// This file is part of OpenCV project. // It is subject to the license terms in the LICENSE file found in the top-level directory // of this distribution and at http://opencv.org/license.html. if (typeof module !== 'undefined' && module.exports) { // The environment is Node.js var cv = require('./opencv.js'); // eslint-disable-line no-var } QUnit.module('Camera Calibration and 3D Reconstruction', {}); QUnit.test('constants', function(assert) { assert.strictEqual(typeof cv.LMEDS, 'number'); assert.strictEqual(typeof cv.RANSAC, 'number'); assert.strictEqual(typeof cv.RHO, 'number'); }); QUnit.test('findHomography', function(assert) { let srcPoints = cv.matFromArray(4, 1, cv.CV_32FC2, [ 56, 65, 368, 52, 28, 387, 389, 390, ]); let dstPoints = cv.matFromArray(4, 1, cv.CV_32FC2, [ 0, 0, 300, 0, 0, 300, 300, 300, ]); const mat = cv.findHomography(srcPoints, dstPoints); assert.ok(mat instanceof cv.Mat); }); QUnit.test('Rodrigues', function(assert) { // Converts a rotation matrix to a rotation vector and vice versa // data64F is the output array const rvec0 = cv.matFromArray(1, 3, cv.CV_64F, [1,1,1]); let rMat0 = new cv.Mat(); let rvec1 = new cv.Mat(); // Args: input Mat, output Mat. The function mutates the output Mat, so the function does not return anything. // cv.Rodrigues (InputArray=src, OutputArray=dst, jacobian=0) // https://docs.opencv.org/2.4/modules/calib3d/doc/camera_calibration_and_3d_reconstruction.html#void%20Rodrigues(InputArray%20src,%20OutputArray%20dst,%20OutputArray%20jacobian) // vec to Mat, starting number is 3 long and each element is 1. cv.Rodrigues(rvec0, rMat0); assert.ok(rMat0.data64F.length == 9); assert.ok(0.23 > rMat0.data64F[0] > 0.22); // convert Mat to Vec, should be same as what we started with, 3 long and each item should be a 1. cv.Rodrigues(rMat0, rvec1); assert.ok(rvec1.data64F.length == 3); assert.ok(1.01 > rvec1.data64F[0] > 0.9); // Answer should be around 1: 0.9999999999999999 }); QUnit.test('estimateAffine2D', function(assert) { const inputs = cv.matFromArray(4, 1, cv.CV_32FC2, [ 1, 1, 80, 0, 0, 80, 80, 80 ]); const outputs = cv.matFromArray(4, 1, cv.CV_32FC2, [ 21, 51, 70, 77, 40, 40, 10, 70 ]); const M = cv.estimateAffine2D(inputs, outputs); assert.ok(M instanceof cv.Mat); assert.deepEqual(Array.from(M.data), [ 23, 55, 97, 126, 87, 139, 227, 63, 0, 0, 0, 0, 0, 0, 232, 191, 71, 246, 12, 68, 165, 35, 53, 64, 99, 56, 27, 66, 14, 254, 212, 63, 103, 102, 102, 102, 102, 102, 182, 191, 195, 252, 174, 22, 55, 97, 73, 64 ]); });