#!/usr/bin/env python ''' Digit recognition from video. Run digits.py before, to train and save the SVM. Usage: digits_video.py [{camera_id|video_file}] ''' # Python 2/3 compatibility from __future__ import print_function import numpy as np import cv2 as cv # built-in modules import os import sys # local modules import video from common import mosaic from digits import * def main(): try: src = sys.argv[1] except: src = 0 cap = video.create_capture(src, fallback='synth:bg={}:noise=0.05'.format(cv.samples.findFile('sudoku.png'))) classifier_fn = 'digits_svm.dat' if not os.path.exists(classifier_fn): print('"%s" not found, run digits.py first' % classifier_fn) return model = cv.ml.SVM_load(classifier_fn) while True: _ret, frame = cap.read() gray = cv.cvtColor(frame, cv.COLOR_BGR2GRAY) bin = cv.adaptiveThreshold(gray, 255, cv.ADAPTIVE_THRESH_MEAN_C, cv.THRESH_BINARY_INV, 31, 10) bin = cv.medianBlur(bin, 3) contours, heirs = cv.findContours( bin.copy(), cv.RETR_CCOMP, cv.CHAIN_APPROX_SIMPLE) try: heirs = heirs[0] except: heirs = [] for cnt, heir in zip(contours, heirs): _, _, _, outer_i = heir if outer_i >= 0: continue x, y, w, h = cv.boundingRect(cnt) if not (16 <= h <= 64 and w <= 1.2*h): continue pad = max(h-w, 0) x, w = x - (pad // 2), w + pad cv.rectangle(frame, (x, y), (x+w, y+h), (0, 255, 0)) bin_roi = bin[y:,x:][:h,:w] m = bin_roi != 0 if not 0.1 < m.mean() < 0.4: continue ''' gray_roi = gray[y:,x:][:h,:w] v_in, v_out = gray_roi[m], gray_roi[~m] if v_out.std() > 10.0: continue s = "%f, %f" % (abs(v_in.mean() - v_out.mean()), v_out.std()) cv.putText(frame, s, (x, y), cv.FONT_HERSHEY_PLAIN, 1.0, (200, 0, 0), thickness = 1) ''' s = 1.5*float(h)/SZ m = cv.moments(bin_roi) c1 = np.float32([m['m10'], m['m01']]) / m['m00'] c0 = np.float32([SZ/2, SZ/2]) t = c1 - s*c0 A = np.zeros((2, 3), np.float32) A[:,:2] = np.eye(2)*s A[:,2] = t bin_norm = cv.warpAffine(bin_roi, A, (SZ, SZ), flags=cv.WARP_INVERSE_MAP | cv.INTER_LINEAR) bin_norm = deskew(bin_norm) if x+w+SZ < frame.shape[1] and y+SZ < frame.shape[0]: frame[y:,x+w:][:SZ, :SZ] = bin_norm[...,np.newaxis] sample = preprocess_hog([bin_norm]) digit = model.predict(sample)[1].ravel() cv.putText(frame, '%d'%digit, (x, y), cv.FONT_HERSHEY_PLAIN, 1.0, (200, 0, 0), thickness = 1) cv.imshow('frame', frame) cv.imshow('bin', bin) ch = cv.waitKey(1) if ch == 27: break print('Done') if __name__ == '__main__': print(__doc__) main() cv.destroyAllWindows()