// This file is part of OpenCV project. // It is subject to the license terms in the LICENSE file found in the top-level directory // of this distribution and at http://opencv.org/license.html. #include "test_precomp.hpp" namespace opencv_test { void defaultDistribs( Mat& means, vector& covs, int type) { float mp0[] = {0.0f, 0.0f}, cp0[] = {0.67f, 0.0f, 0.0f, 0.67f}; float mp1[] = {5.0f, 0.0f}, cp1[] = {1.0f, 0.0f, 0.0f, 1.0f}; float mp2[] = {1.0f, 5.0f}, cp2[] = {1.0f, 0.0f, 0.0f, 1.0f}; means.create(3, 2, type); Mat m0( 1, 2, CV_32FC1, mp0 ), c0( 2, 2, CV_32FC1, cp0 ); Mat m1( 1, 2, CV_32FC1, mp1 ), c1( 2, 2, CV_32FC1, cp1 ); Mat m2( 1, 2, CV_32FC1, mp2 ), c2( 2, 2, CV_32FC1, cp2 ); means.resize(3), covs.resize(3); Mat mr0 = means.row(0); m0.convertTo(mr0, type); c0.convertTo(covs[0], type); Mat mr1 = means.row(1); m1.convertTo(mr1, type); c1.convertTo(covs[1], type); Mat mr2 = means.row(2); m2.convertTo(mr2, type); c2.convertTo(covs[2], type); } // generate points sets by normal distributions void generateData( Mat& data, Mat& labels, const vector& sizes, const Mat& _means, const vector& covs, int dataType, int labelType ) { vector::const_iterator sit = sizes.begin(); int total = 0; for( ; sit != sizes.end(); ++sit ) total += *sit; CV_Assert( _means.rows == (int)sizes.size() && covs.size() == sizes.size() ); CV_Assert( !data.empty() && data.rows == total ); CV_Assert( data.type() == dataType ); labels.create( data.rows, 1, labelType ); randn( data, Scalar::all(-1.0), Scalar::all(1.0) ); vector means(sizes.size()); for(int i = 0; i < _means.rows; i++) means[i] = _means.row(i); vector::const_iterator mit = means.begin(), cit = covs.begin(); int bi, ei = 0; sit = sizes.begin(); for( int p = 0, l = 0; sit != sizes.end(); ++sit, ++mit, ++cit, l++ ) { bi = ei; ei = bi + *sit; CV_Assert( mit->rows == 1 && mit->cols == data.cols ); CV_Assert( cit->rows == data.cols && cit->cols == data.cols ); for( int i = bi; i < ei; i++, p++ ) { Mat r = data.row(i); r = r * (*cit) + *mit; if( labelType == CV_32FC1 ) labels.at(p, 0) = (float)l; else if( labelType == CV_32SC1 ) labels.at(p, 0) = l; else { CV_DbgAssert(0); } } } } int maxIdx( const vector& count ) { int idx = -1; int maxVal = -1; vector::const_iterator it = count.begin(); for( int i = 0; it != count.end(); ++it, i++ ) { if( *it > maxVal) { maxVal = *it; idx = i; } } CV_Assert( idx >= 0); return idx; } bool getLabelsMap( const Mat& labels, const vector& sizes, vector& labelsMap, bool checkClusterUniq) { size_t total = 0, nclusters = sizes.size(); for(size_t i = 0; i < sizes.size(); i++) total += sizes[i]; CV_Assert( !labels.empty() ); CV_Assert( labels.total() == total && (labels.cols == 1 || labels.rows == 1)); CV_Assert( labels.type() == CV_32SC1 || labels.type() == CV_32FC1 ); bool isFlt = labels.type() == CV_32FC1; labelsMap.resize(nclusters); vector buzy(nclusters, false); int startIndex = 0; for( size_t clusterIndex = 0; clusterIndex < sizes.size(); clusterIndex++ ) { vector count( nclusters, 0 ); for( int i = startIndex; i < startIndex + sizes[clusterIndex]; i++) { int lbl = isFlt ? (int)labels.at(i) : labels.at(i); CV_Assert(lbl < (int)nclusters); count[lbl]++; CV_Assert(count[lbl] < (int)total); } startIndex += sizes[clusterIndex]; int cls = maxIdx( count ); CV_Assert( !checkClusterUniq || !buzy[cls] ); labelsMap[clusterIndex] = cls; buzy[cls] = true; } if(checkClusterUniq) { for(size_t i = 0; i < buzy.size(); i++) if(!buzy[i]) return false; } return true; } bool calcErr( const Mat& labels, const Mat& origLabels, const vector& sizes, float& err, bool labelsEquivalent, bool checkClusterUniq) { err = 0; CV_Assert( !labels.empty() && !origLabels.empty() ); CV_Assert( labels.rows == 1 || labels.cols == 1 ); CV_Assert( origLabels.rows == 1 || origLabels.cols == 1 ); CV_Assert( labels.total() == origLabels.total() ); CV_Assert( labels.type() == CV_32SC1 || labels.type() == CV_32FC1 ); CV_Assert( origLabels.type() == labels.type() ); vector labelsMap; bool isFlt = labels.type() == CV_32FC1; if( !labelsEquivalent ) { if( !getLabelsMap( labels, sizes, labelsMap, checkClusterUniq ) ) return false; for( int i = 0; i < labels.rows; i++ ) if( isFlt ) err += labels.at(i) != labelsMap[(int)origLabels.at(i)] ? 1.f : 0.f; else err += labels.at(i) != labelsMap[origLabels.at(i)] ? 1.f : 0.f; } else { for( int i = 0; i < labels.rows; i++ ) if( isFlt ) err += labels.at(i) != origLabels.at(i) ? 1.f : 0.f; else err += labels.at(i) != origLabels.at(i) ? 1.f : 0.f; } err /= (float)labels.rows; return true; } bool calculateError( const Mat& _p_labels, const Mat& _o_labels, float& error) { error = 0.0f; float accuracy = 0.0f; Mat _p_labels_temp; Mat _o_labels_temp; _p_labels.convertTo(_p_labels_temp, CV_32S); _o_labels.convertTo(_o_labels_temp, CV_32S); CV_Assert(_p_labels_temp.total() == _o_labels_temp.total()); CV_Assert(_p_labels_temp.rows == _o_labels_temp.rows); accuracy = (float)countNonZero(_p_labels_temp == _o_labels_temp)/_p_labels_temp.rows; error = 1 - accuracy; return true; } } // namespace