/*M/////////////////////////////////////////////////////////////////////////////////////// // // IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING. // // By downloading, copying, installing or using the software you agree to this license. // If you do not agree to this license, do not download, install, // copy or use the software. // // // Intel License Agreement // For Open Source Computer Vision Library // // Copyright (C) 2000, Intel Corporation, all rights reserved. // Third party copyrights are property of their respective owners. // // Redistribution and use in source and binary forms, with or without modification, // are permitted provided that the following conditions are met: // // * Redistribution's of source code must retain the above copyright notice, // this list of conditions and the following disclaimer. // // * Redistribution's in binary form must reproduce the above copyright notice, // this list of conditions and the following disclaimer in the documentation // and/or other materials provided with the distribution. // // * The name of Intel Corporation may not be used to endorse or promote products // derived from this software without specific prior written permission. // // This software is provided by the copyright holders and contributors "as is" and // any express or implied warranties, including, but not limited to, the implied // warranties of merchantability and fitness for a particular purpose are disclaimed. // In no event shall the Intel Corporation or contributors be liable for any direct, // indirect, incidental, special, exemplary, or consequential damages // (including, but not limited to, procurement of substitute goods or services; // loss of use, data, or profits; or business interruption) however caused // and on any theory of liability, whether in contract, strict liability, // or tort (including negligence or otherwise) arising in any way out of // the use of this software, even if advised of the possibility of such damage. // //M*/ #include "test_precomp.hpp" namespace opencv_test { namespace { const string FEATURES2D_DIR = "features2d"; const string IMAGE_FILENAME = "tsukuba.png"; /****************************************************************************************\ * Algorithmic tests for descriptor matchers * \****************************************************************************************/ class CV_DescriptorMatcherTest : public cvtest::BaseTest { public: CV_DescriptorMatcherTest( const string& _name, const Ptr& _dmatcher, float _badPart ) : badPart(_badPart), name(_name), dmatcher(_dmatcher) {} protected: static const int dim = 500; static const int queryDescCount = 300; // must be even number because we split train data in some cases in two static const int countFactor = 4; // do not change it const float badPart; virtual void run( int ); void generateData( Mat& query, Mat& train ); #if 0 void emptyDataTest(); // FIXIT not used #endif void matchTest( const Mat& query, const Mat& train ); void knnMatchTest( const Mat& query, const Mat& train ); void radiusMatchTest( const Mat& query, const Mat& train ); string name; Ptr dmatcher; private: CV_DescriptorMatcherTest& operator=(const CV_DescriptorMatcherTest&) { return *this; } }; #if 0 void CV_DescriptorMatcherTest::emptyDataTest() { assert( !dmatcher.empty() ); Mat queryDescriptors, trainDescriptors, mask; vector trainDescriptorCollection, masks; vector matches; vector > vmatches; try { dmatcher->match( queryDescriptors, trainDescriptors, matches, mask ); } catch(...) { ts->printf( cvtest::TS::LOG, "match() on empty descriptors must not generate exception (1).\n" ); ts->set_failed_test_info( cvtest::TS::FAIL_INVALID_OUTPUT ); } try { dmatcher->knnMatch( queryDescriptors, trainDescriptors, vmatches, 2, mask ); } catch(...) { ts->printf( cvtest::TS::LOG, "knnMatch() on empty descriptors must not generate exception (1).\n" ); ts->set_failed_test_info( cvtest::TS::FAIL_INVALID_OUTPUT ); } try { dmatcher->radiusMatch( queryDescriptors, trainDescriptors, vmatches, 10.f, mask ); } catch(...) { ts->printf( cvtest::TS::LOG, "radiusMatch() on empty descriptors must not generate exception (1).\n" ); ts->set_failed_test_info( cvtest::TS::FAIL_INVALID_OUTPUT ); } try { dmatcher->add( trainDescriptorCollection ); } catch(...) { ts->printf( cvtest::TS::LOG, "add() on empty descriptors must not generate exception.\n" ); ts->set_failed_test_info( cvtest::TS::FAIL_INVALID_OUTPUT ); } try { dmatcher->match( queryDescriptors, matches, masks ); } catch(...) { ts->printf( cvtest::TS::LOG, "match() on empty descriptors must not generate exception (2).\n" ); ts->set_failed_test_info( cvtest::TS::FAIL_INVALID_OUTPUT ); } try { dmatcher->knnMatch( queryDescriptors, vmatches, 2, masks ); } catch(...) { ts->printf( cvtest::TS::LOG, "knnMatch() on empty descriptors must not generate exception (2).\n" ); ts->set_failed_test_info( cvtest::TS::FAIL_INVALID_OUTPUT ); } try { dmatcher->radiusMatch( queryDescriptors, vmatches, 10.f, masks ); } catch(...) { ts->printf( cvtest::TS::LOG, "radiusMatch() on empty descriptors must not generate exception (2).\n" ); ts->set_failed_test_info( cvtest::TS::FAIL_INVALID_OUTPUT ); } } #endif void CV_DescriptorMatcherTest::generateData( Mat& query, Mat& train ) { RNG& rng = theRNG(); // Generate query descriptors randomly. // Descriptor vector elements are integer values. Mat buf( queryDescCount, dim, CV_32SC1 ); rng.fill( buf, RNG::UNIFORM, Scalar::all(0), Scalar(3) ); buf.convertTo( query, CV_32FC1 ); // Generate train descriptors as follows: // copy each query descriptor to train set countFactor times // and perturb some one element of the copied descriptors in // in ascending order. General boundaries of the perturbation // are (0.f, 1.f). train.create( query.rows*countFactor, query.cols, CV_32FC1 ); float step = 1.f / countFactor; for( int qIdx = 0; qIdx < query.rows; qIdx++ ) { Mat queryDescriptor = query.row(qIdx); for( int c = 0; c < countFactor; c++ ) { int tIdx = qIdx * countFactor + c; Mat trainDescriptor = train.row(tIdx); queryDescriptor.copyTo( trainDescriptor ); int elem = rng(dim); float diff = rng.uniform( step*c, step*(c+1) ); trainDescriptor.at(0, elem) += diff; } } } void CV_DescriptorMatcherTest::matchTest( const Mat& query, const Mat& train ) { dmatcher->clear(); // test const version of match() { vector matches; dmatcher->match( query, train, matches ); if( (int)matches.size() != queryDescCount ) { ts->printf(cvtest::TS::LOG, "Incorrect matches count while test match() function (1).\n"); ts->set_failed_test_info( cvtest::TS::FAIL_INVALID_OUTPUT ); } else { int badCount = 0; for( size_t i = 0; i < matches.size(); i++ ) { DMatch& match = matches[i]; if( (match.queryIdx != (int)i) || (match.trainIdx != (int)i*countFactor) || (match.imgIdx != 0) ) badCount++; } if( (float)badCount > (float)queryDescCount*badPart ) { ts->printf( cvtest::TS::LOG, "%f - too large bad matches part while test match() function (1).\n", (float)badCount/(float)queryDescCount ); ts->set_failed_test_info( cvtest::TS::FAIL_INVALID_OUTPUT ); } } } // test const version of match() for the same query and test descriptors { vector matches; dmatcher->match( query, query, matches ); if( (int)matches.size() != query.rows ) { ts->printf(cvtest::TS::LOG, "Incorrect matches count while test match() function for the same query and test descriptors (1).\n"); ts->set_failed_test_info( cvtest::TS::FAIL_INVALID_OUTPUT ); } else { for( size_t i = 0; i < matches.size(); i++ ) { DMatch& match = matches[i]; //std::cout << match.distance << std::endl; if( match.queryIdx != (int)i || match.trainIdx != (int)i || std::abs(match.distance) > FLT_EPSILON ) { ts->printf( cvtest::TS::LOG, "Bad match (i=%d, queryIdx=%d, trainIdx=%d, distance=%f) while test match() function for the same query and test descriptors (1).\n", i, match.queryIdx, match.trainIdx, match.distance ); ts->set_failed_test_info( cvtest::TS::FAIL_INVALID_OUTPUT ); } } } } // test version of match() with add() { vector matches; // make add() twice to test such case dmatcher->add( vector(1,train.rowRange(0, train.rows/2)) ); dmatcher->add( vector(1,train.rowRange(train.rows/2, train.rows)) ); // prepare masks (make first nearest match illegal) vector masks(2); for(int mi = 0; mi < 2; mi++ ) { masks[mi] = Mat(query.rows, train.rows/2, CV_8UC1, Scalar::all(1)); for( int di = 0; di < queryDescCount/2; di++ ) masks[mi].col(di*countFactor).setTo(Scalar::all(0)); } dmatcher->match( query, matches, masks ); if( (int)matches.size() != queryDescCount ) { ts->printf(cvtest::TS::LOG, "Incorrect matches count while test match() function (2).\n"); ts->set_failed_test_info( cvtest::TS::FAIL_INVALID_OUTPUT ); } else { int badCount = 0; for( size_t i = 0; i < matches.size(); i++ ) { DMatch& match = matches[i]; int shift = dmatcher->isMaskSupported() ? 1 : 0; { if( i < queryDescCount/2 ) { if( (match.queryIdx != (int)i) || (match.trainIdx != (int)i*countFactor + shift) || (match.imgIdx != 0) ) badCount++; } else { if( (match.queryIdx != (int)i) || (match.trainIdx != ((int)i-queryDescCount/2)*countFactor + shift) || (match.imgIdx != 1) ) badCount++; } } } if( (float)badCount > (float)queryDescCount*badPart ) { ts->printf( cvtest::TS::LOG, "%f - too large bad matches part while test match() function (2).\n", (float)badCount/(float)queryDescCount ); ts->set_failed_test_info( cvtest::TS::FAIL_BAD_ACCURACY ); } } } } void CV_DescriptorMatcherTest::knnMatchTest( const Mat& query, const Mat& train ) { dmatcher->clear(); // test const version of knnMatch() { const int knn = 3; vector > matches; dmatcher->knnMatch( query, train, matches, knn ); if( (int)matches.size() != queryDescCount ) { ts->printf(cvtest::TS::LOG, "Incorrect matches count while test knnMatch() function (1).\n"); ts->set_failed_test_info( cvtest::TS::FAIL_INVALID_OUTPUT ); } else { int badCount = 0; for( size_t i = 0; i < matches.size(); i++ ) { if( (int)matches[i].size() != knn ) badCount++; else { int localBadCount = 0; for( int k = 0; k < knn; k++ ) { DMatch& match = matches[i][k]; if( (match.queryIdx != (int)i) || (match.trainIdx != (int)i*countFactor+k) || (match.imgIdx != 0) ) localBadCount++; } badCount += localBadCount > 0 ? 1 : 0; } } if( (float)badCount > (float)queryDescCount*badPart ) { ts->printf( cvtest::TS::LOG, "%f - too large bad matches part while test knnMatch() function (1).\n", (float)badCount/(float)queryDescCount ); ts->set_failed_test_info( cvtest::TS::FAIL_INVALID_OUTPUT ); } } } // test version of knnMatch() with add() { const int knn = 2; vector > matches; // make add() twice to test such case dmatcher->add( vector(1,train.rowRange(0, train.rows/2)) ); dmatcher->add( vector(1,train.rowRange(train.rows/2, train.rows)) ); // prepare masks (make first nearest match illegal) vector masks(2); for(int mi = 0; mi < 2; mi++ ) { masks[mi] = Mat(query.rows, train.rows/2, CV_8UC1, Scalar::all(1)); for( int di = 0; di < queryDescCount/2; di++ ) masks[mi].col(di*countFactor).setTo(Scalar::all(0)); } dmatcher->knnMatch( query, matches, knn, masks ); if( (int)matches.size() != queryDescCount ) { ts->printf(cvtest::TS::LOG, "Incorrect matches count while test knnMatch() function (2).\n"); ts->set_failed_test_info( cvtest::TS::FAIL_INVALID_OUTPUT ); } else { int badCount = 0; int shift = dmatcher->isMaskSupported() ? 1 : 0; for( size_t i = 0; i < matches.size(); i++ ) { if( (int)matches[i].size() != knn ) badCount++; else { int localBadCount = 0; for( int k = 0; k < knn; k++ ) { DMatch& match = matches[i][k]; { if( i < queryDescCount/2 ) { if( (match.queryIdx != (int)i) || (match.trainIdx != (int)i*countFactor + k + shift) || (match.imgIdx != 0) ) localBadCount++; } else { if( (match.queryIdx != (int)i) || (match.trainIdx != ((int)i-queryDescCount/2)*countFactor + k + shift) || (match.imgIdx != 1) ) localBadCount++; } } } badCount += localBadCount > 0 ? 1 : 0; } } if( (float)badCount > (float)queryDescCount*badPart ) { ts->printf( cvtest::TS::LOG, "%f - too large bad matches part while test knnMatch() function (2).\n", (float)badCount/(float)queryDescCount ); ts->set_failed_test_info( cvtest::TS::FAIL_BAD_ACCURACY ); } } } } void CV_DescriptorMatcherTest::radiusMatchTest( const Mat& query, const Mat& train ) { dmatcher->clear(); // test const version of match() { const float radius = 1.f/countFactor; vector > matches; dmatcher->radiusMatch( query, train, matches, radius ); if( (int)matches.size() != queryDescCount ) { ts->printf(cvtest::TS::LOG, "Incorrect matches count while test radiusMatch() function (1).\n"); ts->set_failed_test_info( cvtest::TS::FAIL_INVALID_OUTPUT ); } else { int badCount = 0; for( size_t i = 0; i < matches.size(); i++ ) { if( (int)matches[i].size() != 1 ) badCount++; else { DMatch& match = matches[i][0]; if( (match.queryIdx != (int)i) || (match.trainIdx != (int)i*countFactor) || (match.imgIdx != 0) ) badCount++; } } if( (float)badCount > (float)queryDescCount*badPart ) { ts->printf( cvtest::TS::LOG, "%f - too large bad matches part while test radiusMatch() function (1).\n", (float)badCount/(float)queryDescCount ); ts->set_failed_test_info( cvtest::TS::FAIL_INVALID_OUTPUT ); } } } // test version of match() with add() { int n = 3; const float radius = 1.f/countFactor * n; vector > matches; // make add() twice to test such case dmatcher->add( vector(1,train.rowRange(0, train.rows/2)) ); dmatcher->add( vector(1,train.rowRange(train.rows/2, train.rows)) ); // prepare masks (make first nearest match illegal) vector masks(2); for(int mi = 0; mi < 2; mi++ ) { masks[mi] = Mat(query.rows, train.rows/2, CV_8UC1, Scalar::all(1)); for( int di = 0; di < queryDescCount/2; di++ ) masks[mi].col(di*countFactor).setTo(Scalar::all(0)); } dmatcher->radiusMatch( query, matches, radius, masks ); //int curRes = cvtest::TS::OK; if( (int)matches.size() != queryDescCount ) { ts->printf(cvtest::TS::LOG, "Incorrect matches count while test radiusMatch() function (1).\n"); ts->set_failed_test_info( cvtest::TS::FAIL_INVALID_OUTPUT ); } int badCount = 0; int shift = dmatcher->isMaskSupported() ? 1 : 0; int needMatchCount = dmatcher->isMaskSupported() ? n-1 : n; for( size_t i = 0; i < matches.size(); i++ ) { if( (int)matches[i].size() != needMatchCount ) badCount++; else { int localBadCount = 0; for( int k = 0; k < needMatchCount; k++ ) { DMatch& match = matches[i][k]; { if( i < queryDescCount/2 ) { if( (match.queryIdx != (int)i) || (match.trainIdx != (int)i*countFactor + k + shift) || (match.imgIdx != 0) ) localBadCount++; } else { if( (match.queryIdx != (int)i) || (match.trainIdx != ((int)i-queryDescCount/2)*countFactor + k + shift) || (match.imgIdx != 1) ) localBadCount++; } } } badCount += localBadCount > 0 ? 1 : 0; } } if( (float)badCount > (float)queryDescCount*badPart ) { //curRes = cvtest::TS::FAIL_INVALID_OUTPUT; ts->printf( cvtest::TS::LOG, "%f - too large bad matches part while test radiusMatch() function (2).\n", (float)badCount/(float)queryDescCount ); ts->set_failed_test_info( cvtest::TS::FAIL_BAD_ACCURACY ); } } } void CV_DescriptorMatcherTest::run( int ) { Mat query, train; generateData( query, train ); matchTest( query, train ); knnMatchTest( query, train ); radiusMatchTest( query, train ); } /****************************************************************************************\ * Tests registrations * \****************************************************************************************/ TEST( Features2d_DescriptorMatcher_BruteForce, regression ) { CV_DescriptorMatcherTest test( "descriptor-matcher-brute-force", DescriptorMatcher::create("BruteForce"), 0.01f ); test.safe_run(); } #ifdef HAVE_OPENCV_FLANN TEST( Features2d_DescriptorMatcher_FlannBased, regression ) { CV_DescriptorMatcherTest test( "descriptor-matcher-flann-based", DescriptorMatcher::create("FlannBased"), 0.04f ); test.safe_run(); } #endif TEST( Features2d_DMatch, read_write ) { FileStorage fs(".xml", FileStorage::WRITE + FileStorage::MEMORY); vector matches; matches.push_back(DMatch(1,2,3,4.5f)); fs << "Match" << matches; String str = fs.releaseAndGetString(); ASSERT_NE( strstr(str.c_str(), "4.5"), (char*)0 ); } #ifdef HAVE_OPENCV_FLANN TEST( Features2d_FlannBasedMatcher, read_write ) { static const char* ymlfile = "%YAML:1.0\n---\n" "format: 3\n" "indexParams:\n" " -\n" " name: algorithm\n" " type: 9\n" // FLANN_INDEX_TYPE_ALGORITHM " value: 6\n"// this line is changed! " -\n" " name: trees\n" " type: 4\n" " value: 4\n" "searchParams:\n" " -\n" " name: checks\n" " type: 4\n" " value: 32\n" " -\n" " name: eps\n" " type: 5\n" " value: 4.\n"// this line is changed! " -\n" " name: explore_all_trees\n" " type: 8\n" " value: 0\n" " -\n" " name: sorted\n" " type: 8\n" // FLANN_INDEX_TYPE_BOOL " value: 1\n"; Ptr matcher = FlannBasedMatcher::create(); FileStorage fs_in(ymlfile, FileStorage::READ + FileStorage::MEMORY); matcher->read(fs_in.root()); FileStorage fs_out(".yml", FileStorage::WRITE + FileStorage::MEMORY); matcher->write(fs_out); std::string out = fs_out.releaseAndGetString(); EXPECT_EQ(ymlfile, out); } #endif TEST(Features2d_DMatch, issue_11855) { Mat sources = (Mat_(2, 3) << 1, 1, 0, 1, 1, 1); Mat targets = (Mat_(2, 3) << 1, 1, 1, 0, 0, 0); Ptr bf = BFMatcher::create(NORM_HAMMING, true); vector > match; bf->knnMatch(sources, targets, match, 1, noArray(), true); ASSERT_EQ((size_t)1, match.size()); ASSERT_EQ((size_t)1, match[0].size()); EXPECT_EQ(1, match[0][0].queryIdx); EXPECT_EQ(0, match[0][0].trainIdx); EXPECT_EQ(0.0f, match[0][0].distance); } TEST(Features2d_DMatch, issue_17771) { Mat sources = (Mat_(2, 3) << 1, 1, 0, 1, 1, 1); Mat targets = (Mat_(2, 3) << 1, 1, 1, 0, 0, 0); UMat usources = sources.getUMat(ACCESS_READ); UMat utargets = targets.getUMat(ACCESS_READ); vector > match; Ptr ubf = BFMatcher::create(NORM_HAMMING); Mat mask = (Mat_(2, 2) << 1, 0, 0, 1); EXPECT_NO_THROW(ubf->knnMatch(usources, utargets, match, 1, mask, true)); } }} // namespace