); net.setPreferableBackend(backend); net.setPreferableTarget(target); Mat blob = blobFromImage(inp, 1.0, Size(), Scalar(), kSwapRB, /*crop*/false, dtype); ASSERT_EQ(blob.type(), dtype); net.setInput(blob, "", kScale, kMean); Mat out = net.forward(); ASSERT_EQ(out.type(), CV_32F); normAssert(ref, out, "", 4e-4, 1e-3); } INSTANTIATE_TEST_CASE_P(/**/, setInput, Combine( Values(1.0f, 1.0 / 127.5), Values(Vec3f(), Vec3f(50, 50, 50), Vec3f(10, 50, 140)), Values(CV_32F, CV_8U), dnnBackendsAndTargets() )); class CustomLayerWithDeprecatedForward CV_FINAL : public Layer { public: CustomLayerWithDeprecatedForward(const LayerParams ¶ms) : Layer(params) {} static Ptr create(LayerParams& params) { return Ptr(new CustomLayerWithDeprecatedForward(params)); } virtual void forward(std::vector &inputs, std::vector &outputs, std::vector &internals) CV_OVERRIDE { CV_Assert_N(inputs[0]->depth() == CV_32F, outputs[0].depth() == CV_32F); cv::add(*inputs[0], 0.5f, outputs[0]); } }; class CustomLayerWithDeprecatedForwardAndFallback CV_FINAL : public Layer { public: CustomLayerWithDeprecatedForwardAndFallback(const LayerParams ¶ms) : Layer(params) {} static Ptr create(LayerParams& params) { return Ptr(new CustomLayerWithDeprecatedForwardAndFallback(params)); } void forward(InputArrayOfArrays inputs, OutputArrayOfArrays outputs, OutputArrayOfArrays internals) CV_OVERRIDE { CV_TRACE_FUNCTION(); CV_TRACE_ARG_VALUE(name, "name", name.c_str()); CV_OCL_RUN(preferableTarget == DNN_TARGET_OPENCL || preferableTarget == DNN_TARGET_OPENCL_FP16, forward_ocl(inputs, outputs, internals)); Layer::forward_fallback(inputs, outputs, internals); } virtual void forward(std::vector &inputs, std::vector &outputs, std::vector &internals) CV_OVERRIDE { CV_Assert_N(inputs[0]->depth() == CV_32F, outputs[0].depth() == CV_32F); cv::add(*inputs[0], 0.5f, outputs[0]); } #ifdef HAVE_OPENCL bool forward_ocl(InputArrayOfArrays inputs_arr, OutputArrayOfArrays outputs_arr, OutputArrayOfArrays internals_arr) { if (inputs_arr.depth() != CV_32F) return false; std::vector inputs; std::vector outputs; inputs_arr.getUMatVector(inputs); outputs_arr.getUMatVector(outputs); cv::add(inputs[0], 0.5f, outputs[0]); return true; } #endif }; typedef testing::TestWithParam > DeprecatedForward; TEST_P(DeprecatedForward, CustomLayer) { const int backend = get<0>(GetParam()); const int target = get<1>(GetParam()); Mat inp(5, 5, CV_32FC1); randu(inp, -1.0f, 1.0f); inp = blobFromImage(inp); CV_DNN_REGISTER_LAYER_CLASS(CustomType, CustomLayerWithDeprecatedForward); try { LayerParams lp; Net net; net.addLayerToPrev("testLayer", "CustomType", lp); net.setPreferableBackend(backend); net.setPreferableTarget(target); net.setInput(inp); Mat out = net.forward(); normAssert(out, inp + 0.5f, "", 2e-4, 7e-4); } catch (...) { LayerFactory::unregisterLayer("CustomType"); throw; } LayerFactory::unregisterLayer("CustomType"); } TEST_P(DeprecatedForward, CustomLayerWithFallback) { const int backend = get<0>(GetParam()); const int target = get<1>(GetParam()); Mat inp(5, 5, CV_32FC1); randu(inp, -1.0f, 1.0f); inp = blobFromImage(inp); CV_DNN_REGISTER_LAYER_CLASS(CustomType, CustomLayerWithDeprecatedForwardAndFallback); try { LayerParams lp; Net net; net.addLayerToPrev("testLayer", "CustomType", lp); net.setPreferableBackend(backend); net.setPreferableTarget(target); net.setInput(inp); Mat out = net.forward(); normAssert(out, inp + 0.5f, "", 2e-4, 7e-4); } catch (...) { LayerFactory::unregisterLayer("CustomType"); throw; } LayerFactory::unregisterLayer("CustomType"); } INSTANTIATE_TEST_CASE_P(/**/, DeprecatedForward, dnnBackendsAndTargets()); TEST(Net, forwardAndRetrieve) { std::string prototxt = "input: \"data\"\n" "layer {\n" " name: \"testLayer\"\n" " type: \"Slice\"\n" " bottom: \"data\"\n" " top: \"firstCopy\"\n" " top: \"secondCopy\"\n" " slice_param {\n" " axis: 0\n" " slice_point: 2\n" " }\n" "}"; Net net = readNetFromCaffe(&prototxt[0], prototxt.size()); net.setPreferableBackend(DNN_BACKEND_OPENCV); Mat inp(4, 5, CV_32F); randu(inp, -1, 1); net.setInput(inp); std::vector outNames; outNames.push_back("testLayer"); std::vector > outBlobs; net.forward(outBlobs, outNames); EXPECT_EQ(outBlobs.size(), 1); EXPECT_EQ(outBlobs[0].size(), 2); normAssert(outBlobs[0][0], inp.rowRange(0, 2), "first part"); normAssert(outBlobs[0][1], inp.rowRange(2, 4), "second part"); } #ifdef HAVE_INF_ENGINE static const std::chrono::milliseconds async_timeout(10000); // This test runs network in synchronous mode for different inputs and then // runs the same model asynchronously for the same inputs. typedef testing::TestWithParam > > Async; TEST_P(Async, model_optimizer_pipeline_set_and_forward_single) { const int dtype = get<0>(GetParam()); const Backend backendId = get<0>(get<1>(GetParam())); const Target targetId = get<1>(get<1>(GetParam())); if (backendId == DNN_BACKEND_INFERENCE_ENGINE_NN_BUILDER_2019 && targetId == DNN_TARGET_MYRIAD) applyTestTag(CV_TEST_TAG_DNN_SKIP_IE_MYRIAD, CV_TEST_TAG_DNN_SKIP_IE_NN_BUILDER); if (backendId != DNN_BACKEND_INFERENCE_ENGINE_NN_BUILDER_2019 && backendId != DNN_BACKEND_INFERENCE_ENGINE_NGRAPH) throw SkipTestException("No support for async forward"); const std::string& model = findDataFile("dnn/layers/layer_convolution.bin"); const std::string& proto = findDataFile("dnn/layers/layer_convolution.xml"); ASSERT_EQ(DNN_BACKEND_INFERENCE_ENGINE_NGRAPH, backendId); Net netSync = readNet(model, proto); netSync.setPreferableBackend(backendId); netSync.setPreferableTarget(targetId); Net netAsync = readNet(model, proto); netAsync.setPreferableBackend(backendId); netAsync.setPreferableTarget(targetId); // Generate inputs. const int numInputs = 10; std::vector inputs(numInputs); int blobSize[] = {2, 6, 75, 113}; for (int i = 0; i < numInputs; ++i) { inputs[i].create(4, &blobSize[0], dtype); randu(inputs[i], 0, 255); } // Run synchronously. std::vector refs(numInputs); for (int i = 0; i < numInputs; ++i) { netSync.setInput(inputs[i]); refs[i] = netSync.forward().clone(); } // Run asynchronously. To make test more robust, process inputs in the reversed order. for (int i = numInputs - 1; i >= 0; --i) { netAsync.setInput(inputs[i]); AsyncArray out = netAsync.forwardAsync(); ASSERT_TRUE(out.valid()); Mat result; EXPECT_TRUE(out.get(result, async_timeout)); normAssert(refs[i], result, format("Index: %d", i).c_str(), 0, 0); } } TEST_P(Async, model_optimizer_pipeline_set_and_forward_all) { const int dtype = get<0>(GetParam()); const Backend backendId = get<0>(get<1>(GetParam())); const Target targetId = get<1>(get<1>(GetParam())); if (backendId == DNN_BACKEND_INFERENCE_ENGINE_NN_BUILDER_2019 && targetId == DNN_TARGET_MYRIAD) applyTestTag(CV_TEST_TAG_DNN_SKIP_IE_MYRIAD, CV_TEST_TAG_DNN_SKIP_IE_NN_BUILDER); if (backendId != DNN_BACKEND_INFERENCE_ENGINE_NN_BUILDER_2019 && backendId != DNN_BACKEND_INFERENCE_ENGINE_NGRAPH) throw SkipTestException("No support for async forward"); const std::string& model = findDataFile("dnn/layers/layer_convolution.bin"); const std::string& proto = findDataFile("dnn/layers/layer_convolution.xml"); ASSERT_EQ(DNN_BACKEND_INFERENCE_ENGINE_NGRAPH, backendId); Net netSync = readNet(model, proto); netSync.setPreferableBackend(backendId); netSync.setPreferableTarget(targetId); Net netAsync = readNet(model, proto); netAsync.setPreferableBackend(backendId); netAsync.setPreferableTarget(targetId); // Generate inputs. const int numInputs = 10; std::vector inputs(numInputs); int blobSize[] = {2, 6, 75, 113}; for (int i = 0; i < numInputs; ++i) { inputs[i].create(4, &blobSize[0], dtype); randu(inputs[i], 0, 255); } // Run synchronously. std::vector refs(numInputs); for (int i = 0; i < numInputs; ++i) { netSync.setInput(inputs[i]); refs[i] = netSync.forward().clone(); } // Run asynchronously. To make test more robust, process inputs in the reversed order. std::vector outs(numInputs); for (int i = numInputs - 1; i >= 0; --i) { netAsync.setInput(inputs[i]); outs[i] = netAsync.forwardAsync(); } for (int i = numInputs - 1; i >= 0; --i) { ASSERT_TRUE(outs[i].valid()); Mat result; EXPECT_TRUE(outs[i].get(result, async_timeout)); normAssert(refs[i], result, format("Index: %d", i).c_str(), 0, 0); } } TEST_P(Async, create_layer_pipeline_set_and_forward_all) { const int dtype = get<0>(GetParam()); const Backend backendId = get<0>(get<1>(GetParam())); const Target targetId = get<1>(get<1>(GetParam())); if (backendId != DNN_BACKEND_INFERENCE_ENGINE_NN_BUILDER_2019 && backendId != DNN_BACKEND_INFERENCE_ENGINE_NGRAPH) throw SkipTestException("No support for async forward"); // Exception: Default implementation fallbacks in asynchronous mode if (backendId == DNN_BACKEND_INFERENCE_ENGINE_NGRAPH && dtype == CV_8U) applyTestTag(CV_TEST_TAG_DNN_SKIP_IE_NGRAPH); ASSERT_EQ(DNN_BACKEND_INFERENCE_ENGINE_NGRAPH, backendId); Net netSync; Net netAsync; { int inChannels = 4; int outChannels = 12; int group = 3; Size inSize(113, 75); Size kernel(4, 5); Size stride(2, 3); Size pad(0, 1); Size dilation(1, 1); bool hasBias = true; int sz[] = {outChannels, inChannels / group, kernel.height, kernel.width}; Mat weights(4, &sz[0], CV_32F); randu(weights, -1.0f, 1.0f); LayerParams lp; lp.set("kernel_w", kernel.width); lp.set("kernel_h", kernel.height); lp.set("pad_w", pad.width); lp.set("pad_h", pad.height); lp.set("stride_w", stride.width); lp.set("stride_h", stride.height); lp.set("dilation_w", dilation.width); lp.set("dilation_h", dilation.height); lp.set("num_output", outChannels); lp.set("group", group); lp.set("bias_term", hasBias); lp.type = "Convolution"; lp.name = "testLayer"; lp.blobs.push_back(weights); if (hasBias) { Mat bias(1, outChannels, CV_32F); randu(bias, -1.0f, 1.0f); lp.blobs.push_back(bias); } int inpSz[] = {1, inChannels, inSize.height, inSize.width}; Mat input(4, &inpSz[0], CV_32F); netSync.addLayerToPrev(lp.name, lp.type, lp); netAsync.addLayerToPrev(lp.name, lp.type, lp); } netSync.setPreferableBackend(backendId); netSync.setPreferableTarget(targetId); netAsync.setPreferableBackend(backendId); netAsync.setPreferableTarget(targetId); // Generate inputs. const int numInputs = 10; std::vector inputs(numInputs); int blobSize[] = {1, 4, 75, 113}; for (int i = 0; i < numInputs; ++i) { inputs[i].create(4, &blobSize[0], dtype); randu(inputs[i], 0, 255); } // Run synchronously. std::vector refs(numInputs); for (int i = 0; i < numInputs; ++i) { netSync.setInput(inputs[i]); refs[i] = netSync.forward().clone(); } // Run asynchronously. To make test more robust, process inputs in the reversed order. std::vector outs(numInputs); for (int i = numInputs - 1; i >= 0; --i) { netAsync.setInput(inputs[i]); outs[i] = netAsync.forwardAsync(); } for (int i = numInputs - 1; i >= 0; --i) { ASSERT_TRUE(outs[i].valid()); Mat result; EXPECT_TRUE(outs[i].get(result, async_timeout)); normAssert(refs[i], result, format("Index: %d", i).c_str(), 0, 0); } } INSTANTIATE_TEST_CASE_P(/**/, Async, Combine( Values(CV_32F, CV_8U), dnnBackendsAndTargetsIE() )); typedef testing::TestWithParam > Test_Model_Optimizer; TEST_P(Test_Model_Optimizer, forward_two_nets) { const Backend backendId = get<0>(GetParam()); const Target targetId = get<1>(GetParam()); if (backendId == DNN_BACKEND_INFERENCE_ENGINE_NN_BUILDER_2019 && targetId == DNN_TARGET_MYRIAD) applyTestTag(CV_TEST_TAG_DNN_SKIP_IE_MYRIAD, CV_TEST_TAG_DNN_SKIP_IE_NN_BUILDER); const std::string& model = findDataFile("dnn/layers/layer_convolution.bin"); const std::string& proto = findDataFile("dnn/layers/layer_convolution.xml"); ASSERT_EQ(DNN_BACKEND_INFERENCE_ENGINE_NGRAPH, backendId); Net net0 = readNet(model, proto); net0.setPreferableTarget(targetId); Net net1 = readNet(model, proto); net1.setPreferableTarget(targetId); // Generate inputs. int blobSize[] = {2, 6, 75, 113}; Mat input(4, &blobSize[0], CV_32F); randu(input, 0, 255); net0.setInput(input); Mat ref0 = net0.forward().clone(); net1.setInput(input); Mat ref1 = net1.forward(); net0.setInput(input); Mat ref2 = net0.forward(); normAssert(ref0, ref2, 0, 0); } TEST_P(Test_Model_Optimizer, readFromBuffer) { const Backend backendId = get<0>(GetParam()); const Target targetId = get<1>(GetParam()); if (backendId == DNN_BACKEND_INFERENCE_ENGINE_NN_BUILDER_2019 && targetId == DNN_TARGET_MYRIAD) applyTestTag(CV_TEST_TAG_DNN_SKIP_IE_MYRIAD, CV_TEST_TAG_DNN_SKIP_IE_NN_BUILDER); if (backendId != DNN_BACKEND_INFERENCE_ENGINE_NN_BUILDER_2019 && backendId != DNN_BACKEND_INFERENCE_ENGINE_NGRAPH) throw SkipTestException("No support for async forward"); const std::string& weightsFile = findDataFile("dnn/layers/layer_convolution.bin"); const std::string& modelFile = findDataFile("dnn/layers/layer_convolution.xml"); ASSERT_EQ(DNN_BACKEND_INFERENCE_ENGINE_NGRAPH, backendId); Net net1 = readNetFromModelOptimizer(modelFile, weightsFile); net1.setPreferableBackend(backendId); net1.setPreferableTarget(targetId); std::vector modelConfig; readFileContent(modelFile, modelConfig); std::vector weights; readFileContent(weightsFile, weights); Net net2 = readNetFromModelOptimizer( (const uchar*)modelConfig.data(), modelConfig.size(), (const uchar*)weights.data(), weights.size() ); net2.setPreferableBackend(backendId); net2.setPreferableTarget(targetId); int blobSize[] = {2, 6, 75, 113}; Mat input(4, &blobSize[0], CV_32F); randu(input, 0, 255); Mat ref, actual; { net1.setInput(input); ref = net1.forward(); } { net2.setInput(input); actual = net2.forward(); } normAssert(ref, actual, "", 0, 0); } TEST_P(Test_Model_Optimizer, flexible_inputs) { const Backend backendId = get<0>(GetParam()); const Target targetId = get<1>(GetParam()); if (backendId == DNN_BACKEND_INFERENCE_ENGINE_NN_BUILDER_2019 && targetId == DNN_TARGET_MYRIAD) applyTestTag(CV_TEST_TAG_DNN_SKIP_IE_MYRIAD, CV_TEST_TAG_DNN_SKIP_IE_NN_BUILDER); const std::string& model = findDataFile("dnn/layers/layer_convolution.bin"); const std::string& proto = findDataFile("dnn/layers/layer_convolution.xml"); ASSERT_EQ(DNN_BACKEND_INFERENCE_ENGINE_NGRAPH, backendId); Net net0 = readNet(model, proto); net0.setPreferableTarget(targetId); Net net1 = readNet(model, proto); net1.setPreferableTarget(targetId); // Generate inputs. int blobSize0[] = {2, 6, 75, 113}; Mat input0(4, &blobSize0[0], CV_32F); randu(input0, 0, 255); net0.setInput(input0); Mat ref = net0.forward().clone(); int blobSize1[] = {1, 6, 10, 9}; Mat input1(4, &blobSize1[0], CV_32F); randu(input1, 0, 255); net1.setInput(input1); Mat out = net1.forward(); EXPECT_NE(out.size, ref.size); net1.setInput(input0); out = net1.forward(); normAssert(ref, out, 0, 0); } INSTANTIATE_TEST_CASE_P(/**/, Test_Model_Optimizer, dnnBackendsAndTargetsIE() ); #endif // HAVE_INF_ENGINE typedef testing::TestWithParam > > Test_two_inputs; TEST_P(Test_two_inputs, basic) { static const float kScale = 0.5f; static const float kScaleInv = 1.0f / kScale; Backend backendId = get<0>(get<2>(GetParam())); Target targetId = get<1>(get<2>(GetParam())); int type1 = get<0>(GetParam()); int type2 = get<1>(GetParam()); if (backendId == DNN_BACKEND_VKCOM && !(type1 == CV_32F && type2 == CV_32F)) applyTestTag(CV_TEST_TAG_DNN_SKIP_VULKAN); Net net; LayerParams lp; lp.type = "Eltwise"; lp.name = "testLayer"; lp.set("operation", "sum"); int eltwiseId = net.addLayerToPrev(lp.name, lp.type, lp); // connect to a first input net.connect(0, 1, eltwiseId, 1); // connect to a second input int inpSize[] = {1, 2, 3, 4}; Mat firstInp(4, &inpSize[0], type1); Mat secondInp(4, &inpSize[0], type2); randu(firstInp, 0, 100); randu(secondInp, 0, 100); #ifndef CV_CXX11 std::vector input_names; input_names.push_back("data"); input_names.push_back("second_input"); net.setInputsNames(input_names); #else net.setInputsNames({"data", "second_input"}); #endif net.setInput(firstInp, "data", kScale); net.setInput(secondInp, "second_input", kScaleInv); net.setPreferableBackend(backendId); net.setPreferableTarget(targetId); Mat out = net.forward(); Mat ref; addWeighted(firstInp, kScale, secondInp, kScaleInv, 0, ref, CV_32F); double l1 = (targetId == DNN_TARGET_OPENCL_FP16 || targetId == DNN_TARGET_MYRIAD) ? 0.06 : 1e-6; double lInf = (targetId == DNN_TARGET_OPENCL_FP16 || targetId == DNN_TARGET_MYRIAD) ? 0.3 : 1e-5; normAssert(out, ref, "", l1, lInf); if (cvtest::debugLevel > 0 || HasFailure()) { std::cout << "input1 scale=" << kScale << " input2 scale=" << kScaleInv << std::endl; std::cout << "input1: " << firstInp.size << " " << firstInp.reshape(1, 1) << std::endl; std::cout << "input2: " << secondInp.size << " " << secondInp.reshape(1, 1) << std::endl; std::cout << "ref: " << ref.reshape(1, 1) << std::endl; std::cout << "out: " << out.reshape(1, 1) << std::endl; } } INSTANTIATE_TEST_CASE_P(/*nothing*/, Test_two_inputs, Combine( Values(CV_32F, CV_8U), Values(CV_32F, CV_8U), dnnBackendsAndTargets() )); }} // namespace