// This file is part of OpenCV project. // It is subject to the license terms in the LICENSE file found in the top-level directory // of this distribution and at http://opencv.org/license.html //#define GENERATE_DATA namespace opencv_test { namespace { size_t getFileSize(const string& filename) { std::ifstream ifs(filename.c_str(), std::ios::in | std::ios::binary); if (ifs.is_open()) { ifs.seekg(0, std::ios::end); return (size_t)ifs.tellg(); } return 0; } TEST(Imgcodecs_EXR, readWrite_32FC1) { // Y channels const string root = cvtest::TS::ptr()->get_data_path(); const string filenameInput = root + "readwrite/test32FC1.exr"; const string filenameOutput = cv::tempfile(".exr"); #ifndef GENERATE_DATA const Mat img = cv::imread(filenameInput, IMREAD_UNCHANGED); #else const Size sz(64, 32); Mat img(sz, CV_32FC1, Scalar(0.5, 0.1, 1)); img(Rect(10, 5, sz.width - 30, sz.height - 20)).setTo(Scalar(1, 0, 0)); ASSERT_TRUE(cv::imwrite(filenameInput, img)); #endif ASSERT_FALSE(img.empty()); ASSERT_EQ(CV_32FC1,img.type()); ASSERT_TRUE(cv::imwrite(filenameOutput, img)); // Check generated file size to ensure that it's compressed with proper options ASSERT_EQ(396u, getFileSize(filenameOutput)); const Mat img2 = cv::imread(filenameOutput, IMREAD_UNCHANGED); ASSERT_EQ(img2.type(), img.type()); ASSERT_EQ(img2.size(), img.size()); EXPECT_LE(cvtest::norm(img, img2, NORM_INF | NORM_RELATIVE), 1e-3); EXPECT_EQ(0, remove(filenameOutput.c_str())); } TEST(Imgcodecs_EXR, readWrite_32FC3) { // RGB channels const string root = cvtest::TS::ptr()->get_data_path(); const string filenameInput = root + "readwrite/test32FC3.exr"; const string filenameOutput = cv::tempfile(".exr"); #ifndef GENERATE_DATA const Mat img = cv::imread(filenameInput, IMREAD_UNCHANGED); #else const Size sz(64, 32); Mat img(sz, CV_32FC3, Scalar(0.5, 0.1, 1)); img(Rect(10, 5, sz.width - 30, sz.height - 20)).setTo(Scalar(1, 0, 0)); ASSERT_TRUE(cv::imwrite(filenameInput, img)); #endif ASSERT_FALSE(img.empty()); ASSERT_EQ(CV_32FC3, img.type()); ASSERT_TRUE(cv::imwrite(filenameOutput, img)); const Mat img2 = cv::imread(filenameOutput, IMREAD_UNCHANGED); ASSERT_EQ(img2.type(), img.type()); ASSERT_EQ(img2.size(), img.size()); EXPECT_LE(cvtest::norm(img, img2, NORM_INF | NORM_RELATIVE), 1e-3); EXPECT_EQ(0, remove(filenameOutput.c_str())); } TEST(Imgcodecs_EXR, readWrite_32FC1_half) { const string root = cvtest::TS::ptr()->get_data_path(); const string filenameInput = root + "readwrite/test32FC1_half.exr"; const string filenameOutput = cv::tempfile(".exr"); std::vector params; params.push_back(IMWRITE_EXR_TYPE); params.push_back(IMWRITE_EXR_TYPE_HALF); #ifndef GENERATE_DATA const Mat img = cv::imread(filenameInput, IMREAD_UNCHANGED); #else const Size sz(64, 32); Mat img(sz, CV_32FC1, Scalar(0.5, 0.1, 1)); img(Rect(10, 5, sz.width - 30, sz.height - 20)).setTo(Scalar(1, 0, 0)); ASSERT_TRUE(cv::imwrite(filenameInput, img, params)); #endif ASSERT_FALSE(img.empty()); ASSERT_EQ(CV_32FC1,img.type()); ASSERT_TRUE(cv::imwrite(filenameOutput, img, params)); const Mat img2 = cv::imread(filenameOutput, IMREAD_UNCHANGED); ASSERT_EQ(img2.type(), img.type()); ASSERT_EQ(img2.size(), img.size()); EXPECT_LE(cvtest::norm(img, img2, NORM_INF | NORM_RELATIVE), 1e-3); EXPECT_EQ(0, remove(filenameOutput.c_str())); } TEST(Imgcodecs_EXR, readWrite_32FC3_half) { const string root = cvtest::TS::ptr()->get_data_path(); const string filenameInput = root + "readwrite/test32FC3_half.exr"; const string filenameOutput = cv::tempfile(".exr"); std::vector params; params.push_back(IMWRITE_EXR_TYPE); params.push_back(IMWRITE_EXR_TYPE_HALF); #ifndef GENERATE_DATA const Mat img = cv::imread(filenameInput, IMREAD_UNCHANGED); #else const Size sz(64, 32); Mat img(sz, CV_32FC3, Scalar(0.5, 0.1, 1)); img(Rect(10, 5, sz.width - 30, sz.height - 20)).setTo(Scalar(1, 0, 0)); ASSERT_TRUE(cv::imwrite(filenameInput, img, params)); #endif ASSERT_FALSE(img.empty()); ASSERT_EQ(CV_32FC3, img.type()); ASSERT_TRUE(cv::imwrite(filenameOutput, img, params)); const Mat img2 = cv::imread(filenameOutput, IMREAD_UNCHANGED); ASSERT_EQ(img2.type(), img.type()); ASSERT_EQ(img2.size(), img.size()); EXPECT_LE(cvtest::norm(img, img2, NORM_INF | NORM_RELATIVE), 1e-3); EXPECT_EQ(0, remove(filenameOutput.c_str())); } TEST(Imgcodecs_EXR, readWrite_32FC1_PIZ) { const string root = cvtest::TS::ptr()->get_data_path(); const string filenameInput = root + "readwrite/test32FC1.exr"; const string filenameOutput = cv::tempfile(".exr"); const Mat img = cv::imread(filenameInput, IMREAD_UNCHANGED); ASSERT_FALSE(img.empty()); ASSERT_EQ(CV_32FC1, img.type()); std::vector params; params.push_back(IMWRITE_EXR_COMPRESSION); params.push_back(IMWRITE_EXR_COMPRESSION_PIZ); ASSERT_TRUE(cv::imwrite(filenameOutput, img, params)); // Check generated file size to ensure that it's compressed with proper options ASSERT_EQ(849u, getFileSize(filenameOutput)); const Mat img2 = cv::imread(filenameOutput, IMREAD_UNCHANGED); ASSERT_EQ(img2.type(), img.type()); ASSERT_EQ(img2.size(), img.size()); EXPECT_LE(cvtest::norm(img, img2, NORM_INF | NORM_RELATIVE), 1e-3); EXPECT_EQ(0, remove(filenameOutput.c_str())); } // Note: YC to GRAYSCALE (IMREAD_GRAYSCALE | IMREAD_ANYDEPTH) // outputs a black image, // as does Y to RGB (IMREAD_COLOR | IMREAD_ANYDEPTH). // This behavoir predates adding EXR alpha support issue // 16115. TEST(Imgcodecs_EXR, read_YA_ignore_alpha) { const string root = cvtest::TS::ptr()->get_data_path(); const string filenameInput = root + "readwrite/test_YA.exr"; const Mat img = cv::imread(filenameInput, IMREAD_GRAYSCALE | IMREAD_ANYDEPTH); ASSERT_FALSE(img.empty()); ASSERT_EQ(CV_32FC1, img.type()); // Writing Y covered by test 32FC1 } TEST(Imgcodecs_EXR, read_YA_unchanged) { const string root = cvtest::TS::ptr()->get_data_path(); const string filenameInput = root + "readwrite/test_YA.exr"; const Mat img = cv::imread(filenameInput, IMREAD_UNCHANGED); ASSERT_FALSE(img.empty()); ASSERT_EQ(CV_32FC2, img.type()); // Cannot test writing, 2 channel writing not suppported by loadsave } TEST(Imgcodecs_EXR, read_YC_changeDepth) { const string root = cvtest::TS::ptr()->get_data_path(); const string filenameInput = root + "readwrite/test_YRYBY.exr"; const Mat img = cv::imread(filenameInput, IMREAD_COLOR); ASSERT_FALSE(img.empty()); ASSERT_EQ(CV_8UC3, img.type()); // Cannot test writing, EXR encoder doesn't support 8U depth } TEST(Imgcodecs_EXR, readwrite_YCA_ignore_alpha) { const string root = cvtest::TS::ptr()->get_data_path(); const string filenameInput = root + "readwrite/test_YRYBYA.exr"; const string filenameOutput = cv::tempfile(".exr"); const Mat img = cv::imread(filenameInput, IMREAD_COLOR | IMREAD_ANYDEPTH); ASSERT_FALSE(img.empty()); ASSERT_EQ(CV_32FC3, img.type()); ASSERT_TRUE(cv::imwrite(filenameOutput, img)); const Mat img2 = cv::imread(filenameOutput, IMREAD_UNCHANGED); ASSERT_EQ(img2.type(), img.type()); ASSERT_EQ(img2.size(), img.size()); EXPECT_LE(cvtest::norm(img, img2, NORM_INF | NORM_RELATIVE), 1e-3); EXPECT_EQ(0, remove(filenameOutput.c_str())); } TEST(Imgcodecs_EXR, read_YC_unchanged) { const string root = cvtest::TS::ptr()->get_data_path(); const string filenameInput = root + "readwrite/test_YRYBY.exr"; const Mat img = cv::imread(filenameInput, IMREAD_UNCHANGED); ASSERT_FALSE(img.empty()); ASSERT_EQ(CV_32FC3, img.type()); // Writing YC covered by test readwrite_YCA_ignore_alpha } TEST(Imgcodecs_EXR, readwrite_YCA_unchanged) { const string root = cvtest::TS::ptr()->get_data_path(); const string filenameInput = root + "readwrite/test_YRYBYA.exr"; const string filenameOutput = cv::tempfile(".exr"); const Mat img = cv::imread(filenameInput, IMREAD_UNCHANGED); ASSERT_FALSE(img.empty()); ASSERT_EQ(CV_32FC4, img.type()); ASSERT_TRUE(cv::imwrite(filenameOutput, img)); const Mat img2 = cv::imread(filenameOutput, IMREAD_UNCHANGED); ASSERT_EQ(img2.type(), img.type()); ASSERT_EQ(img2.size(), img.size()); EXPECT_LE(cvtest::norm(img, img2, NORM_INF | NORM_RELATIVE), 1e-3); EXPECT_EQ(0, remove(filenameOutput.c_str())); } TEST(Imgcodecs_EXR, readwrite_RGBA_togreyscale) { const string root = cvtest::TS::ptr()->get_data_path(); const string filenameInput = root + "readwrite/test_GeneratedRGBA.exr"; const string filenameOutput = cv::tempfile(".exr"); const Mat img = cv::imread(filenameInput, IMREAD_GRAYSCALE | IMREAD_ANYDEPTH); ASSERT_FALSE(img.empty()); ASSERT_EQ(CV_32FC1, img.type()); ASSERT_TRUE(cv::imwrite(filenameOutput, img)); const Mat img2 = cv::imread(filenameOutput, IMREAD_UNCHANGED); ASSERT_EQ(img2.type(), img.type()); ASSERT_EQ(img2.size(), img.size()); EXPECT_LE(cvtest::norm(img, img2, NORM_INF | NORM_RELATIVE), 1e-3); EXPECT_EQ(0, remove(filenameOutput.c_str())); } TEST(Imgcodecs_EXR, read_RGBA_ignore_alpha) { const string root = cvtest::TS::ptr()->get_data_path(); const string filenameInput = root + "readwrite/test_GeneratedRGBA.exr"; const Mat img = cv::imread(filenameInput, IMREAD_COLOR | IMREAD_ANYDEPTH); ASSERT_FALSE(img.empty()); ASSERT_EQ(CV_32FC3, img.type()); // Writing RGB covered by test 32FC3 } TEST(Imgcodecs_EXR, read_RGBA_unchanged) { const string root = cvtest::TS::ptr()->get_data_path(); const string filenameInput = root + "readwrite/test_GeneratedRGBA.exr"; const string filenameOutput = cv::tempfile(".exr"); #ifndef GENERATE_DATA const Mat img = cv::imread(filenameInput, IMREAD_UNCHANGED); #else const Size sz(64, 32); Mat img(sz, CV_32FC4, Scalar(0.5, 0.1, 1, 1)); img(Rect(10, 5, sz.width - 30, sz.height - 20)).setTo(Scalar(1, 0, 0, 1)); img(Rect(10, 20, sz.width - 30, sz.height - 20)).setTo(Scalar(1, 1, 0, 0)); ASSERT_TRUE(cv::imwrite(filenameInput, img)); #endif ASSERT_FALSE(img.empty()); ASSERT_EQ(CV_32FC4, img.type()); ASSERT_TRUE(cv::imwrite(filenameOutput, img)); const Mat img2 = cv::imread(filenameOutput, IMREAD_UNCHANGED); ASSERT_EQ(img2.type(), img.type()); ASSERT_EQ(img2.size(), img.size()); EXPECT_LE(cvtest::norm(img, img2, NORM_INF | NORM_RELATIVE), 1e-3); EXPECT_EQ(0, remove(filenameOutput.c_str())); } }} // namespace