// This file is part of OpenCV project. // It is subject to the license terms in the LICENSE file found in the top-level directory // of this distribution and at http://opencv.org/license.html. // // AUTHOR: Rahul Kavi rahulkavi[at]live[at]com // // Test data uses subset of data from the popular Iris Dataset (1936): // - http://archive.ics.uci.edu/ml/datasets/Iris // - https://en.wikipedia.org/wiki/Iris_flower_data_set // #include "test_precomp.hpp" namespace opencv_test { namespace { TEST(ML_LR, accuracy) { std::string dataFileName = findDataFile("iris.data"); Ptr tdata = TrainData::loadFromCSV(dataFileName, 0); ASSERT_FALSE(tdata.empty()); Ptr p = LogisticRegression::create(); p->setLearningRate(1.0); p->setIterations(10001); p->setRegularization(LogisticRegression::REG_L2); p->setTrainMethod(LogisticRegression::BATCH); p->setMiniBatchSize(10); p->train(tdata); Mat responses; p->predict(tdata->getSamples(), responses); float error = 1000; EXPECT_TRUE(calculateError(responses, tdata->getResponses(), error)); EXPECT_LE(error, 0.05f); } //================================================================================================== TEST(ML_LR, save_load) { string dataFileName = findDataFile("iris.data"); Ptr tdata = TrainData::loadFromCSV(dataFileName, 0); ASSERT_FALSE(tdata.empty()); Mat responses1, responses2; Mat learnt_mat1, learnt_mat2; String filename = tempfile(".xml"); { Ptr lr1 = LogisticRegression::create(); lr1->setLearningRate(1.0); lr1->setIterations(10001); lr1->setRegularization(LogisticRegression::REG_L2); lr1->setTrainMethod(LogisticRegression::BATCH); lr1->setMiniBatchSize(10); ASSERT_NO_THROW(lr1->train(tdata)); ASSERT_NO_THROW(lr1->predict(tdata->getSamples(), responses1)); ASSERT_NO_THROW(lr1->save(filename)); learnt_mat1 = lr1->get_learnt_thetas(); } { Ptr lr2; ASSERT_NO_THROW(lr2 = Algorithm::load(filename)); ASSERT_NO_THROW(lr2->predict(tdata->getSamples(), responses2)); learnt_mat2 = lr2->get_learnt_thetas(); } // compare difference in prediction outputs and stored inputs EXPECT_MAT_NEAR(responses1, responses2, 0.f); Mat comp_learnt_mats; comp_learnt_mats = (learnt_mat1 == learnt_mat2); comp_learnt_mats = comp_learnt_mats.reshape(1, comp_learnt_mats.rows*comp_learnt_mats.cols); comp_learnt_mats.convertTo(comp_learnt_mats, CV_32S); comp_learnt_mats = comp_learnt_mats/255; // check if there is any difference between computed learnt mat and retrieved mat EXPECT_EQ(comp_learnt_mats.rows, sum(comp_learnt_mats)[0]); remove( filename.c_str() ); } }} // namespace