3433 lines
82 KiB
C++
3433 lines
82 KiB
C++
///////////////////////////////////////////////////////////////////////////
|
|
//
|
|
// Copyright (c) 2002-2012, Industrial Light & Magic, a division of Lucas
|
|
// Digital Ltd. LLC
|
|
//
|
|
// All rights reserved.
|
|
//
|
|
// Redistribution and use in source and binary forms, with or without
|
|
// modification, are permitted provided that the following conditions are
|
|
// met:
|
|
// * Redistributions of source code must retain the above copyright
|
|
// notice, this list of conditions and the following disclaimer.
|
|
// * Redistributions in binary form must reproduce the above
|
|
// copyright notice, this list of conditions and the following disclaimer
|
|
// in the documentation and/or other materials provided with the
|
|
// distribution.
|
|
// * Neither the name of Industrial Light & Magic nor the names of
|
|
// its contributors may be used to endorse or promote products derived
|
|
// from this software without specific prior written permission.
|
|
//
|
|
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
|
|
// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
|
|
// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
|
|
// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
|
|
// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
|
|
// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
|
|
// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
|
|
// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
|
|
// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
|
|
// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
|
|
// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
|
//
|
|
///////////////////////////////////////////////////////////////////////////
|
|
|
|
|
|
|
|
#ifndef INCLUDED_IMATHMATRIX_H
|
|
#define INCLUDED_IMATHMATRIX_H
|
|
|
|
//----------------------------------------------------------------
|
|
//
|
|
// 2D (3x3) and 3D (4x4) transformation matrix templates.
|
|
//
|
|
//----------------------------------------------------------------
|
|
|
|
#include "ImathPlatform.h"
|
|
#include "ImathFun.h"
|
|
#include "ImathExc.h"
|
|
#include "ImathVec.h"
|
|
#include "ImathShear.h"
|
|
#include "ImathNamespace.h"
|
|
|
|
#include <cstring>
|
|
#include <iostream>
|
|
#include <iomanip>
|
|
#include <string.h>
|
|
|
|
#if (defined _WIN32 || defined _WIN64) && defined _MSC_VER
|
|
// suppress exception specification warnings
|
|
#pragma warning(disable:4290)
|
|
#endif
|
|
|
|
|
|
IMATH_INTERNAL_NAMESPACE_HEADER_ENTER
|
|
|
|
enum Uninitialized {UNINITIALIZED};
|
|
|
|
|
|
template <class T> class Matrix33
|
|
{
|
|
public:
|
|
|
|
//-------------------
|
|
// Access to elements
|
|
//-------------------
|
|
|
|
T x[3][3];
|
|
|
|
T * operator [] (int i);
|
|
const T * operator [] (int i) const;
|
|
|
|
|
|
//-------------
|
|
// Constructors
|
|
//-------------
|
|
|
|
Matrix33 (Uninitialized) {}
|
|
|
|
Matrix33 ();
|
|
// 1 0 0
|
|
// 0 1 0
|
|
// 0 0 1
|
|
|
|
Matrix33 (T a);
|
|
// a a a
|
|
// a a a
|
|
// a a a
|
|
|
|
Matrix33 (const T a[3][3]);
|
|
// a[0][0] a[0][1] a[0][2]
|
|
// a[1][0] a[1][1] a[1][2]
|
|
// a[2][0] a[2][1] a[2][2]
|
|
|
|
Matrix33 (T a, T b, T c, T d, T e, T f, T g, T h, T i);
|
|
|
|
// a b c
|
|
// d e f
|
|
// g h i
|
|
|
|
|
|
//--------------------------------
|
|
// Copy constructor and assignment
|
|
//--------------------------------
|
|
|
|
Matrix33 (const Matrix33 &v);
|
|
template <class S> explicit Matrix33 (const Matrix33<S> &v);
|
|
|
|
const Matrix33 & operator = (const Matrix33 &v);
|
|
const Matrix33 & operator = (T a);
|
|
|
|
|
|
//----------------------
|
|
// Compatibility with Sb
|
|
//----------------------
|
|
|
|
T * getValue ();
|
|
const T * getValue () const;
|
|
|
|
template <class S>
|
|
void getValue (Matrix33<S> &v) const;
|
|
template <class S>
|
|
Matrix33 & setValue (const Matrix33<S> &v);
|
|
|
|
template <class S>
|
|
Matrix33 & setTheMatrix (const Matrix33<S> &v);
|
|
|
|
|
|
//---------
|
|
// Identity
|
|
//---------
|
|
|
|
void makeIdentity();
|
|
|
|
|
|
//---------
|
|
// Equality
|
|
//---------
|
|
|
|
bool operator == (const Matrix33 &v) const;
|
|
bool operator != (const Matrix33 &v) const;
|
|
|
|
//-----------------------------------------------------------------------
|
|
// Compare two matrices and test if they are "approximately equal":
|
|
//
|
|
// equalWithAbsError (m, e)
|
|
//
|
|
// Returns true if the coefficients of this and m are the same with
|
|
// an absolute error of no more than e, i.e., for all i, j
|
|
//
|
|
// abs (this[i][j] - m[i][j]) <= e
|
|
//
|
|
// equalWithRelError (m, e)
|
|
//
|
|
// Returns true if the coefficients of this and m are the same with
|
|
// a relative error of no more than e, i.e., for all i, j
|
|
//
|
|
// abs (this[i] - v[i][j]) <= e * abs (this[i][j])
|
|
//-----------------------------------------------------------------------
|
|
|
|
bool equalWithAbsError (const Matrix33<T> &v, T e) const;
|
|
bool equalWithRelError (const Matrix33<T> &v, T e) const;
|
|
|
|
|
|
//------------------------
|
|
// Component-wise addition
|
|
//------------------------
|
|
|
|
const Matrix33 & operator += (const Matrix33 &v);
|
|
const Matrix33 & operator += (T a);
|
|
Matrix33 operator + (const Matrix33 &v) const;
|
|
|
|
|
|
//---------------------------
|
|
// Component-wise subtraction
|
|
//---------------------------
|
|
|
|
const Matrix33 & operator -= (const Matrix33 &v);
|
|
const Matrix33 & operator -= (T a);
|
|
Matrix33 operator - (const Matrix33 &v) const;
|
|
|
|
|
|
//------------------------------------
|
|
// Component-wise multiplication by -1
|
|
//------------------------------------
|
|
|
|
Matrix33 operator - () const;
|
|
const Matrix33 & negate ();
|
|
|
|
|
|
//------------------------------
|
|
// Component-wise multiplication
|
|
//------------------------------
|
|
|
|
const Matrix33 & operator *= (T a);
|
|
Matrix33 operator * (T a) const;
|
|
|
|
|
|
//-----------------------------------
|
|
// Matrix-times-matrix multiplication
|
|
//-----------------------------------
|
|
|
|
const Matrix33 & operator *= (const Matrix33 &v);
|
|
Matrix33 operator * (const Matrix33 &v) const;
|
|
|
|
|
|
//-----------------------------------------------------------------
|
|
// Vector-times-matrix multiplication; see also the "operator *"
|
|
// functions defined below.
|
|
//
|
|
// m.multVecMatrix(src,dst) implements a homogeneous transformation
|
|
// by computing Vec3 (src.x, src.y, 1) * m and dividing by the
|
|
// result's third element.
|
|
//
|
|
// m.multDirMatrix(src,dst) multiplies src by the upper left 2x2
|
|
// submatrix, ignoring the rest of matrix m.
|
|
//-----------------------------------------------------------------
|
|
|
|
template <class S>
|
|
void multVecMatrix(const Vec2<S> &src, Vec2<S> &dst) const;
|
|
|
|
template <class S>
|
|
void multDirMatrix(const Vec2<S> &src, Vec2<S> &dst) const;
|
|
|
|
|
|
//------------------------
|
|
// Component-wise division
|
|
//------------------------
|
|
|
|
const Matrix33 & operator /= (T a);
|
|
Matrix33 operator / (T a) const;
|
|
|
|
|
|
//------------------
|
|
// Transposed matrix
|
|
//------------------
|
|
|
|
const Matrix33 & transpose ();
|
|
Matrix33 transposed () const;
|
|
|
|
|
|
//------------------------------------------------------------
|
|
// Inverse matrix: If singExc is false, inverting a singular
|
|
// matrix produces an identity matrix. If singExc is true,
|
|
// inverting a singular matrix throws a SingMatrixExc.
|
|
//
|
|
// inverse() and invert() invert matrices using determinants;
|
|
// gjInverse() and gjInvert() use the Gauss-Jordan method.
|
|
//
|
|
// inverse() and invert() are significantly faster than
|
|
// gjInverse() and gjInvert(), but the results may be slightly
|
|
// less accurate.
|
|
//
|
|
//------------------------------------------------------------
|
|
|
|
const Matrix33 & invert (bool singExc = false);
|
|
|
|
Matrix33<T> inverse (bool singExc = false) const;
|
|
|
|
const Matrix33 & gjInvert (bool singExc = false);
|
|
|
|
Matrix33<T> gjInverse (bool singExc = false) const;
|
|
|
|
|
|
//------------------------------------------------
|
|
// Calculate the matrix minor of the (r,c) element
|
|
//------------------------------------------------
|
|
|
|
T minorOf (const int r, const int c) const;
|
|
|
|
//---------------------------------------------------
|
|
// Build a minor using the specified rows and columns
|
|
//---------------------------------------------------
|
|
|
|
T fastMinor (const int r0, const int r1,
|
|
const int c0, const int c1) const;
|
|
|
|
//------------
|
|
// Determinant
|
|
//------------
|
|
|
|
T determinant() const;
|
|
|
|
//-----------------------------------------
|
|
// Set matrix to rotation by r (in radians)
|
|
//-----------------------------------------
|
|
|
|
template <class S>
|
|
const Matrix33 & setRotation (S r);
|
|
|
|
|
|
//-----------------------------
|
|
// Rotate the given matrix by r
|
|
//-----------------------------
|
|
|
|
template <class S>
|
|
const Matrix33 & rotate (S r);
|
|
|
|
|
|
//--------------------------------------------
|
|
// Set matrix to scale by given uniform factor
|
|
//--------------------------------------------
|
|
|
|
const Matrix33 & setScale (T s);
|
|
|
|
|
|
//------------------------------------
|
|
// Set matrix to scale by given vector
|
|
//------------------------------------
|
|
|
|
template <class S>
|
|
const Matrix33 & setScale (const Vec2<S> &s);
|
|
|
|
|
|
//----------------------
|
|
// Scale the matrix by s
|
|
//----------------------
|
|
|
|
template <class S>
|
|
const Matrix33 & scale (const Vec2<S> &s);
|
|
|
|
|
|
//------------------------------------------
|
|
// Set matrix to translation by given vector
|
|
//------------------------------------------
|
|
|
|
template <class S>
|
|
const Matrix33 & setTranslation (const Vec2<S> &t);
|
|
|
|
|
|
//-----------------------------
|
|
// Return translation component
|
|
//-----------------------------
|
|
|
|
Vec2<T> translation () const;
|
|
|
|
|
|
//--------------------------
|
|
// Translate the matrix by t
|
|
//--------------------------
|
|
|
|
template <class S>
|
|
const Matrix33 & translate (const Vec2<S> &t);
|
|
|
|
|
|
//-----------------------------------------------------------
|
|
// Set matrix to shear x for each y coord. by given factor xy
|
|
//-----------------------------------------------------------
|
|
|
|
template <class S>
|
|
const Matrix33 & setShear (const S &h);
|
|
|
|
|
|
//-------------------------------------------------------------
|
|
// Set matrix to shear x for each y coord. by given factor h[0]
|
|
// and to shear y for each x coord. by given factor h[1]
|
|
//-------------------------------------------------------------
|
|
|
|
template <class S>
|
|
const Matrix33 & setShear (const Vec2<S> &h);
|
|
|
|
|
|
//-----------------------------------------------------------
|
|
// Shear the matrix in x for each y coord. by given factor xy
|
|
//-----------------------------------------------------------
|
|
|
|
template <class S>
|
|
const Matrix33 & shear (const S &xy);
|
|
|
|
|
|
//-----------------------------------------------------------
|
|
// Shear the matrix in x for each y coord. by given factor xy
|
|
// and shear y for each x coord. by given factor yx
|
|
//-----------------------------------------------------------
|
|
|
|
template <class S>
|
|
const Matrix33 & shear (const Vec2<S> &h);
|
|
|
|
|
|
//--------------------------------------------------------
|
|
// Number of the row and column dimensions, since
|
|
// Matrix33 is a square matrix.
|
|
//--------------------------------------------------------
|
|
|
|
static unsigned int dimensions() {return 3;}
|
|
|
|
|
|
//-------------------------------------------------
|
|
// Limitations of type T (see also class limits<T>)
|
|
//-------------------------------------------------
|
|
|
|
static T baseTypeMin() {return limits<T>::min();}
|
|
static T baseTypeMax() {return limits<T>::max();}
|
|
static T baseTypeSmallest() {return limits<T>::smallest();}
|
|
static T baseTypeEpsilon() {return limits<T>::epsilon();}
|
|
|
|
typedef T BaseType;
|
|
typedef Vec3<T> BaseVecType;
|
|
|
|
private:
|
|
|
|
template <typename R, typename S>
|
|
struct isSameType
|
|
{
|
|
enum {value = 0};
|
|
};
|
|
|
|
template <typename R>
|
|
struct isSameType<R, R>
|
|
{
|
|
enum {value = 1};
|
|
};
|
|
};
|
|
|
|
|
|
template <class T> class Matrix44
|
|
{
|
|
public:
|
|
|
|
//-------------------
|
|
// Access to elements
|
|
//-------------------
|
|
|
|
T x[4][4];
|
|
|
|
T * operator [] (int i);
|
|
const T * operator [] (int i) const;
|
|
|
|
|
|
//-------------
|
|
// Constructors
|
|
//-------------
|
|
|
|
Matrix44 (Uninitialized) {}
|
|
|
|
Matrix44 ();
|
|
// 1 0 0 0
|
|
// 0 1 0 0
|
|
// 0 0 1 0
|
|
// 0 0 0 1
|
|
|
|
Matrix44 (T a);
|
|
// a a a a
|
|
// a a a a
|
|
// a a a a
|
|
// a a a a
|
|
|
|
Matrix44 (const T a[4][4]) ;
|
|
// a[0][0] a[0][1] a[0][2] a[0][3]
|
|
// a[1][0] a[1][1] a[1][2] a[1][3]
|
|
// a[2][0] a[2][1] a[2][2] a[2][3]
|
|
// a[3][0] a[3][1] a[3][2] a[3][3]
|
|
|
|
Matrix44 (T a, T b, T c, T d, T e, T f, T g, T h,
|
|
T i, T j, T k, T l, T m, T n, T o, T p);
|
|
|
|
// a b c d
|
|
// e f g h
|
|
// i j k l
|
|
// m n o p
|
|
|
|
Matrix44 (Matrix33<T> r, Vec3<T> t);
|
|
// r r r 0
|
|
// r r r 0
|
|
// r r r 0
|
|
// t t t 1
|
|
|
|
|
|
//--------------------------------
|
|
// Copy constructor and assignment
|
|
//--------------------------------
|
|
|
|
Matrix44 (const Matrix44 &v);
|
|
template <class S> explicit Matrix44 (const Matrix44<S> &v);
|
|
|
|
const Matrix44 & operator = (const Matrix44 &v);
|
|
const Matrix44 & operator = (T a);
|
|
|
|
|
|
//----------------------
|
|
// Compatibility with Sb
|
|
//----------------------
|
|
|
|
T * getValue ();
|
|
const T * getValue () const;
|
|
|
|
template <class S>
|
|
void getValue (Matrix44<S> &v) const;
|
|
template <class S>
|
|
Matrix44 & setValue (const Matrix44<S> &v);
|
|
|
|
template <class S>
|
|
Matrix44 & setTheMatrix (const Matrix44<S> &v);
|
|
|
|
//---------
|
|
// Identity
|
|
//---------
|
|
|
|
void makeIdentity();
|
|
|
|
|
|
//---------
|
|
// Equality
|
|
//---------
|
|
|
|
bool operator == (const Matrix44 &v) const;
|
|
bool operator != (const Matrix44 &v) const;
|
|
|
|
//-----------------------------------------------------------------------
|
|
// Compare two matrices and test if they are "approximately equal":
|
|
//
|
|
// equalWithAbsError (m, e)
|
|
//
|
|
// Returns true if the coefficients of this and m are the same with
|
|
// an absolute error of no more than e, i.e., for all i, j
|
|
//
|
|
// abs (this[i][j] - m[i][j]) <= e
|
|
//
|
|
// equalWithRelError (m, e)
|
|
//
|
|
// Returns true if the coefficients of this and m are the same with
|
|
// a relative error of no more than e, i.e., for all i, j
|
|
//
|
|
// abs (this[i] - v[i][j]) <= e * abs (this[i][j])
|
|
//-----------------------------------------------------------------------
|
|
|
|
bool equalWithAbsError (const Matrix44<T> &v, T e) const;
|
|
bool equalWithRelError (const Matrix44<T> &v, T e) const;
|
|
|
|
|
|
//------------------------
|
|
// Component-wise addition
|
|
//------------------------
|
|
|
|
const Matrix44 & operator += (const Matrix44 &v);
|
|
const Matrix44 & operator += (T a);
|
|
Matrix44 operator + (const Matrix44 &v) const;
|
|
|
|
|
|
//---------------------------
|
|
// Component-wise subtraction
|
|
//---------------------------
|
|
|
|
const Matrix44 & operator -= (const Matrix44 &v);
|
|
const Matrix44 & operator -= (T a);
|
|
Matrix44 operator - (const Matrix44 &v) const;
|
|
|
|
|
|
//------------------------------------
|
|
// Component-wise multiplication by -1
|
|
//------------------------------------
|
|
|
|
Matrix44 operator - () const;
|
|
const Matrix44 & negate ();
|
|
|
|
|
|
//------------------------------
|
|
// Component-wise multiplication
|
|
//------------------------------
|
|
|
|
const Matrix44 & operator *= (T a);
|
|
Matrix44 operator * (T a) const;
|
|
|
|
|
|
//-----------------------------------
|
|
// Matrix-times-matrix multiplication
|
|
//-----------------------------------
|
|
|
|
const Matrix44 & operator *= (const Matrix44 &v);
|
|
Matrix44 operator * (const Matrix44 &v) const;
|
|
|
|
static void multiply (const Matrix44 &a, // assumes that
|
|
const Matrix44 &b, // &a != &c and
|
|
Matrix44 &c); // &b != &c.
|
|
|
|
|
|
//-----------------------------------------------------------------
|
|
// Vector-times-matrix multiplication; see also the "operator *"
|
|
// functions defined below.
|
|
//
|
|
// m.multVecMatrix(src,dst) implements a homogeneous transformation
|
|
// by computing Vec4 (src.x, src.y, src.z, 1) * m and dividing by
|
|
// the result's third element.
|
|
//
|
|
// m.multDirMatrix(src,dst) multiplies src by the upper left 3x3
|
|
// submatrix, ignoring the rest of matrix m.
|
|
//-----------------------------------------------------------------
|
|
|
|
template <class S>
|
|
void multVecMatrix(const Vec3<S> &src, Vec3<S> &dst) const;
|
|
|
|
template <class S>
|
|
void multDirMatrix(const Vec3<S> &src, Vec3<S> &dst) const;
|
|
|
|
|
|
//------------------------
|
|
// Component-wise division
|
|
//------------------------
|
|
|
|
const Matrix44 & operator /= (T a);
|
|
Matrix44 operator / (T a) const;
|
|
|
|
|
|
//------------------
|
|
// Transposed matrix
|
|
//------------------
|
|
|
|
const Matrix44 & transpose ();
|
|
Matrix44 transposed () const;
|
|
|
|
|
|
//------------------------------------------------------------
|
|
// Inverse matrix: If singExc is false, inverting a singular
|
|
// matrix produces an identity matrix. If singExc is true,
|
|
// inverting a singular matrix throws a SingMatrixExc.
|
|
//
|
|
// inverse() and invert() invert matrices using determinants;
|
|
// gjInverse() and gjInvert() use the Gauss-Jordan method.
|
|
//
|
|
// inverse() and invert() are significantly faster than
|
|
// gjInverse() and gjInvert(), but the results may be slightly
|
|
// less accurate.
|
|
//
|
|
//------------------------------------------------------------
|
|
|
|
const Matrix44 & invert (bool singExc = false);
|
|
|
|
Matrix44<T> inverse (bool singExc = false) const;
|
|
|
|
const Matrix44 & gjInvert (bool singExc = false);
|
|
|
|
Matrix44<T> gjInverse (bool singExc = false) const;
|
|
|
|
|
|
//------------------------------------------------
|
|
// Calculate the matrix minor of the (r,c) element
|
|
//------------------------------------------------
|
|
|
|
T minorOf (const int r, const int c) const;
|
|
|
|
//---------------------------------------------------
|
|
// Build a minor using the specified rows and columns
|
|
//---------------------------------------------------
|
|
|
|
T fastMinor (const int r0, const int r1, const int r2,
|
|
const int c0, const int c1, const int c2) const;
|
|
|
|
//------------
|
|
// Determinant
|
|
//------------
|
|
|
|
T determinant() const;
|
|
|
|
//--------------------------------------------------------
|
|
// Set matrix to rotation by XYZ euler angles (in radians)
|
|
//--------------------------------------------------------
|
|
|
|
template <class S>
|
|
const Matrix44 & setEulerAngles (const Vec3<S>& r);
|
|
|
|
|
|
//--------------------------------------------------------
|
|
// Set matrix to rotation around given axis by given angle
|
|
//--------------------------------------------------------
|
|
|
|
template <class S>
|
|
const Matrix44 & setAxisAngle (const Vec3<S>& ax, S ang);
|
|
|
|
|
|
//-------------------------------------------
|
|
// Rotate the matrix by XYZ euler angles in r
|
|
//-------------------------------------------
|
|
|
|
template <class S>
|
|
const Matrix44 & rotate (const Vec3<S> &r);
|
|
|
|
|
|
//--------------------------------------------
|
|
// Set matrix to scale by given uniform factor
|
|
//--------------------------------------------
|
|
|
|
const Matrix44 & setScale (T s);
|
|
|
|
|
|
//------------------------------------
|
|
// Set matrix to scale by given vector
|
|
//------------------------------------
|
|
|
|
template <class S>
|
|
const Matrix44 & setScale (const Vec3<S> &s);
|
|
|
|
|
|
//----------------------
|
|
// Scale the matrix by s
|
|
//----------------------
|
|
|
|
template <class S>
|
|
const Matrix44 & scale (const Vec3<S> &s);
|
|
|
|
|
|
//------------------------------------------
|
|
// Set matrix to translation by given vector
|
|
//------------------------------------------
|
|
|
|
template <class S>
|
|
const Matrix44 & setTranslation (const Vec3<S> &t);
|
|
|
|
|
|
//-----------------------------
|
|
// Return translation component
|
|
//-----------------------------
|
|
|
|
const Vec3<T> translation () const;
|
|
|
|
|
|
//--------------------------
|
|
// Translate the matrix by t
|
|
//--------------------------
|
|
|
|
template <class S>
|
|
const Matrix44 & translate (const Vec3<S> &t);
|
|
|
|
|
|
//-------------------------------------------------------------
|
|
// Set matrix to shear by given vector h. The resulting matrix
|
|
// will shear x for each y coord. by a factor of h[0] ;
|
|
// will shear x for each z coord. by a factor of h[1] ;
|
|
// will shear y for each z coord. by a factor of h[2] .
|
|
//-------------------------------------------------------------
|
|
|
|
template <class S>
|
|
const Matrix44 & setShear (const Vec3<S> &h);
|
|
|
|
|
|
//------------------------------------------------------------
|
|
// Set matrix to shear by given factors. The resulting matrix
|
|
// will shear x for each y coord. by a factor of h.xy ;
|
|
// will shear x for each z coord. by a factor of h.xz ;
|
|
// will shear y for each z coord. by a factor of h.yz ;
|
|
// will shear y for each x coord. by a factor of h.yx ;
|
|
// will shear z for each x coord. by a factor of h.zx ;
|
|
// will shear z for each y coord. by a factor of h.zy .
|
|
//------------------------------------------------------------
|
|
|
|
template <class S>
|
|
const Matrix44 & setShear (const Shear6<S> &h);
|
|
|
|
|
|
//--------------------------------------------------------
|
|
// Shear the matrix by given vector. The composed matrix
|
|
// will be <shear> * <this>, where the shear matrix ...
|
|
// will shear x for each y coord. by a factor of h[0] ;
|
|
// will shear x for each z coord. by a factor of h[1] ;
|
|
// will shear y for each z coord. by a factor of h[2] .
|
|
//--------------------------------------------------------
|
|
|
|
template <class S>
|
|
const Matrix44 & shear (const Vec3<S> &h);
|
|
|
|
//--------------------------------------------------------
|
|
// Number of the row and column dimensions, since
|
|
// Matrix44 is a square matrix.
|
|
//--------------------------------------------------------
|
|
|
|
static unsigned int dimensions() {return 4;}
|
|
|
|
|
|
//------------------------------------------------------------
|
|
// Shear the matrix by the given factors. The composed matrix
|
|
// will be <shear> * <this>, where the shear matrix ...
|
|
// will shear x for each y coord. by a factor of h.xy ;
|
|
// will shear x for each z coord. by a factor of h.xz ;
|
|
// will shear y for each z coord. by a factor of h.yz ;
|
|
// will shear y for each x coord. by a factor of h.yx ;
|
|
// will shear z for each x coord. by a factor of h.zx ;
|
|
// will shear z for each y coord. by a factor of h.zy .
|
|
//------------------------------------------------------------
|
|
|
|
template <class S>
|
|
const Matrix44 & shear (const Shear6<S> &h);
|
|
|
|
|
|
//-------------------------------------------------
|
|
// Limitations of type T (see also class limits<T>)
|
|
//-------------------------------------------------
|
|
|
|
static T baseTypeMin() {return limits<T>::min();}
|
|
static T baseTypeMax() {return limits<T>::max();}
|
|
static T baseTypeSmallest() {return limits<T>::smallest();}
|
|
static T baseTypeEpsilon() {return limits<T>::epsilon();}
|
|
|
|
typedef T BaseType;
|
|
typedef Vec4<T> BaseVecType;
|
|
|
|
private:
|
|
|
|
template <typename R, typename S>
|
|
struct isSameType
|
|
{
|
|
enum {value = 0};
|
|
};
|
|
|
|
template <typename R>
|
|
struct isSameType<R, R>
|
|
{
|
|
enum {value = 1};
|
|
};
|
|
};
|
|
|
|
|
|
//--------------
|
|
// Stream output
|
|
//--------------
|
|
|
|
template <class T>
|
|
std::ostream & operator << (std::ostream & s, const Matrix33<T> &m);
|
|
|
|
template <class T>
|
|
std::ostream & operator << (std::ostream & s, const Matrix44<T> &m);
|
|
|
|
|
|
//---------------------------------------------
|
|
// Vector-times-matrix multiplication operators
|
|
//---------------------------------------------
|
|
|
|
template <class S, class T>
|
|
const Vec2<S> & operator *= (Vec2<S> &v, const Matrix33<T> &m);
|
|
|
|
template <class S, class T>
|
|
Vec2<S> operator * (const Vec2<S> &v, const Matrix33<T> &m);
|
|
|
|
template <class S, class T>
|
|
const Vec3<S> & operator *= (Vec3<S> &v, const Matrix33<T> &m);
|
|
|
|
template <class S, class T>
|
|
Vec3<S> operator * (const Vec3<S> &v, const Matrix33<T> &m);
|
|
|
|
template <class S, class T>
|
|
const Vec3<S> & operator *= (Vec3<S> &v, const Matrix44<T> &m);
|
|
|
|
template <class S, class T>
|
|
Vec3<S> operator * (const Vec3<S> &v, const Matrix44<T> &m);
|
|
|
|
template <class S, class T>
|
|
const Vec4<S> & operator *= (Vec4<S> &v, const Matrix44<T> &m);
|
|
|
|
template <class S, class T>
|
|
Vec4<S> operator * (const Vec4<S> &v, const Matrix44<T> &m);
|
|
|
|
//-------------------------
|
|
// Typedefs for convenience
|
|
//-------------------------
|
|
|
|
typedef Matrix33 <float> M33f;
|
|
typedef Matrix33 <double> M33d;
|
|
typedef Matrix44 <float> M44f;
|
|
typedef Matrix44 <double> M44d;
|
|
|
|
|
|
//---------------------------
|
|
// Implementation of Matrix33
|
|
//---------------------------
|
|
|
|
template <class T>
|
|
inline T *
|
|
Matrix33<T>::operator [] (int i)
|
|
{
|
|
return x[i];
|
|
}
|
|
|
|
template <class T>
|
|
inline const T *
|
|
Matrix33<T>::operator [] (int i) const
|
|
{
|
|
return x[i];
|
|
}
|
|
|
|
template <class T>
|
|
inline
|
|
Matrix33<T>::Matrix33 ()
|
|
{
|
|
memset (x, 0, sizeof (x));
|
|
x[0][0] = 1;
|
|
x[1][1] = 1;
|
|
x[2][2] = 1;
|
|
}
|
|
|
|
template <class T>
|
|
inline
|
|
Matrix33<T>::Matrix33 (T a)
|
|
{
|
|
x[0][0] = a;
|
|
x[0][1] = a;
|
|
x[0][2] = a;
|
|
x[1][0] = a;
|
|
x[1][1] = a;
|
|
x[1][2] = a;
|
|
x[2][0] = a;
|
|
x[2][1] = a;
|
|
x[2][2] = a;
|
|
}
|
|
|
|
template <class T>
|
|
inline
|
|
Matrix33<T>::Matrix33 (const T a[3][3])
|
|
{
|
|
memcpy (x, a, sizeof (x));
|
|
}
|
|
|
|
template <class T>
|
|
inline
|
|
Matrix33<T>::Matrix33 (T a, T b, T c, T d, T e, T f, T g, T h, T i)
|
|
{
|
|
x[0][0] = a;
|
|
x[0][1] = b;
|
|
x[0][2] = c;
|
|
x[1][0] = d;
|
|
x[1][1] = e;
|
|
x[1][2] = f;
|
|
x[2][0] = g;
|
|
x[2][1] = h;
|
|
x[2][2] = i;
|
|
}
|
|
|
|
template <class T>
|
|
inline
|
|
Matrix33<T>::Matrix33 (const Matrix33 &v)
|
|
{
|
|
memcpy (x, v.x, sizeof (x));
|
|
}
|
|
|
|
template <class T>
|
|
template <class S>
|
|
inline
|
|
Matrix33<T>::Matrix33 (const Matrix33<S> &v)
|
|
{
|
|
x[0][0] = T (v.x[0][0]);
|
|
x[0][1] = T (v.x[0][1]);
|
|
x[0][2] = T (v.x[0][2]);
|
|
x[1][0] = T (v.x[1][0]);
|
|
x[1][1] = T (v.x[1][1]);
|
|
x[1][2] = T (v.x[1][2]);
|
|
x[2][0] = T (v.x[2][0]);
|
|
x[2][1] = T (v.x[2][1]);
|
|
x[2][2] = T (v.x[2][2]);
|
|
}
|
|
|
|
template <class T>
|
|
inline const Matrix33<T> &
|
|
Matrix33<T>::operator = (const Matrix33 &v)
|
|
{
|
|
memcpy (x, v.x, sizeof (x));
|
|
return *this;
|
|
}
|
|
|
|
template <class T>
|
|
inline const Matrix33<T> &
|
|
Matrix33<T>::operator = (T a)
|
|
{
|
|
x[0][0] = a;
|
|
x[0][1] = a;
|
|
x[0][2] = a;
|
|
x[1][0] = a;
|
|
x[1][1] = a;
|
|
x[1][2] = a;
|
|
x[2][0] = a;
|
|
x[2][1] = a;
|
|
x[2][2] = a;
|
|
return *this;
|
|
}
|
|
|
|
template <class T>
|
|
inline T *
|
|
Matrix33<T>::getValue ()
|
|
{
|
|
return (T *) &x[0][0];
|
|
}
|
|
|
|
template <class T>
|
|
inline const T *
|
|
Matrix33<T>::getValue () const
|
|
{
|
|
return (const T *) &x[0][0];
|
|
}
|
|
|
|
template <class T>
|
|
template <class S>
|
|
inline void
|
|
Matrix33<T>::getValue (Matrix33<S> &v) const
|
|
{
|
|
if (isSameType<S,T>::value)
|
|
{
|
|
memcpy (v.x, x, sizeof (x));
|
|
}
|
|
else
|
|
{
|
|
v.x[0][0] = x[0][0];
|
|
v.x[0][1] = x[0][1];
|
|
v.x[0][2] = x[0][2];
|
|
v.x[1][0] = x[1][0];
|
|
v.x[1][1] = x[1][1];
|
|
v.x[1][2] = x[1][2];
|
|
v.x[2][0] = x[2][0];
|
|
v.x[2][1] = x[2][1];
|
|
v.x[2][2] = x[2][2];
|
|
}
|
|
}
|
|
|
|
template <class T>
|
|
template <class S>
|
|
inline Matrix33<T> &
|
|
Matrix33<T>::setValue (const Matrix33<S> &v)
|
|
{
|
|
if (isSameType<S,T>::value)
|
|
{
|
|
memcpy (x, v.x, sizeof (x));
|
|
}
|
|
else
|
|
{
|
|
x[0][0] = v.x[0][0];
|
|
x[0][1] = v.x[0][1];
|
|
x[0][2] = v.x[0][2];
|
|
x[1][0] = v.x[1][0];
|
|
x[1][1] = v.x[1][1];
|
|
x[1][2] = v.x[1][2];
|
|
x[2][0] = v.x[2][0];
|
|
x[2][1] = v.x[2][1];
|
|
x[2][2] = v.x[2][2];
|
|
}
|
|
|
|
return *this;
|
|
}
|
|
|
|
template <class T>
|
|
template <class S>
|
|
inline Matrix33<T> &
|
|
Matrix33<T>::setTheMatrix (const Matrix33<S> &v)
|
|
{
|
|
if (isSameType<S,T>::value)
|
|
{
|
|
memcpy (x, v.x, sizeof (x));
|
|
}
|
|
else
|
|
{
|
|
x[0][0] = v.x[0][0];
|
|
x[0][1] = v.x[0][1];
|
|
x[0][2] = v.x[0][2];
|
|
x[1][0] = v.x[1][0];
|
|
x[1][1] = v.x[1][1];
|
|
x[1][2] = v.x[1][2];
|
|
x[2][0] = v.x[2][0];
|
|
x[2][1] = v.x[2][1];
|
|
x[2][2] = v.x[2][2];
|
|
}
|
|
|
|
return *this;
|
|
}
|
|
|
|
template <class T>
|
|
inline void
|
|
Matrix33<T>::makeIdentity()
|
|
{
|
|
memset (x, 0, sizeof (x));
|
|
x[0][0] = 1;
|
|
x[1][1] = 1;
|
|
x[2][2] = 1;
|
|
}
|
|
|
|
template <class T>
|
|
bool
|
|
Matrix33<T>::operator == (const Matrix33 &v) const
|
|
{
|
|
return x[0][0] == v.x[0][0] &&
|
|
x[0][1] == v.x[0][1] &&
|
|
x[0][2] == v.x[0][2] &&
|
|
x[1][0] == v.x[1][0] &&
|
|
x[1][1] == v.x[1][1] &&
|
|
x[1][2] == v.x[1][2] &&
|
|
x[2][0] == v.x[2][0] &&
|
|
x[2][1] == v.x[2][1] &&
|
|
x[2][2] == v.x[2][2];
|
|
}
|
|
|
|
template <class T>
|
|
bool
|
|
Matrix33<T>::operator != (const Matrix33 &v) const
|
|
{
|
|
return x[0][0] != v.x[0][0] ||
|
|
x[0][1] != v.x[0][1] ||
|
|
x[0][2] != v.x[0][2] ||
|
|
x[1][0] != v.x[1][0] ||
|
|
x[1][1] != v.x[1][1] ||
|
|
x[1][2] != v.x[1][2] ||
|
|
x[2][0] != v.x[2][0] ||
|
|
x[2][1] != v.x[2][1] ||
|
|
x[2][2] != v.x[2][2];
|
|
}
|
|
|
|
template <class T>
|
|
bool
|
|
Matrix33<T>::equalWithAbsError (const Matrix33<T> &m, T e) const
|
|
{
|
|
for (int i = 0; i < 3; i++)
|
|
for (int j = 0; j < 3; j++)
|
|
if (!IMATH_INTERNAL_NAMESPACE::equalWithAbsError ((*this)[i][j], m[i][j], e))
|
|
return false;
|
|
|
|
return true;
|
|
}
|
|
|
|
template <class T>
|
|
bool
|
|
Matrix33<T>::equalWithRelError (const Matrix33<T> &m, T e) const
|
|
{
|
|
for (int i = 0; i < 3; i++)
|
|
for (int j = 0; j < 3; j++)
|
|
if (!IMATH_INTERNAL_NAMESPACE::equalWithRelError ((*this)[i][j], m[i][j], e))
|
|
return false;
|
|
|
|
return true;
|
|
}
|
|
|
|
template <class T>
|
|
const Matrix33<T> &
|
|
Matrix33<T>::operator += (const Matrix33<T> &v)
|
|
{
|
|
x[0][0] += v.x[0][0];
|
|
x[0][1] += v.x[0][1];
|
|
x[0][2] += v.x[0][2];
|
|
x[1][0] += v.x[1][0];
|
|
x[1][1] += v.x[1][1];
|
|
x[1][2] += v.x[1][2];
|
|
x[2][0] += v.x[2][0];
|
|
x[2][1] += v.x[2][1];
|
|
x[2][2] += v.x[2][2];
|
|
|
|
return *this;
|
|
}
|
|
|
|
template <class T>
|
|
const Matrix33<T> &
|
|
Matrix33<T>::operator += (T a)
|
|
{
|
|
x[0][0] += a;
|
|
x[0][1] += a;
|
|
x[0][2] += a;
|
|
x[1][0] += a;
|
|
x[1][1] += a;
|
|
x[1][2] += a;
|
|
x[2][0] += a;
|
|
x[2][1] += a;
|
|
x[2][2] += a;
|
|
|
|
return *this;
|
|
}
|
|
|
|
template <class T>
|
|
Matrix33<T>
|
|
Matrix33<T>::operator + (const Matrix33<T> &v) const
|
|
{
|
|
return Matrix33 (x[0][0] + v.x[0][0],
|
|
x[0][1] + v.x[0][1],
|
|
x[0][2] + v.x[0][2],
|
|
x[1][0] + v.x[1][0],
|
|
x[1][1] + v.x[1][1],
|
|
x[1][2] + v.x[1][2],
|
|
x[2][0] + v.x[2][0],
|
|
x[2][1] + v.x[2][1],
|
|
x[2][2] + v.x[2][2]);
|
|
}
|
|
|
|
template <class T>
|
|
const Matrix33<T> &
|
|
Matrix33<T>::operator -= (const Matrix33<T> &v)
|
|
{
|
|
x[0][0] -= v.x[0][0];
|
|
x[0][1] -= v.x[0][1];
|
|
x[0][2] -= v.x[0][2];
|
|
x[1][0] -= v.x[1][0];
|
|
x[1][1] -= v.x[1][1];
|
|
x[1][2] -= v.x[1][2];
|
|
x[2][0] -= v.x[2][0];
|
|
x[2][1] -= v.x[2][1];
|
|
x[2][2] -= v.x[2][2];
|
|
|
|
return *this;
|
|
}
|
|
|
|
template <class T>
|
|
const Matrix33<T> &
|
|
Matrix33<T>::operator -= (T a)
|
|
{
|
|
x[0][0] -= a;
|
|
x[0][1] -= a;
|
|
x[0][2] -= a;
|
|
x[1][0] -= a;
|
|
x[1][1] -= a;
|
|
x[1][2] -= a;
|
|
x[2][0] -= a;
|
|
x[2][1] -= a;
|
|
x[2][2] -= a;
|
|
|
|
return *this;
|
|
}
|
|
|
|
template <class T>
|
|
Matrix33<T>
|
|
Matrix33<T>::operator - (const Matrix33<T> &v) const
|
|
{
|
|
return Matrix33 (x[0][0] - v.x[0][0],
|
|
x[0][1] - v.x[0][1],
|
|
x[0][2] - v.x[0][2],
|
|
x[1][0] - v.x[1][0],
|
|
x[1][1] - v.x[1][1],
|
|
x[1][2] - v.x[1][2],
|
|
x[2][0] - v.x[2][0],
|
|
x[2][1] - v.x[2][1],
|
|
x[2][2] - v.x[2][2]);
|
|
}
|
|
|
|
template <class T>
|
|
Matrix33<T>
|
|
Matrix33<T>::operator - () const
|
|
{
|
|
return Matrix33 (-x[0][0],
|
|
-x[0][1],
|
|
-x[0][2],
|
|
-x[1][0],
|
|
-x[1][1],
|
|
-x[1][2],
|
|
-x[2][0],
|
|
-x[2][1],
|
|
-x[2][2]);
|
|
}
|
|
|
|
template <class T>
|
|
const Matrix33<T> &
|
|
Matrix33<T>::negate ()
|
|
{
|
|
x[0][0] = -x[0][0];
|
|
x[0][1] = -x[0][1];
|
|
x[0][2] = -x[0][2];
|
|
x[1][0] = -x[1][0];
|
|
x[1][1] = -x[1][1];
|
|
x[1][2] = -x[1][2];
|
|
x[2][0] = -x[2][0];
|
|
x[2][1] = -x[2][1];
|
|
x[2][2] = -x[2][2];
|
|
|
|
return *this;
|
|
}
|
|
|
|
template <class T>
|
|
const Matrix33<T> &
|
|
Matrix33<T>::operator *= (T a)
|
|
{
|
|
x[0][0] *= a;
|
|
x[0][1] *= a;
|
|
x[0][2] *= a;
|
|
x[1][0] *= a;
|
|
x[1][1] *= a;
|
|
x[1][2] *= a;
|
|
x[2][0] *= a;
|
|
x[2][1] *= a;
|
|
x[2][2] *= a;
|
|
|
|
return *this;
|
|
}
|
|
|
|
template <class T>
|
|
Matrix33<T>
|
|
Matrix33<T>::operator * (T a) const
|
|
{
|
|
return Matrix33 (x[0][0] * a,
|
|
x[0][1] * a,
|
|
x[0][2] * a,
|
|
x[1][0] * a,
|
|
x[1][1] * a,
|
|
x[1][2] * a,
|
|
x[2][0] * a,
|
|
x[2][1] * a,
|
|
x[2][2] * a);
|
|
}
|
|
|
|
template <class T>
|
|
inline Matrix33<T>
|
|
operator * (T a, const Matrix33<T> &v)
|
|
{
|
|
return v * a;
|
|
}
|
|
|
|
template <class T>
|
|
const Matrix33<T> &
|
|
Matrix33<T>::operator *= (const Matrix33<T> &v)
|
|
{
|
|
Matrix33 tmp (T (0));
|
|
|
|
for (int i = 0; i < 3; i++)
|
|
for (int j = 0; j < 3; j++)
|
|
for (int k = 0; k < 3; k++)
|
|
tmp.x[i][j] += x[i][k] * v.x[k][j];
|
|
|
|
*this = tmp;
|
|
return *this;
|
|
}
|
|
|
|
template <class T>
|
|
Matrix33<T>
|
|
Matrix33<T>::operator * (const Matrix33<T> &v) const
|
|
{
|
|
Matrix33 tmp (T (0));
|
|
|
|
for (int i = 0; i < 3; i++)
|
|
for (int j = 0; j < 3; j++)
|
|
for (int k = 0; k < 3; k++)
|
|
tmp.x[i][j] += x[i][k] * v.x[k][j];
|
|
|
|
return tmp;
|
|
}
|
|
|
|
template <class T>
|
|
template <class S>
|
|
void
|
|
Matrix33<T>::multVecMatrix(const Vec2<S> &src, Vec2<S> &dst) const
|
|
{
|
|
S a, b, w;
|
|
|
|
a = src[0] * x[0][0] + src[1] * x[1][0] + x[2][0];
|
|
b = src[0] * x[0][1] + src[1] * x[1][1] + x[2][1];
|
|
w = src[0] * x[0][2] + src[1] * x[1][2] + x[2][2];
|
|
|
|
dst.x = a / w;
|
|
dst.y = b / w;
|
|
}
|
|
|
|
template <class T>
|
|
template <class S>
|
|
void
|
|
Matrix33<T>::multDirMatrix(const Vec2<S> &src, Vec2<S> &dst) const
|
|
{
|
|
S a, b;
|
|
|
|
a = src[0] * x[0][0] + src[1] * x[1][0];
|
|
b = src[0] * x[0][1] + src[1] * x[1][1];
|
|
|
|
dst.x = a;
|
|
dst.y = b;
|
|
}
|
|
|
|
template <class T>
|
|
const Matrix33<T> &
|
|
Matrix33<T>::operator /= (T a)
|
|
{
|
|
x[0][0] /= a;
|
|
x[0][1] /= a;
|
|
x[0][2] /= a;
|
|
x[1][0] /= a;
|
|
x[1][1] /= a;
|
|
x[1][2] /= a;
|
|
x[2][0] /= a;
|
|
x[2][1] /= a;
|
|
x[2][2] /= a;
|
|
|
|
return *this;
|
|
}
|
|
|
|
template <class T>
|
|
Matrix33<T>
|
|
Matrix33<T>::operator / (T a) const
|
|
{
|
|
return Matrix33 (x[0][0] / a,
|
|
x[0][1] / a,
|
|
x[0][2] / a,
|
|
x[1][0] / a,
|
|
x[1][1] / a,
|
|
x[1][2] / a,
|
|
x[2][0] / a,
|
|
x[2][1] / a,
|
|
x[2][2] / a);
|
|
}
|
|
|
|
template <class T>
|
|
const Matrix33<T> &
|
|
Matrix33<T>::transpose ()
|
|
{
|
|
Matrix33 tmp (x[0][0],
|
|
x[1][0],
|
|
x[2][0],
|
|
x[0][1],
|
|
x[1][1],
|
|
x[2][1],
|
|
x[0][2],
|
|
x[1][2],
|
|
x[2][2]);
|
|
*this = tmp;
|
|
return *this;
|
|
}
|
|
|
|
template <class T>
|
|
Matrix33<T>
|
|
Matrix33<T>::transposed () const
|
|
{
|
|
return Matrix33 (x[0][0],
|
|
x[1][0],
|
|
x[2][0],
|
|
x[0][1],
|
|
x[1][1],
|
|
x[2][1],
|
|
x[0][2],
|
|
x[1][2],
|
|
x[2][2]);
|
|
}
|
|
|
|
template <class T>
|
|
const Matrix33<T> &
|
|
Matrix33<T>::gjInvert (bool singExc)
|
|
{
|
|
*this = gjInverse (singExc);
|
|
return *this;
|
|
}
|
|
|
|
template <class T>
|
|
Matrix33<T>
|
|
Matrix33<T>::gjInverse (bool singExc) const
|
|
{
|
|
int i, j, k;
|
|
Matrix33 s;
|
|
Matrix33 t (*this);
|
|
|
|
// Forward elimination
|
|
|
|
for (i = 0; i < 2 ; i++)
|
|
{
|
|
int pivot = i;
|
|
|
|
T pivotsize = t[i][i];
|
|
|
|
if (pivotsize < 0)
|
|
pivotsize = -pivotsize;
|
|
|
|
for (j = i + 1; j < 3; j++)
|
|
{
|
|
T tmp = t[j][i];
|
|
|
|
if (tmp < 0)
|
|
tmp = -tmp;
|
|
|
|
if (tmp > pivotsize)
|
|
{
|
|
pivot = j;
|
|
pivotsize = tmp;
|
|
}
|
|
}
|
|
|
|
if (pivotsize == 0)
|
|
{
|
|
if (singExc)
|
|
throw ::IMATH_INTERNAL_NAMESPACE::SingMatrixExc ("Cannot invert singular matrix.");
|
|
|
|
return Matrix33();
|
|
}
|
|
|
|
if (pivot != i)
|
|
{
|
|
for (j = 0; j < 3; j++)
|
|
{
|
|
T tmp;
|
|
|
|
tmp = t[i][j];
|
|
t[i][j] = t[pivot][j];
|
|
t[pivot][j] = tmp;
|
|
|
|
tmp = s[i][j];
|
|
s[i][j] = s[pivot][j];
|
|
s[pivot][j] = tmp;
|
|
}
|
|
}
|
|
|
|
for (j = i + 1; j < 3; j++)
|
|
{
|
|
T f = t[j][i] / t[i][i];
|
|
|
|
for (k = 0; k < 3; k++)
|
|
{
|
|
t[j][k] -= f * t[i][k];
|
|
s[j][k] -= f * s[i][k];
|
|
}
|
|
}
|
|
}
|
|
|
|
// Backward substitution
|
|
|
|
for (i = 2; i >= 0; --i)
|
|
{
|
|
T f;
|
|
|
|
if ((f = t[i][i]) == 0)
|
|
{
|
|
if (singExc)
|
|
throw ::IMATH_INTERNAL_NAMESPACE::SingMatrixExc ("Cannot invert singular matrix.");
|
|
|
|
return Matrix33();
|
|
}
|
|
|
|
for (j = 0; j < 3; j++)
|
|
{
|
|
t[i][j] /= f;
|
|
s[i][j] /= f;
|
|
}
|
|
|
|
for (j = 0; j < i; j++)
|
|
{
|
|
f = t[j][i];
|
|
|
|
for (k = 0; k < 3; k++)
|
|
{
|
|
t[j][k] -= f * t[i][k];
|
|
s[j][k] -= f * s[i][k];
|
|
}
|
|
}
|
|
}
|
|
|
|
return s;
|
|
}
|
|
|
|
template <class T>
|
|
const Matrix33<T> &
|
|
Matrix33<T>::invert (bool singExc)
|
|
{
|
|
*this = inverse (singExc);
|
|
return *this;
|
|
}
|
|
|
|
template <class T>
|
|
Matrix33<T>
|
|
Matrix33<T>::inverse (bool singExc) const
|
|
{
|
|
if (x[0][2] != 0 || x[1][2] != 0 || x[2][2] != 1)
|
|
{
|
|
Matrix33 s (x[1][1] * x[2][2] - x[2][1] * x[1][2],
|
|
x[2][1] * x[0][2] - x[0][1] * x[2][2],
|
|
x[0][1] * x[1][2] - x[1][1] * x[0][2],
|
|
|
|
x[2][0] * x[1][2] - x[1][0] * x[2][2],
|
|
x[0][0] * x[2][2] - x[2][0] * x[0][2],
|
|
x[1][0] * x[0][2] - x[0][0] * x[1][2],
|
|
|
|
x[1][0] * x[2][1] - x[2][0] * x[1][1],
|
|
x[2][0] * x[0][1] - x[0][0] * x[2][1],
|
|
x[0][0] * x[1][1] - x[1][0] * x[0][1]);
|
|
|
|
T r = x[0][0] * s[0][0] + x[0][1] * s[1][0] + x[0][2] * s[2][0];
|
|
|
|
if (IMATH_INTERNAL_NAMESPACE::abs (r) >= 1)
|
|
{
|
|
for (int i = 0; i < 3; ++i)
|
|
{
|
|
for (int j = 0; j < 3; ++j)
|
|
{
|
|
s[i][j] /= r;
|
|
}
|
|
}
|
|
}
|
|
else
|
|
{
|
|
T mr = IMATH_INTERNAL_NAMESPACE::abs (r) / limits<T>::smallest();
|
|
|
|
for (int i = 0; i < 3; ++i)
|
|
{
|
|
for (int j = 0; j < 3; ++j)
|
|
{
|
|
if (mr > IMATH_INTERNAL_NAMESPACE::abs (s[i][j]))
|
|
{
|
|
s[i][j] /= r;
|
|
}
|
|
else
|
|
{
|
|
if (singExc)
|
|
throw SingMatrixExc ("Cannot invert "
|
|
"singular matrix.");
|
|
return Matrix33();
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
return s;
|
|
}
|
|
else
|
|
{
|
|
Matrix33 s ( x[1][1],
|
|
-x[0][1],
|
|
0,
|
|
|
|
-x[1][0],
|
|
x[0][0],
|
|
0,
|
|
|
|
0,
|
|
0,
|
|
1);
|
|
|
|
T r = x[0][0] * x[1][1] - x[1][0] * x[0][1];
|
|
|
|
if (IMATH_INTERNAL_NAMESPACE::abs (r) >= 1)
|
|
{
|
|
for (int i = 0; i < 2; ++i)
|
|
{
|
|
for (int j = 0; j < 2; ++j)
|
|
{
|
|
s[i][j] /= r;
|
|
}
|
|
}
|
|
}
|
|
else
|
|
{
|
|
T mr = IMATH_INTERNAL_NAMESPACE::abs (r) / limits<T>::smallest();
|
|
|
|
for (int i = 0; i < 2; ++i)
|
|
{
|
|
for (int j = 0; j < 2; ++j)
|
|
{
|
|
if (mr > IMATH_INTERNAL_NAMESPACE::abs (s[i][j]))
|
|
{
|
|
s[i][j] /= r;
|
|
}
|
|
else
|
|
{
|
|
if (singExc)
|
|
throw SingMatrixExc ("Cannot invert "
|
|
"singular matrix.");
|
|
return Matrix33();
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
s[2][0] = -x[2][0] * s[0][0] - x[2][1] * s[1][0];
|
|
s[2][1] = -x[2][0] * s[0][1] - x[2][1] * s[1][1];
|
|
|
|
return s;
|
|
}
|
|
}
|
|
|
|
template <class T>
|
|
inline T
|
|
Matrix33<T>::minorOf (const int r, const int c) const
|
|
{
|
|
int r0 = 0 + (r < 1 ? 1 : 0);
|
|
int r1 = 1 + (r < 2 ? 1 : 0);
|
|
int c0 = 0 + (c < 1 ? 1 : 0);
|
|
int c1 = 1 + (c < 2 ? 1 : 0);
|
|
|
|
return x[r0][c0]*x[r1][c1] - x[r1][c0]*x[r0][c1];
|
|
}
|
|
|
|
template <class T>
|
|
inline T
|
|
Matrix33<T>::fastMinor( const int r0, const int r1,
|
|
const int c0, const int c1) const
|
|
{
|
|
return x[r0][c0]*x[r1][c1] - x[r0][c1]*x[r1][c0];
|
|
}
|
|
|
|
template <class T>
|
|
inline T
|
|
Matrix33<T>::determinant () const
|
|
{
|
|
return x[0][0]*(x[1][1]*x[2][2] - x[1][2]*x[2][1]) +
|
|
x[0][1]*(x[1][2]*x[2][0] - x[1][0]*x[2][2]) +
|
|
x[0][2]*(x[1][0]*x[2][1] - x[1][1]*x[2][0]);
|
|
}
|
|
|
|
template <class T>
|
|
template <class S>
|
|
const Matrix33<T> &
|
|
Matrix33<T>::setRotation (S r)
|
|
{
|
|
S cos_r, sin_r;
|
|
|
|
cos_r = Math<T>::cos (r);
|
|
sin_r = Math<T>::sin (r);
|
|
|
|
x[0][0] = cos_r;
|
|
x[0][1] = sin_r;
|
|
x[0][2] = 0;
|
|
|
|
x[1][0] = -sin_r;
|
|
x[1][1] = cos_r;
|
|
x[1][2] = 0;
|
|
|
|
x[2][0] = 0;
|
|
x[2][1] = 0;
|
|
x[2][2] = 1;
|
|
|
|
return *this;
|
|
}
|
|
|
|
template <class T>
|
|
template <class S>
|
|
const Matrix33<T> &
|
|
Matrix33<T>::rotate (S r)
|
|
{
|
|
*this *= Matrix33<T>().setRotation (r);
|
|
return *this;
|
|
}
|
|
|
|
template <class T>
|
|
const Matrix33<T> &
|
|
Matrix33<T>::setScale (T s)
|
|
{
|
|
memset (x, 0, sizeof (x));
|
|
x[0][0] = s;
|
|
x[1][1] = s;
|
|
x[2][2] = 1;
|
|
|
|
return *this;
|
|
}
|
|
|
|
template <class T>
|
|
template <class S>
|
|
const Matrix33<T> &
|
|
Matrix33<T>::setScale (const Vec2<S> &s)
|
|
{
|
|
memset (x, 0, sizeof (x));
|
|
x[0][0] = s[0];
|
|
x[1][1] = s[1];
|
|
x[2][2] = 1;
|
|
|
|
return *this;
|
|
}
|
|
|
|
template <class T>
|
|
template <class S>
|
|
const Matrix33<T> &
|
|
Matrix33<T>::scale (const Vec2<S> &s)
|
|
{
|
|
x[0][0] *= s[0];
|
|
x[0][1] *= s[0];
|
|
x[0][2] *= s[0];
|
|
|
|
x[1][0] *= s[1];
|
|
x[1][1] *= s[1];
|
|
x[1][2] *= s[1];
|
|
|
|
return *this;
|
|
}
|
|
|
|
template <class T>
|
|
template <class S>
|
|
const Matrix33<T> &
|
|
Matrix33<T>::setTranslation (const Vec2<S> &t)
|
|
{
|
|
x[0][0] = 1;
|
|
x[0][1] = 0;
|
|
x[0][2] = 0;
|
|
|
|
x[1][0] = 0;
|
|
x[1][1] = 1;
|
|
x[1][2] = 0;
|
|
|
|
x[2][0] = t[0];
|
|
x[2][1] = t[1];
|
|
x[2][2] = 1;
|
|
|
|
return *this;
|
|
}
|
|
|
|
template <class T>
|
|
inline Vec2<T>
|
|
Matrix33<T>::translation () const
|
|
{
|
|
return Vec2<T> (x[2][0], x[2][1]);
|
|
}
|
|
|
|
template <class T>
|
|
template <class S>
|
|
const Matrix33<T> &
|
|
Matrix33<T>::translate (const Vec2<S> &t)
|
|
{
|
|
x[2][0] += t[0] * x[0][0] + t[1] * x[1][0];
|
|
x[2][1] += t[0] * x[0][1] + t[1] * x[1][1];
|
|
x[2][2] += t[0] * x[0][2] + t[1] * x[1][2];
|
|
|
|
return *this;
|
|
}
|
|
|
|
template <class T>
|
|
template <class S>
|
|
const Matrix33<T> &
|
|
Matrix33<T>::setShear (const S &xy)
|
|
{
|
|
x[0][0] = 1;
|
|
x[0][1] = 0;
|
|
x[0][2] = 0;
|
|
|
|
x[1][0] = xy;
|
|
x[1][1] = 1;
|
|
x[1][2] = 0;
|
|
|
|
x[2][0] = 0;
|
|
x[2][1] = 0;
|
|
x[2][2] = 1;
|
|
|
|
return *this;
|
|
}
|
|
|
|
template <class T>
|
|
template <class S>
|
|
const Matrix33<T> &
|
|
Matrix33<T>::setShear (const Vec2<S> &h)
|
|
{
|
|
x[0][0] = 1;
|
|
x[0][1] = h[1];
|
|
x[0][2] = 0;
|
|
|
|
x[1][0] = h[0];
|
|
x[1][1] = 1;
|
|
x[1][2] = 0;
|
|
|
|
x[2][0] = 0;
|
|
x[2][1] = 0;
|
|
x[2][2] = 1;
|
|
|
|
return *this;
|
|
}
|
|
|
|
template <class T>
|
|
template <class S>
|
|
const Matrix33<T> &
|
|
Matrix33<T>::shear (const S &xy)
|
|
{
|
|
//
|
|
// In this case, we don't need a temp. copy of the matrix
|
|
// because we never use a value on the RHS after we've
|
|
// changed it on the LHS.
|
|
//
|
|
|
|
x[1][0] += xy * x[0][0];
|
|
x[1][1] += xy * x[0][1];
|
|
x[1][2] += xy * x[0][2];
|
|
|
|
return *this;
|
|
}
|
|
|
|
template <class T>
|
|
template <class S>
|
|
const Matrix33<T> &
|
|
Matrix33<T>::shear (const Vec2<S> &h)
|
|
{
|
|
Matrix33<T> P (*this);
|
|
|
|
x[0][0] = P[0][0] + h[1] * P[1][0];
|
|
x[0][1] = P[0][1] + h[1] * P[1][1];
|
|
x[0][2] = P[0][2] + h[1] * P[1][2];
|
|
|
|
x[1][0] = P[1][0] + h[0] * P[0][0];
|
|
x[1][1] = P[1][1] + h[0] * P[0][1];
|
|
x[1][2] = P[1][2] + h[0] * P[0][2];
|
|
|
|
return *this;
|
|
}
|
|
|
|
|
|
//---------------------------
|
|
// Implementation of Matrix44
|
|
//---------------------------
|
|
|
|
template <class T>
|
|
inline T *
|
|
Matrix44<T>::operator [] (int i)
|
|
{
|
|
return x[i];
|
|
}
|
|
|
|
template <class T>
|
|
inline const T *
|
|
Matrix44<T>::operator [] (int i) const
|
|
{
|
|
return x[i];
|
|
}
|
|
|
|
template <class T>
|
|
inline
|
|
Matrix44<T>::Matrix44 ()
|
|
{
|
|
memset (x, 0, sizeof (x));
|
|
x[0][0] = 1;
|
|
x[1][1] = 1;
|
|
x[2][2] = 1;
|
|
x[3][3] = 1;
|
|
}
|
|
|
|
template <class T>
|
|
inline
|
|
Matrix44<T>::Matrix44 (T a)
|
|
{
|
|
x[0][0] = a;
|
|
x[0][1] = a;
|
|
x[0][2] = a;
|
|
x[0][3] = a;
|
|
x[1][0] = a;
|
|
x[1][1] = a;
|
|
x[1][2] = a;
|
|
x[1][3] = a;
|
|
x[2][0] = a;
|
|
x[2][1] = a;
|
|
x[2][2] = a;
|
|
x[2][3] = a;
|
|
x[3][0] = a;
|
|
x[3][1] = a;
|
|
x[3][2] = a;
|
|
x[3][3] = a;
|
|
}
|
|
|
|
template <class T>
|
|
inline
|
|
Matrix44<T>::Matrix44 (const T a[4][4])
|
|
{
|
|
memcpy (x, a, sizeof (x));
|
|
}
|
|
|
|
template <class T>
|
|
inline
|
|
Matrix44<T>::Matrix44 (T a, T b, T c, T d, T e, T f, T g, T h,
|
|
T i, T j, T k, T l, T m, T n, T o, T p)
|
|
{
|
|
x[0][0] = a;
|
|
x[0][1] = b;
|
|
x[0][2] = c;
|
|
x[0][3] = d;
|
|
x[1][0] = e;
|
|
x[1][1] = f;
|
|
x[1][2] = g;
|
|
x[1][3] = h;
|
|
x[2][0] = i;
|
|
x[2][1] = j;
|
|
x[2][2] = k;
|
|
x[2][3] = l;
|
|
x[3][0] = m;
|
|
x[3][1] = n;
|
|
x[3][2] = o;
|
|
x[3][3] = p;
|
|
}
|
|
|
|
|
|
template <class T>
|
|
inline
|
|
Matrix44<T>::Matrix44 (Matrix33<T> r, Vec3<T> t)
|
|
{
|
|
x[0][0] = r[0][0];
|
|
x[0][1] = r[0][1];
|
|
x[0][2] = r[0][2];
|
|
x[0][3] = 0;
|
|
x[1][0] = r[1][0];
|
|
x[1][1] = r[1][1];
|
|
x[1][2] = r[1][2];
|
|
x[1][3] = 0;
|
|
x[2][0] = r[2][0];
|
|
x[2][1] = r[2][1];
|
|
x[2][2] = r[2][2];
|
|
x[2][3] = 0;
|
|
x[3][0] = t[0];
|
|
x[3][1] = t[1];
|
|
x[3][2] = t[2];
|
|
x[3][3] = 1;
|
|
}
|
|
|
|
template <class T>
|
|
inline
|
|
Matrix44<T>::Matrix44 (const Matrix44 &v)
|
|
{
|
|
x[0][0] = v.x[0][0];
|
|
x[0][1] = v.x[0][1];
|
|
x[0][2] = v.x[0][2];
|
|
x[0][3] = v.x[0][3];
|
|
x[1][0] = v.x[1][0];
|
|
x[1][1] = v.x[1][1];
|
|
x[1][2] = v.x[1][2];
|
|
x[1][3] = v.x[1][3];
|
|
x[2][0] = v.x[2][0];
|
|
x[2][1] = v.x[2][1];
|
|
x[2][2] = v.x[2][2];
|
|
x[2][3] = v.x[2][3];
|
|
x[3][0] = v.x[3][0];
|
|
x[3][1] = v.x[3][1];
|
|
x[3][2] = v.x[3][2];
|
|
x[3][3] = v.x[3][3];
|
|
}
|
|
|
|
template <class T>
|
|
template <class S>
|
|
inline
|
|
Matrix44<T>::Matrix44 (const Matrix44<S> &v)
|
|
{
|
|
x[0][0] = T (v.x[0][0]);
|
|
x[0][1] = T (v.x[0][1]);
|
|
x[0][2] = T (v.x[0][2]);
|
|
x[0][3] = T (v.x[0][3]);
|
|
x[1][0] = T (v.x[1][0]);
|
|
x[1][1] = T (v.x[1][1]);
|
|
x[1][2] = T (v.x[1][2]);
|
|
x[1][3] = T (v.x[1][3]);
|
|
x[2][0] = T (v.x[2][0]);
|
|
x[2][1] = T (v.x[2][1]);
|
|
x[2][2] = T (v.x[2][2]);
|
|
x[2][3] = T (v.x[2][3]);
|
|
x[3][0] = T (v.x[3][0]);
|
|
x[3][1] = T (v.x[3][1]);
|
|
x[3][2] = T (v.x[3][2]);
|
|
x[3][3] = T (v.x[3][3]);
|
|
}
|
|
|
|
template <class T>
|
|
inline const Matrix44<T> &
|
|
Matrix44<T>::operator = (const Matrix44 &v)
|
|
{
|
|
x[0][0] = v.x[0][0];
|
|
x[0][1] = v.x[0][1];
|
|
x[0][2] = v.x[0][2];
|
|
x[0][3] = v.x[0][3];
|
|
x[1][0] = v.x[1][0];
|
|
x[1][1] = v.x[1][1];
|
|
x[1][2] = v.x[1][2];
|
|
x[1][3] = v.x[1][3];
|
|
x[2][0] = v.x[2][0];
|
|
x[2][1] = v.x[2][1];
|
|
x[2][2] = v.x[2][2];
|
|
x[2][3] = v.x[2][3];
|
|
x[3][0] = v.x[3][0];
|
|
x[3][1] = v.x[3][1];
|
|
x[3][2] = v.x[3][2];
|
|
x[3][3] = v.x[3][3];
|
|
return *this;
|
|
}
|
|
|
|
template <class T>
|
|
inline const Matrix44<T> &
|
|
Matrix44<T>::operator = (T a)
|
|
{
|
|
x[0][0] = a;
|
|
x[0][1] = a;
|
|
x[0][2] = a;
|
|
x[0][3] = a;
|
|
x[1][0] = a;
|
|
x[1][1] = a;
|
|
x[1][2] = a;
|
|
x[1][3] = a;
|
|
x[2][0] = a;
|
|
x[2][1] = a;
|
|
x[2][2] = a;
|
|
x[2][3] = a;
|
|
x[3][0] = a;
|
|
x[3][1] = a;
|
|
x[3][2] = a;
|
|
x[3][3] = a;
|
|
return *this;
|
|
}
|
|
|
|
template <class T>
|
|
inline T *
|
|
Matrix44<T>::getValue ()
|
|
{
|
|
return (T *) &x[0][0];
|
|
}
|
|
|
|
template <class T>
|
|
inline const T *
|
|
Matrix44<T>::getValue () const
|
|
{
|
|
return (const T *) &x[0][0];
|
|
}
|
|
|
|
template <class T>
|
|
template <class S>
|
|
inline void
|
|
Matrix44<T>::getValue (Matrix44<S> &v) const
|
|
{
|
|
if (isSameType<S,T>::value)
|
|
{
|
|
memcpy (v.x, x, sizeof (x));
|
|
}
|
|
else
|
|
{
|
|
v.x[0][0] = x[0][0];
|
|
v.x[0][1] = x[0][1];
|
|
v.x[0][2] = x[0][2];
|
|
v.x[0][3] = x[0][3];
|
|
v.x[1][0] = x[1][0];
|
|
v.x[1][1] = x[1][1];
|
|
v.x[1][2] = x[1][2];
|
|
v.x[1][3] = x[1][3];
|
|
v.x[2][0] = x[2][0];
|
|
v.x[2][1] = x[2][1];
|
|
v.x[2][2] = x[2][2];
|
|
v.x[2][3] = x[2][3];
|
|
v.x[3][0] = x[3][0];
|
|
v.x[3][1] = x[3][1];
|
|
v.x[3][2] = x[3][2];
|
|
v.x[3][3] = x[3][3];
|
|
}
|
|
}
|
|
|
|
template <class T>
|
|
template <class S>
|
|
inline Matrix44<T> &
|
|
Matrix44<T>::setValue (const Matrix44<S> &v)
|
|
{
|
|
if (isSameType<S,T>::value)
|
|
{
|
|
memcpy (x, v.x, sizeof (x));
|
|
}
|
|
else
|
|
{
|
|
x[0][0] = v.x[0][0];
|
|
x[0][1] = v.x[0][1];
|
|
x[0][2] = v.x[0][2];
|
|
x[0][3] = v.x[0][3];
|
|
x[1][0] = v.x[1][0];
|
|
x[1][1] = v.x[1][1];
|
|
x[1][2] = v.x[1][2];
|
|
x[1][3] = v.x[1][3];
|
|
x[2][0] = v.x[2][0];
|
|
x[2][1] = v.x[2][1];
|
|
x[2][2] = v.x[2][2];
|
|
x[2][3] = v.x[2][3];
|
|
x[3][0] = v.x[3][0];
|
|
x[3][1] = v.x[3][1];
|
|
x[3][2] = v.x[3][2];
|
|
x[3][3] = v.x[3][3];
|
|
}
|
|
|
|
return *this;
|
|
}
|
|
|
|
template <class T>
|
|
template <class S>
|
|
inline Matrix44<T> &
|
|
Matrix44<T>::setTheMatrix (const Matrix44<S> &v)
|
|
{
|
|
if (isSameType<S,T>::value)
|
|
{
|
|
memcpy (x, v.x, sizeof (x));
|
|
}
|
|
else
|
|
{
|
|
x[0][0] = v.x[0][0];
|
|
x[0][1] = v.x[0][1];
|
|
x[0][2] = v.x[0][2];
|
|
x[0][3] = v.x[0][3];
|
|
x[1][0] = v.x[1][0];
|
|
x[1][1] = v.x[1][1];
|
|
x[1][2] = v.x[1][2];
|
|
x[1][3] = v.x[1][3];
|
|
x[2][0] = v.x[2][0];
|
|
x[2][1] = v.x[2][1];
|
|
x[2][2] = v.x[2][2];
|
|
x[2][3] = v.x[2][3];
|
|
x[3][0] = v.x[3][0];
|
|
x[3][1] = v.x[3][1];
|
|
x[3][2] = v.x[3][2];
|
|
x[3][3] = v.x[3][3];
|
|
}
|
|
|
|
return *this;
|
|
}
|
|
|
|
template <class T>
|
|
inline void
|
|
Matrix44<T>::makeIdentity()
|
|
{
|
|
memset (x, 0, sizeof (x));
|
|
x[0][0] = 1;
|
|
x[1][1] = 1;
|
|
x[2][2] = 1;
|
|
x[3][3] = 1;
|
|
}
|
|
|
|
template <class T>
|
|
bool
|
|
Matrix44<T>::operator == (const Matrix44 &v) const
|
|
{
|
|
return x[0][0] == v.x[0][0] &&
|
|
x[0][1] == v.x[0][1] &&
|
|
x[0][2] == v.x[0][2] &&
|
|
x[0][3] == v.x[0][3] &&
|
|
x[1][0] == v.x[1][0] &&
|
|
x[1][1] == v.x[1][1] &&
|
|
x[1][2] == v.x[1][2] &&
|
|
x[1][3] == v.x[1][3] &&
|
|
x[2][0] == v.x[2][0] &&
|
|
x[2][1] == v.x[2][1] &&
|
|
x[2][2] == v.x[2][2] &&
|
|
x[2][3] == v.x[2][3] &&
|
|
x[3][0] == v.x[3][0] &&
|
|
x[3][1] == v.x[3][1] &&
|
|
x[3][2] == v.x[3][2] &&
|
|
x[3][3] == v.x[3][3];
|
|
}
|
|
|
|
template <class T>
|
|
bool
|
|
Matrix44<T>::operator != (const Matrix44 &v) const
|
|
{
|
|
return x[0][0] != v.x[0][0] ||
|
|
x[0][1] != v.x[0][1] ||
|
|
x[0][2] != v.x[0][2] ||
|
|
x[0][3] != v.x[0][3] ||
|
|
x[1][0] != v.x[1][0] ||
|
|
x[1][1] != v.x[1][1] ||
|
|
x[1][2] != v.x[1][2] ||
|
|
x[1][3] != v.x[1][3] ||
|
|
x[2][0] != v.x[2][0] ||
|
|
x[2][1] != v.x[2][1] ||
|
|
x[2][2] != v.x[2][2] ||
|
|
x[2][3] != v.x[2][3] ||
|
|
x[3][0] != v.x[3][0] ||
|
|
x[3][1] != v.x[3][1] ||
|
|
x[3][2] != v.x[3][2] ||
|
|
x[3][3] != v.x[3][3];
|
|
}
|
|
|
|
template <class T>
|
|
bool
|
|
Matrix44<T>::equalWithAbsError (const Matrix44<T> &m, T e) const
|
|
{
|
|
for (int i = 0; i < 4; i++)
|
|
for (int j = 0; j < 4; j++)
|
|
if (!IMATH_INTERNAL_NAMESPACE::equalWithAbsError ((*this)[i][j], m[i][j], e))
|
|
return false;
|
|
|
|
return true;
|
|
}
|
|
|
|
template <class T>
|
|
bool
|
|
Matrix44<T>::equalWithRelError (const Matrix44<T> &m, T e) const
|
|
{
|
|
for (int i = 0; i < 4; i++)
|
|
for (int j = 0; j < 4; j++)
|
|
if (!IMATH_INTERNAL_NAMESPACE::equalWithRelError ((*this)[i][j], m[i][j], e))
|
|
return false;
|
|
|
|
return true;
|
|
}
|
|
|
|
template <class T>
|
|
const Matrix44<T> &
|
|
Matrix44<T>::operator += (const Matrix44<T> &v)
|
|
{
|
|
x[0][0] += v.x[0][0];
|
|
x[0][1] += v.x[0][1];
|
|
x[0][2] += v.x[0][2];
|
|
x[0][3] += v.x[0][3];
|
|
x[1][0] += v.x[1][0];
|
|
x[1][1] += v.x[1][1];
|
|
x[1][2] += v.x[1][2];
|
|
x[1][3] += v.x[1][3];
|
|
x[2][0] += v.x[2][0];
|
|
x[2][1] += v.x[2][1];
|
|
x[2][2] += v.x[2][2];
|
|
x[2][3] += v.x[2][3];
|
|
x[3][0] += v.x[3][0];
|
|
x[3][1] += v.x[3][1];
|
|
x[3][2] += v.x[3][2];
|
|
x[3][3] += v.x[3][3];
|
|
|
|
return *this;
|
|
}
|
|
|
|
template <class T>
|
|
const Matrix44<T> &
|
|
Matrix44<T>::operator += (T a)
|
|
{
|
|
x[0][0] += a;
|
|
x[0][1] += a;
|
|
x[0][2] += a;
|
|
x[0][3] += a;
|
|
x[1][0] += a;
|
|
x[1][1] += a;
|
|
x[1][2] += a;
|
|
x[1][3] += a;
|
|
x[2][0] += a;
|
|
x[2][1] += a;
|
|
x[2][2] += a;
|
|
x[2][3] += a;
|
|
x[3][0] += a;
|
|
x[3][1] += a;
|
|
x[3][2] += a;
|
|
x[3][3] += a;
|
|
|
|
return *this;
|
|
}
|
|
|
|
template <class T>
|
|
Matrix44<T>
|
|
Matrix44<T>::operator + (const Matrix44<T> &v) const
|
|
{
|
|
return Matrix44 (x[0][0] + v.x[0][0],
|
|
x[0][1] + v.x[0][1],
|
|
x[0][2] + v.x[0][2],
|
|
x[0][3] + v.x[0][3],
|
|
x[1][0] + v.x[1][0],
|
|
x[1][1] + v.x[1][1],
|
|
x[1][2] + v.x[1][2],
|
|
x[1][3] + v.x[1][3],
|
|
x[2][0] + v.x[2][0],
|
|
x[2][1] + v.x[2][1],
|
|
x[2][2] + v.x[2][2],
|
|
x[2][3] + v.x[2][3],
|
|
x[3][0] + v.x[3][0],
|
|
x[3][1] + v.x[3][1],
|
|
x[3][2] + v.x[3][2],
|
|
x[3][3] + v.x[3][3]);
|
|
}
|
|
|
|
template <class T>
|
|
const Matrix44<T> &
|
|
Matrix44<T>::operator -= (const Matrix44<T> &v)
|
|
{
|
|
x[0][0] -= v.x[0][0];
|
|
x[0][1] -= v.x[0][1];
|
|
x[0][2] -= v.x[0][2];
|
|
x[0][3] -= v.x[0][3];
|
|
x[1][0] -= v.x[1][0];
|
|
x[1][1] -= v.x[1][1];
|
|
x[1][2] -= v.x[1][2];
|
|
x[1][3] -= v.x[1][3];
|
|
x[2][0] -= v.x[2][0];
|
|
x[2][1] -= v.x[2][1];
|
|
x[2][2] -= v.x[2][2];
|
|
x[2][3] -= v.x[2][3];
|
|
x[3][0] -= v.x[3][0];
|
|
x[3][1] -= v.x[3][1];
|
|
x[3][2] -= v.x[3][2];
|
|
x[3][3] -= v.x[3][3];
|
|
|
|
return *this;
|
|
}
|
|
|
|
template <class T>
|
|
const Matrix44<T> &
|
|
Matrix44<T>::operator -= (T a)
|
|
{
|
|
x[0][0] -= a;
|
|
x[0][1] -= a;
|
|
x[0][2] -= a;
|
|
x[0][3] -= a;
|
|
x[1][0] -= a;
|
|
x[1][1] -= a;
|
|
x[1][2] -= a;
|
|
x[1][3] -= a;
|
|
x[2][0] -= a;
|
|
x[2][1] -= a;
|
|
x[2][2] -= a;
|
|
x[2][3] -= a;
|
|
x[3][0] -= a;
|
|
x[3][1] -= a;
|
|
x[3][2] -= a;
|
|
x[3][3] -= a;
|
|
|
|
return *this;
|
|
}
|
|
|
|
template <class T>
|
|
Matrix44<T>
|
|
Matrix44<T>::operator - (const Matrix44<T> &v) const
|
|
{
|
|
return Matrix44 (x[0][0] - v.x[0][0],
|
|
x[0][1] - v.x[0][1],
|
|
x[0][2] - v.x[0][2],
|
|
x[0][3] - v.x[0][3],
|
|
x[1][0] - v.x[1][0],
|
|
x[1][1] - v.x[1][1],
|
|
x[1][2] - v.x[1][2],
|
|
x[1][3] - v.x[1][3],
|
|
x[2][0] - v.x[2][0],
|
|
x[2][1] - v.x[2][1],
|
|
x[2][2] - v.x[2][2],
|
|
x[2][3] - v.x[2][3],
|
|
x[3][0] - v.x[3][0],
|
|
x[3][1] - v.x[3][1],
|
|
x[3][2] - v.x[3][2],
|
|
x[3][3] - v.x[3][3]);
|
|
}
|
|
|
|
template <class T>
|
|
Matrix44<T>
|
|
Matrix44<T>::operator - () const
|
|
{
|
|
return Matrix44 (-x[0][0],
|
|
-x[0][1],
|
|
-x[0][2],
|
|
-x[0][3],
|
|
-x[1][0],
|
|
-x[1][1],
|
|
-x[1][2],
|
|
-x[1][3],
|
|
-x[2][0],
|
|
-x[2][1],
|
|
-x[2][2],
|
|
-x[2][3],
|
|
-x[3][0],
|
|
-x[3][1],
|
|
-x[3][2],
|
|
-x[3][3]);
|
|
}
|
|
|
|
template <class T>
|
|
const Matrix44<T> &
|
|
Matrix44<T>::negate ()
|
|
{
|
|
x[0][0] = -x[0][0];
|
|
x[0][1] = -x[0][1];
|
|
x[0][2] = -x[0][2];
|
|
x[0][3] = -x[0][3];
|
|
x[1][0] = -x[1][0];
|
|
x[1][1] = -x[1][1];
|
|
x[1][2] = -x[1][2];
|
|
x[1][3] = -x[1][3];
|
|
x[2][0] = -x[2][0];
|
|
x[2][1] = -x[2][1];
|
|
x[2][2] = -x[2][2];
|
|
x[2][3] = -x[2][3];
|
|
x[3][0] = -x[3][0];
|
|
x[3][1] = -x[3][1];
|
|
x[3][2] = -x[3][2];
|
|
x[3][3] = -x[3][3];
|
|
|
|
return *this;
|
|
}
|
|
|
|
template <class T>
|
|
const Matrix44<T> &
|
|
Matrix44<T>::operator *= (T a)
|
|
{
|
|
x[0][0] *= a;
|
|
x[0][1] *= a;
|
|
x[0][2] *= a;
|
|
x[0][3] *= a;
|
|
x[1][0] *= a;
|
|
x[1][1] *= a;
|
|
x[1][2] *= a;
|
|
x[1][3] *= a;
|
|
x[2][0] *= a;
|
|
x[2][1] *= a;
|
|
x[2][2] *= a;
|
|
x[2][3] *= a;
|
|
x[3][0] *= a;
|
|
x[3][1] *= a;
|
|
x[3][2] *= a;
|
|
x[3][3] *= a;
|
|
|
|
return *this;
|
|
}
|
|
|
|
template <class T>
|
|
Matrix44<T>
|
|
Matrix44<T>::operator * (T a) const
|
|
{
|
|
return Matrix44 (x[0][0] * a,
|
|
x[0][1] * a,
|
|
x[0][2] * a,
|
|
x[0][3] * a,
|
|
x[1][0] * a,
|
|
x[1][1] * a,
|
|
x[1][2] * a,
|
|
x[1][3] * a,
|
|
x[2][0] * a,
|
|
x[2][1] * a,
|
|
x[2][2] * a,
|
|
x[2][3] * a,
|
|
x[3][0] * a,
|
|
x[3][1] * a,
|
|
x[3][2] * a,
|
|
x[3][3] * a);
|
|
}
|
|
|
|
template <class T>
|
|
inline Matrix44<T>
|
|
operator * (T a, const Matrix44<T> &v)
|
|
{
|
|
return v * a;
|
|
}
|
|
|
|
template <class T>
|
|
inline const Matrix44<T> &
|
|
Matrix44<T>::operator *= (const Matrix44<T> &v)
|
|
{
|
|
Matrix44 tmp (T (0));
|
|
|
|
multiply (*this, v, tmp);
|
|
*this = tmp;
|
|
return *this;
|
|
}
|
|
|
|
template <class T>
|
|
inline Matrix44<T>
|
|
Matrix44<T>::operator * (const Matrix44<T> &v) const
|
|
{
|
|
Matrix44 tmp (T (0));
|
|
|
|
multiply (*this, v, tmp);
|
|
return tmp;
|
|
}
|
|
|
|
template <class T>
|
|
void
|
|
Matrix44<T>::multiply (const Matrix44<T> &a,
|
|
const Matrix44<T> &b,
|
|
Matrix44<T> &c)
|
|
{
|
|
const T * IMATH_RESTRICT ap = &a.x[0][0];
|
|
const T * IMATH_RESTRICT bp = &b.x[0][0];
|
|
T * IMATH_RESTRICT cp = &c.x[0][0];
|
|
|
|
T a0, a1, a2, a3;
|
|
|
|
a0 = ap[0];
|
|
a1 = ap[1];
|
|
a2 = ap[2];
|
|
a3 = ap[3];
|
|
|
|
cp[0] = a0 * bp[0] + a1 * bp[4] + a2 * bp[8] + a3 * bp[12];
|
|
cp[1] = a0 * bp[1] + a1 * bp[5] + a2 * bp[9] + a3 * bp[13];
|
|
cp[2] = a0 * bp[2] + a1 * bp[6] + a2 * bp[10] + a3 * bp[14];
|
|
cp[3] = a0 * bp[3] + a1 * bp[7] + a2 * bp[11] + a3 * bp[15];
|
|
|
|
a0 = ap[4];
|
|
a1 = ap[5];
|
|
a2 = ap[6];
|
|
a3 = ap[7];
|
|
|
|
cp[4] = a0 * bp[0] + a1 * bp[4] + a2 * bp[8] + a3 * bp[12];
|
|
cp[5] = a0 * bp[1] + a1 * bp[5] + a2 * bp[9] + a3 * bp[13];
|
|
cp[6] = a0 * bp[2] + a1 * bp[6] + a2 * bp[10] + a3 * bp[14];
|
|
cp[7] = a0 * bp[3] + a1 * bp[7] + a2 * bp[11] + a3 * bp[15];
|
|
|
|
a0 = ap[8];
|
|
a1 = ap[9];
|
|
a2 = ap[10];
|
|
a3 = ap[11];
|
|
|
|
cp[8] = a0 * bp[0] + a1 * bp[4] + a2 * bp[8] + a3 * bp[12];
|
|
cp[9] = a0 * bp[1] + a1 * bp[5] + a2 * bp[9] + a3 * bp[13];
|
|
cp[10] = a0 * bp[2] + a1 * bp[6] + a2 * bp[10] + a3 * bp[14];
|
|
cp[11] = a0 * bp[3] + a1 * bp[7] + a2 * bp[11] + a3 * bp[15];
|
|
|
|
a0 = ap[12];
|
|
a1 = ap[13];
|
|
a2 = ap[14];
|
|
a3 = ap[15];
|
|
|
|
cp[12] = a0 * bp[0] + a1 * bp[4] + a2 * bp[8] + a3 * bp[12];
|
|
cp[13] = a0 * bp[1] + a1 * bp[5] + a2 * bp[9] + a3 * bp[13];
|
|
cp[14] = a0 * bp[2] + a1 * bp[6] + a2 * bp[10] + a3 * bp[14];
|
|
cp[15] = a0 * bp[3] + a1 * bp[7] + a2 * bp[11] + a3 * bp[15];
|
|
}
|
|
|
|
template <class T> template <class S>
|
|
void
|
|
Matrix44<T>::multVecMatrix(const Vec3<S> &src, Vec3<S> &dst) const
|
|
{
|
|
S a, b, c, w;
|
|
|
|
a = src[0] * x[0][0] + src[1] * x[1][0] + src[2] * x[2][0] + x[3][0];
|
|
b = src[0] * x[0][1] + src[1] * x[1][1] + src[2] * x[2][1] + x[3][1];
|
|
c = src[0] * x[0][2] + src[1] * x[1][2] + src[2] * x[2][2] + x[3][2];
|
|
w = src[0] * x[0][3] + src[1] * x[1][3] + src[2] * x[2][3] + x[3][3];
|
|
|
|
dst.x = a / w;
|
|
dst.y = b / w;
|
|
dst.z = c / w;
|
|
}
|
|
|
|
template <class T> template <class S>
|
|
void
|
|
Matrix44<T>::multDirMatrix(const Vec3<S> &src, Vec3<S> &dst) const
|
|
{
|
|
S a, b, c;
|
|
|
|
a = src[0] * x[0][0] + src[1] * x[1][0] + src[2] * x[2][0];
|
|
b = src[0] * x[0][1] + src[1] * x[1][1] + src[2] * x[2][1];
|
|
c = src[0] * x[0][2] + src[1] * x[1][2] + src[2] * x[2][2];
|
|
|
|
dst.x = a;
|
|
dst.y = b;
|
|
dst.z = c;
|
|
}
|
|
|
|
template <class T>
|
|
const Matrix44<T> &
|
|
Matrix44<T>::operator /= (T a)
|
|
{
|
|
x[0][0] /= a;
|
|
x[0][1] /= a;
|
|
x[0][2] /= a;
|
|
x[0][3] /= a;
|
|
x[1][0] /= a;
|
|
x[1][1] /= a;
|
|
x[1][2] /= a;
|
|
x[1][3] /= a;
|
|
x[2][0] /= a;
|
|
x[2][1] /= a;
|
|
x[2][2] /= a;
|
|
x[2][3] /= a;
|
|
x[3][0] /= a;
|
|
x[3][1] /= a;
|
|
x[3][2] /= a;
|
|
x[3][3] /= a;
|
|
|
|
return *this;
|
|
}
|
|
|
|
template <class T>
|
|
Matrix44<T>
|
|
Matrix44<T>::operator / (T a) const
|
|
{
|
|
return Matrix44 (x[0][0] / a,
|
|
x[0][1] / a,
|
|
x[0][2] / a,
|
|
x[0][3] / a,
|
|
x[1][0] / a,
|
|
x[1][1] / a,
|
|
x[1][2] / a,
|
|
x[1][3] / a,
|
|
x[2][0] / a,
|
|
x[2][1] / a,
|
|
x[2][2] / a,
|
|
x[2][3] / a,
|
|
x[3][0] / a,
|
|
x[3][1] / a,
|
|
x[3][2] / a,
|
|
x[3][3] / a);
|
|
}
|
|
|
|
template <class T>
|
|
const Matrix44<T> &
|
|
Matrix44<T>::transpose ()
|
|
{
|
|
Matrix44 tmp (x[0][0],
|
|
x[1][0],
|
|
x[2][0],
|
|
x[3][0],
|
|
x[0][1],
|
|
x[1][1],
|
|
x[2][1],
|
|
x[3][1],
|
|
x[0][2],
|
|
x[1][2],
|
|
x[2][2],
|
|
x[3][2],
|
|
x[0][3],
|
|
x[1][3],
|
|
x[2][3],
|
|
x[3][3]);
|
|
*this = tmp;
|
|
return *this;
|
|
}
|
|
|
|
template <class T>
|
|
Matrix44<T>
|
|
Matrix44<T>::transposed () const
|
|
{
|
|
return Matrix44 (x[0][0],
|
|
x[1][0],
|
|
x[2][0],
|
|
x[3][0],
|
|
x[0][1],
|
|
x[1][1],
|
|
x[2][1],
|
|
x[3][1],
|
|
x[0][2],
|
|
x[1][2],
|
|
x[2][2],
|
|
x[3][2],
|
|
x[0][3],
|
|
x[1][3],
|
|
x[2][3],
|
|
x[3][3]);
|
|
}
|
|
|
|
template <class T>
|
|
const Matrix44<T> &
|
|
Matrix44<T>::gjInvert (bool singExc)
|
|
{
|
|
*this = gjInverse (singExc);
|
|
return *this;
|
|
}
|
|
|
|
template <class T>
|
|
Matrix44<T>
|
|
Matrix44<T>::gjInverse (bool singExc) const
|
|
{
|
|
int i, j, k;
|
|
Matrix44 s;
|
|
Matrix44 t (*this);
|
|
|
|
// Forward elimination
|
|
|
|
for (i = 0; i < 3 ; i++)
|
|
{
|
|
int pivot = i;
|
|
|
|
T pivotsize = t[i][i];
|
|
|
|
if (pivotsize < 0)
|
|
pivotsize = -pivotsize;
|
|
|
|
for (j = i + 1; j < 4; j++)
|
|
{
|
|
T tmp = t[j][i];
|
|
|
|
if (tmp < 0)
|
|
tmp = -tmp;
|
|
|
|
if (tmp > pivotsize)
|
|
{
|
|
pivot = j;
|
|
pivotsize = tmp;
|
|
}
|
|
}
|
|
|
|
if (pivotsize == 0)
|
|
{
|
|
if (singExc)
|
|
throw ::IMATH_INTERNAL_NAMESPACE::SingMatrixExc ("Cannot invert singular matrix.");
|
|
|
|
return Matrix44();
|
|
}
|
|
|
|
if (pivot != i)
|
|
{
|
|
for (j = 0; j < 4; j++)
|
|
{
|
|
T tmp;
|
|
|
|
tmp = t[i][j];
|
|
t[i][j] = t[pivot][j];
|
|
t[pivot][j] = tmp;
|
|
|
|
tmp = s[i][j];
|
|
s[i][j] = s[pivot][j];
|
|
s[pivot][j] = tmp;
|
|
}
|
|
}
|
|
|
|
for (j = i + 1; j < 4; j++)
|
|
{
|
|
T f = t[j][i] / t[i][i];
|
|
|
|
for (k = 0; k < 4; k++)
|
|
{
|
|
t[j][k] -= f * t[i][k];
|
|
s[j][k] -= f * s[i][k];
|
|
}
|
|
}
|
|
}
|
|
|
|
// Backward substitution
|
|
|
|
for (i = 3; i >= 0; --i)
|
|
{
|
|
T f;
|
|
|
|
if ((f = t[i][i]) == 0)
|
|
{
|
|
if (singExc)
|
|
throw ::IMATH_INTERNAL_NAMESPACE::SingMatrixExc ("Cannot invert singular matrix.");
|
|
|
|
return Matrix44();
|
|
}
|
|
|
|
for (j = 0; j < 4; j++)
|
|
{
|
|
t[i][j] /= f;
|
|
s[i][j] /= f;
|
|
}
|
|
|
|
for (j = 0; j < i; j++)
|
|
{
|
|
f = t[j][i];
|
|
|
|
for (k = 0; k < 4; k++)
|
|
{
|
|
t[j][k] -= f * t[i][k];
|
|
s[j][k] -= f * s[i][k];
|
|
}
|
|
}
|
|
}
|
|
|
|
return s;
|
|
}
|
|
|
|
template <class T>
|
|
const Matrix44<T> &
|
|
Matrix44<T>::invert (bool singExc)
|
|
{
|
|
*this = inverse (singExc);
|
|
return *this;
|
|
}
|
|
|
|
template <class T>
|
|
Matrix44<T>
|
|
Matrix44<T>::inverse (bool singExc) const
|
|
{
|
|
if (x[0][3] != 0 || x[1][3] != 0 || x[2][3] != 0 || x[3][3] != 1)
|
|
return gjInverse(singExc);
|
|
|
|
Matrix44 s (x[1][1] * x[2][2] - x[2][1] * x[1][2],
|
|
x[2][1] * x[0][2] - x[0][1] * x[2][2],
|
|
x[0][1] * x[1][2] - x[1][1] * x[0][2],
|
|
0,
|
|
|
|
x[2][0] * x[1][2] - x[1][0] * x[2][2],
|
|
x[0][0] * x[2][2] - x[2][0] * x[0][2],
|
|
x[1][0] * x[0][2] - x[0][0] * x[1][2],
|
|
0,
|
|
|
|
x[1][0] * x[2][1] - x[2][0] * x[1][1],
|
|
x[2][0] * x[0][1] - x[0][0] * x[2][1],
|
|
x[0][0] * x[1][1] - x[1][0] * x[0][1],
|
|
0,
|
|
|
|
0,
|
|
0,
|
|
0,
|
|
1);
|
|
|
|
T r = x[0][0] * s[0][0] + x[0][1] * s[1][0] + x[0][2] * s[2][0];
|
|
|
|
if (IMATH_INTERNAL_NAMESPACE::abs (r) >= 1)
|
|
{
|
|
for (int i = 0; i < 3; ++i)
|
|
{
|
|
for (int j = 0; j < 3; ++j)
|
|
{
|
|
s[i][j] /= r;
|
|
}
|
|
}
|
|
}
|
|
else
|
|
{
|
|
T mr = IMATH_INTERNAL_NAMESPACE::abs (r) / limits<T>::smallest();
|
|
|
|
for (int i = 0; i < 3; ++i)
|
|
{
|
|
for (int j = 0; j < 3; ++j)
|
|
{
|
|
if (mr > IMATH_INTERNAL_NAMESPACE::abs (s[i][j]))
|
|
{
|
|
s[i][j] /= r;
|
|
}
|
|
else
|
|
{
|
|
if (singExc)
|
|
throw SingMatrixExc ("Cannot invert singular matrix.");
|
|
|
|
return Matrix44();
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
s[3][0] = -x[3][0] * s[0][0] - x[3][1] * s[1][0] - x[3][2] * s[2][0];
|
|
s[3][1] = -x[3][0] * s[0][1] - x[3][1] * s[1][1] - x[3][2] * s[2][1];
|
|
s[3][2] = -x[3][0] * s[0][2] - x[3][1] * s[1][2] - x[3][2] * s[2][2];
|
|
|
|
return s;
|
|
}
|
|
|
|
template <class T>
|
|
inline T
|
|
Matrix44<T>::fastMinor( const int r0, const int r1, const int r2,
|
|
const int c0, const int c1, const int c2) const
|
|
{
|
|
return x[r0][c0] * (x[r1][c1]*x[r2][c2] - x[r1][c2]*x[r2][c1])
|
|
+ x[r0][c1] * (x[r1][c2]*x[r2][c0] - x[r1][c0]*x[r2][c2])
|
|
+ x[r0][c2] * (x[r1][c0]*x[r2][c1] - x[r1][c1]*x[r2][c0]);
|
|
}
|
|
|
|
template <class T>
|
|
inline T
|
|
Matrix44<T>::minorOf (const int r, const int c) const
|
|
{
|
|
int r0 = 0 + (r < 1 ? 1 : 0);
|
|
int r1 = 1 + (r < 2 ? 1 : 0);
|
|
int r2 = 2 + (r < 3 ? 1 : 0);
|
|
int c0 = 0 + (c < 1 ? 1 : 0);
|
|
int c1 = 1 + (c < 2 ? 1 : 0);
|
|
int c2 = 2 + (c < 3 ? 1 : 0);
|
|
|
|
Matrix33<T> working (x[r0][c0],x[r1][c0],x[r2][c0],
|
|
x[r0][c1],x[r1][c1],x[r2][c1],
|
|
x[r0][c2],x[r1][c2],x[r2][c2]);
|
|
|
|
return working.determinant();
|
|
}
|
|
|
|
template <class T>
|
|
inline T
|
|
Matrix44<T>::determinant () const
|
|
{
|
|
T sum = (T)0;
|
|
|
|
if (x[0][3] != 0.) sum -= x[0][3] * fastMinor(1,2,3,0,1,2);
|
|
if (x[1][3] != 0.) sum += x[1][3] * fastMinor(0,2,3,0,1,2);
|
|
if (x[2][3] != 0.) sum -= x[2][3] * fastMinor(0,1,3,0,1,2);
|
|
if (x[3][3] != 0.) sum += x[3][3] * fastMinor(0,1,2,0,1,2);
|
|
|
|
return sum;
|
|
}
|
|
|
|
template <class T>
|
|
template <class S>
|
|
const Matrix44<T> &
|
|
Matrix44<T>::setEulerAngles (const Vec3<S>& r)
|
|
{
|
|
S cos_rz, sin_rz, cos_ry, sin_ry, cos_rx, sin_rx;
|
|
|
|
cos_rz = Math<T>::cos (r[2]);
|
|
cos_ry = Math<T>::cos (r[1]);
|
|
cos_rx = Math<T>::cos (r[0]);
|
|
|
|
sin_rz = Math<T>::sin (r[2]);
|
|
sin_ry = Math<T>::sin (r[1]);
|
|
sin_rx = Math<T>::sin (r[0]);
|
|
|
|
x[0][0] = cos_rz * cos_ry;
|
|
x[0][1] = sin_rz * cos_ry;
|
|
x[0][2] = -sin_ry;
|
|
x[0][3] = 0;
|
|
|
|
x[1][0] = -sin_rz * cos_rx + cos_rz * sin_ry * sin_rx;
|
|
x[1][1] = cos_rz * cos_rx + sin_rz * sin_ry * sin_rx;
|
|
x[1][2] = cos_ry * sin_rx;
|
|
x[1][3] = 0;
|
|
|
|
x[2][0] = sin_rz * sin_rx + cos_rz * sin_ry * cos_rx;
|
|
x[2][1] = -cos_rz * sin_rx + sin_rz * sin_ry * cos_rx;
|
|
x[2][2] = cos_ry * cos_rx;
|
|
x[2][3] = 0;
|
|
|
|
x[3][0] = 0;
|
|
x[3][1] = 0;
|
|
x[3][2] = 0;
|
|
x[3][3] = 1;
|
|
|
|
return *this;
|
|
}
|
|
|
|
template <class T>
|
|
template <class S>
|
|
const Matrix44<T> &
|
|
Matrix44<T>::setAxisAngle (const Vec3<S>& axis, S angle)
|
|
{
|
|
Vec3<S> unit (axis.normalized());
|
|
S sine = Math<T>::sin (angle);
|
|
S cosine = Math<T>::cos (angle);
|
|
|
|
x[0][0] = unit[0] * unit[0] * (1 - cosine) + cosine;
|
|
x[0][1] = unit[0] * unit[1] * (1 - cosine) + unit[2] * sine;
|
|
x[0][2] = unit[0] * unit[2] * (1 - cosine) - unit[1] * sine;
|
|
x[0][3] = 0;
|
|
|
|
x[1][0] = unit[0] * unit[1] * (1 - cosine) - unit[2] * sine;
|
|
x[1][1] = unit[1] * unit[1] * (1 - cosine) + cosine;
|
|
x[1][2] = unit[1] * unit[2] * (1 - cosine) + unit[0] * sine;
|
|
x[1][3] = 0;
|
|
|
|
x[2][0] = unit[0] * unit[2] * (1 - cosine) + unit[1] * sine;
|
|
x[2][1] = unit[1] * unit[2] * (1 - cosine) - unit[0] * sine;
|
|
x[2][2] = unit[2] * unit[2] * (1 - cosine) + cosine;
|
|
x[2][3] = 0;
|
|
|
|
x[3][0] = 0;
|
|
x[3][1] = 0;
|
|
x[3][2] = 0;
|
|
x[3][3] = 1;
|
|
|
|
return *this;
|
|
}
|
|
|
|
template <class T>
|
|
template <class S>
|
|
const Matrix44<T> &
|
|
Matrix44<T>::rotate (const Vec3<S> &r)
|
|
{
|
|
S cos_rz, sin_rz, cos_ry, sin_ry, cos_rx, sin_rx;
|
|
S m00, m01, m02;
|
|
S m10, m11, m12;
|
|
S m20, m21, m22;
|
|
|
|
cos_rz = Math<S>::cos (r[2]);
|
|
cos_ry = Math<S>::cos (r[1]);
|
|
cos_rx = Math<S>::cos (r[0]);
|
|
|
|
sin_rz = Math<S>::sin (r[2]);
|
|
sin_ry = Math<S>::sin (r[1]);
|
|
sin_rx = Math<S>::sin (r[0]);
|
|
|
|
m00 = cos_rz * cos_ry;
|
|
m01 = sin_rz * cos_ry;
|
|
m02 = -sin_ry;
|
|
m10 = -sin_rz * cos_rx + cos_rz * sin_ry * sin_rx;
|
|
m11 = cos_rz * cos_rx + sin_rz * sin_ry * sin_rx;
|
|
m12 = cos_ry * sin_rx;
|
|
m20 = -sin_rz * -sin_rx + cos_rz * sin_ry * cos_rx;
|
|
m21 = cos_rz * -sin_rx + sin_rz * sin_ry * cos_rx;
|
|
m22 = cos_ry * cos_rx;
|
|
|
|
Matrix44<T> P (*this);
|
|
|
|
x[0][0] = P[0][0] * m00 + P[1][0] * m01 + P[2][0] * m02;
|
|
x[0][1] = P[0][1] * m00 + P[1][1] * m01 + P[2][1] * m02;
|
|
x[0][2] = P[0][2] * m00 + P[1][2] * m01 + P[2][2] * m02;
|
|
x[0][3] = P[0][3] * m00 + P[1][3] * m01 + P[2][3] * m02;
|
|
|
|
x[1][0] = P[0][0] * m10 + P[1][0] * m11 + P[2][0] * m12;
|
|
x[1][1] = P[0][1] * m10 + P[1][1] * m11 + P[2][1] * m12;
|
|
x[1][2] = P[0][2] * m10 + P[1][2] * m11 + P[2][2] * m12;
|
|
x[1][3] = P[0][3] * m10 + P[1][3] * m11 + P[2][3] * m12;
|
|
|
|
x[2][0] = P[0][0] * m20 + P[1][0] * m21 + P[2][0] * m22;
|
|
x[2][1] = P[0][1] * m20 + P[1][1] * m21 + P[2][1] * m22;
|
|
x[2][2] = P[0][2] * m20 + P[1][2] * m21 + P[2][2] * m22;
|
|
x[2][3] = P[0][3] * m20 + P[1][3] * m21 + P[2][3] * m22;
|
|
|
|
return *this;
|
|
}
|
|
|
|
template <class T>
|
|
const Matrix44<T> &
|
|
Matrix44<T>::setScale (T s)
|
|
{
|
|
memset (x, 0, sizeof (x));
|
|
x[0][0] = s;
|
|
x[1][1] = s;
|
|
x[2][2] = s;
|
|
x[3][3] = 1;
|
|
|
|
return *this;
|
|
}
|
|
|
|
template <class T>
|
|
template <class S>
|
|
const Matrix44<T> &
|
|
Matrix44<T>::setScale (const Vec3<S> &s)
|
|
{
|
|
memset (x, 0, sizeof (x));
|
|
x[0][0] = s[0];
|
|
x[1][1] = s[1];
|
|
x[2][2] = s[2];
|
|
x[3][3] = 1;
|
|
|
|
return *this;
|
|
}
|
|
|
|
template <class T>
|
|
template <class S>
|
|
const Matrix44<T> &
|
|
Matrix44<T>::scale (const Vec3<S> &s)
|
|
{
|
|
x[0][0] *= s[0];
|
|
x[0][1] *= s[0];
|
|
x[0][2] *= s[0];
|
|
x[0][3] *= s[0];
|
|
|
|
x[1][0] *= s[1];
|
|
x[1][1] *= s[1];
|
|
x[1][2] *= s[1];
|
|
x[1][3] *= s[1];
|
|
|
|
x[2][0] *= s[2];
|
|
x[2][1] *= s[2];
|
|
x[2][2] *= s[2];
|
|
x[2][3] *= s[2];
|
|
|
|
return *this;
|
|
}
|
|
|
|
template <class T>
|
|
template <class S>
|
|
const Matrix44<T> &
|
|
Matrix44<T>::setTranslation (const Vec3<S> &t)
|
|
{
|
|
x[0][0] = 1;
|
|
x[0][1] = 0;
|
|
x[0][2] = 0;
|
|
x[0][3] = 0;
|
|
|
|
x[1][0] = 0;
|
|
x[1][1] = 1;
|
|
x[1][2] = 0;
|
|
x[1][3] = 0;
|
|
|
|
x[2][0] = 0;
|
|
x[2][1] = 0;
|
|
x[2][2] = 1;
|
|
x[2][3] = 0;
|
|
|
|
x[3][0] = t[0];
|
|
x[3][1] = t[1];
|
|
x[3][2] = t[2];
|
|
x[3][3] = 1;
|
|
|
|
return *this;
|
|
}
|
|
|
|
template <class T>
|
|
inline const Vec3<T>
|
|
Matrix44<T>::translation () const
|
|
{
|
|
return Vec3<T> (x[3][0], x[3][1], x[3][2]);
|
|
}
|
|
|
|
template <class T>
|
|
template <class S>
|
|
const Matrix44<T> &
|
|
Matrix44<T>::translate (const Vec3<S> &t)
|
|
{
|
|
x[3][0] += t[0] * x[0][0] + t[1] * x[1][0] + t[2] * x[2][0];
|
|
x[3][1] += t[0] * x[0][1] + t[1] * x[1][1] + t[2] * x[2][1];
|
|
x[3][2] += t[0] * x[0][2] + t[1] * x[1][2] + t[2] * x[2][2];
|
|
x[3][3] += t[0] * x[0][3] + t[1] * x[1][3] + t[2] * x[2][3];
|
|
|
|
return *this;
|
|
}
|
|
|
|
template <class T>
|
|
template <class S>
|
|
const Matrix44<T> &
|
|
Matrix44<T>::setShear (const Vec3<S> &h)
|
|
{
|
|
x[0][0] = 1;
|
|
x[0][1] = 0;
|
|
x[0][2] = 0;
|
|
x[0][3] = 0;
|
|
|
|
x[1][0] = h[0];
|
|
x[1][1] = 1;
|
|
x[1][2] = 0;
|
|
x[1][3] = 0;
|
|
|
|
x[2][0] = h[1];
|
|
x[2][1] = h[2];
|
|
x[2][2] = 1;
|
|
x[2][3] = 0;
|
|
|
|
x[3][0] = 0;
|
|
x[3][1] = 0;
|
|
x[3][2] = 0;
|
|
x[3][3] = 1;
|
|
|
|
return *this;
|
|
}
|
|
|
|
template <class T>
|
|
template <class S>
|
|
const Matrix44<T> &
|
|
Matrix44<T>::setShear (const Shear6<S> &h)
|
|
{
|
|
x[0][0] = 1;
|
|
x[0][1] = h.yx;
|
|
x[0][2] = h.zx;
|
|
x[0][3] = 0;
|
|
|
|
x[1][0] = h.xy;
|
|
x[1][1] = 1;
|
|
x[1][2] = h.zy;
|
|
x[1][3] = 0;
|
|
|
|
x[2][0] = h.xz;
|
|
x[2][1] = h.yz;
|
|
x[2][2] = 1;
|
|
x[2][3] = 0;
|
|
|
|
x[3][0] = 0;
|
|
x[3][1] = 0;
|
|
x[3][2] = 0;
|
|
x[3][3] = 1;
|
|
|
|
return *this;
|
|
}
|
|
|
|
template <class T>
|
|
template <class S>
|
|
const Matrix44<T> &
|
|
Matrix44<T>::shear (const Vec3<S> &h)
|
|
{
|
|
//
|
|
// In this case, we don't need a temp. copy of the matrix
|
|
// because we never use a value on the RHS after we've
|
|
// changed it on the LHS.
|
|
//
|
|
|
|
for (int i=0; i < 4; i++)
|
|
{
|
|
x[2][i] += h[1] * x[0][i] + h[2] * x[1][i];
|
|
x[1][i] += h[0] * x[0][i];
|
|
}
|
|
|
|
return *this;
|
|
}
|
|
|
|
template <class T>
|
|
template <class S>
|
|
const Matrix44<T> &
|
|
Matrix44<T>::shear (const Shear6<S> &h)
|
|
{
|
|
Matrix44<T> P (*this);
|
|
|
|
for (int i=0; i < 4; i++)
|
|
{
|
|
x[0][i] = P[0][i] + h.yx * P[1][i] + h.zx * P[2][i];
|
|
x[1][i] = h.xy * P[0][i] + P[1][i] + h.zy * P[2][i];
|
|
x[2][i] = h.xz * P[0][i] + h.yz * P[1][i] + P[2][i];
|
|
}
|
|
|
|
return *this;
|
|
}
|
|
|
|
|
|
//--------------------------------
|
|
// Implementation of stream output
|
|
//--------------------------------
|
|
|
|
template <class T>
|
|
std::ostream &
|
|
operator << (std::ostream &s, const Matrix33<T> &m)
|
|
{
|
|
std::ios_base::fmtflags oldFlags = s.flags();
|
|
int width;
|
|
|
|
if (s.flags() & std::ios_base::fixed)
|
|
{
|
|
s.setf (std::ios_base::showpoint);
|
|
width = static_cast<int>(s.precision()) + 5;
|
|
}
|
|
else
|
|
{
|
|
s.setf (std::ios_base::scientific);
|
|
s.setf (std::ios_base::showpoint);
|
|
width = static_cast<int>(s.precision()) + 8;
|
|
}
|
|
|
|
s << "(" << std::setw (width) << m[0][0] <<
|
|
" " << std::setw (width) << m[0][1] <<
|
|
" " << std::setw (width) << m[0][2] << "\n" <<
|
|
|
|
" " << std::setw (width) << m[1][0] <<
|
|
" " << std::setw (width) << m[1][1] <<
|
|
" " << std::setw (width) << m[1][2] << "\n" <<
|
|
|
|
" " << std::setw (width) << m[2][0] <<
|
|
" " << std::setw (width) << m[2][1] <<
|
|
" " << std::setw (width) << m[2][2] << ")\n";
|
|
|
|
s.flags (oldFlags);
|
|
return s;
|
|
}
|
|
|
|
template <class T>
|
|
std::ostream &
|
|
operator << (std::ostream &s, const Matrix44<T> &m)
|
|
{
|
|
std::ios_base::fmtflags oldFlags = s.flags();
|
|
int width;
|
|
|
|
if (s.flags() & std::ios_base::fixed)
|
|
{
|
|
s.setf (std::ios_base::showpoint);
|
|
width = static_cast<int>(s.precision()) + 5;
|
|
}
|
|
else
|
|
{
|
|
s.setf (std::ios_base::scientific);
|
|
s.setf (std::ios_base::showpoint);
|
|
width = static_cast<int>(s.precision()) + 8;
|
|
}
|
|
|
|
s << "(" << std::setw (width) << m[0][0] <<
|
|
" " << std::setw (width) << m[0][1] <<
|
|
" " << std::setw (width) << m[0][2] <<
|
|
" " << std::setw (width) << m[0][3] << "\n" <<
|
|
|
|
" " << std::setw (width) << m[1][0] <<
|
|
" " << std::setw (width) << m[1][1] <<
|
|
" " << std::setw (width) << m[1][2] <<
|
|
" " << std::setw (width) << m[1][3] << "\n" <<
|
|
|
|
" " << std::setw (width) << m[2][0] <<
|
|
" " << std::setw (width) << m[2][1] <<
|
|
" " << std::setw (width) << m[2][2] <<
|
|
" " << std::setw (width) << m[2][3] << "\n" <<
|
|
|
|
" " << std::setw (width) << m[3][0] <<
|
|
" " << std::setw (width) << m[3][1] <<
|
|
" " << std::setw (width) << m[3][2] <<
|
|
" " << std::setw (width) << m[3][3] << ")\n";
|
|
|
|
s.flags (oldFlags);
|
|
return s;
|
|
}
|
|
|
|
|
|
//---------------------------------------------------------------
|
|
// Implementation of vector-times-matrix multiplication operators
|
|
//---------------------------------------------------------------
|
|
|
|
template <class S, class T>
|
|
inline const Vec2<S> &
|
|
operator *= (Vec2<S> &v, const Matrix33<T> &m)
|
|
{
|
|
S x = S(v.x * m[0][0] + v.y * m[1][0] + m[2][0]);
|
|
S y = S(v.x * m[0][1] + v.y * m[1][1] + m[2][1]);
|
|
S w = S(v.x * m[0][2] + v.y * m[1][2] + m[2][2]);
|
|
|
|
v.x = x / w;
|
|
v.y = y / w;
|
|
|
|
return v;
|
|
}
|
|
|
|
template <class S, class T>
|
|
inline Vec2<S>
|
|
operator * (const Vec2<S> &v, const Matrix33<T> &m)
|
|
{
|
|
S x = S(v.x * m[0][0] + v.y * m[1][0] + m[2][0]);
|
|
S y = S(v.x * m[0][1] + v.y * m[1][1] + m[2][1]);
|
|
S w = S(v.x * m[0][2] + v.y * m[1][2] + m[2][2]);
|
|
|
|
return Vec2<S> (x / w, y / w);
|
|
}
|
|
|
|
|
|
template <class S, class T>
|
|
inline const Vec3<S> &
|
|
operator *= (Vec3<S> &v, const Matrix33<T> &m)
|
|
{
|
|
S x = S(v.x * m[0][0] + v.y * m[1][0] + v.z * m[2][0]);
|
|
S y = S(v.x * m[0][1] + v.y * m[1][1] + v.z * m[2][1]);
|
|
S z = S(v.x * m[0][2] + v.y * m[1][2] + v.z * m[2][2]);
|
|
|
|
v.x = x;
|
|
v.y = y;
|
|
v.z = z;
|
|
|
|
return v;
|
|
}
|
|
|
|
template <class S, class T>
|
|
inline Vec3<S>
|
|
operator * (const Vec3<S> &v, const Matrix33<T> &m)
|
|
{
|
|
S x = S(v.x * m[0][0] + v.y * m[1][0] + v.z * m[2][0]);
|
|
S y = S(v.x * m[0][1] + v.y * m[1][1] + v.z * m[2][1]);
|
|
S z = S(v.x * m[0][2] + v.y * m[1][2] + v.z * m[2][2]);
|
|
|
|
return Vec3<S> (x, y, z);
|
|
}
|
|
|
|
|
|
template <class S, class T>
|
|
inline const Vec3<S> &
|
|
operator *= (Vec3<S> &v, const Matrix44<T> &m)
|
|
{
|
|
S x = S(v.x * m[0][0] + v.y * m[1][0] + v.z * m[2][0] + m[3][0]);
|
|
S y = S(v.x * m[0][1] + v.y * m[1][1] + v.z * m[2][1] + m[3][1]);
|
|
S z = S(v.x * m[0][2] + v.y * m[1][2] + v.z * m[2][2] + m[3][2]);
|
|
S w = S(v.x * m[0][3] + v.y * m[1][3] + v.z * m[2][3] + m[3][3]);
|
|
|
|
v.x = x / w;
|
|
v.y = y / w;
|
|
v.z = z / w;
|
|
|
|
return v;
|
|
}
|
|
|
|
template <class S, class T>
|
|
inline Vec3<S>
|
|
operator * (const Vec3<S> &v, const Matrix44<T> &m)
|
|
{
|
|
S x = S(v.x * m[0][0] + v.y * m[1][0] + v.z * m[2][0] + m[3][0]);
|
|
S y = S(v.x * m[0][1] + v.y * m[1][1] + v.z * m[2][1] + m[3][1]);
|
|
S z = S(v.x * m[0][2] + v.y * m[1][2] + v.z * m[2][2] + m[3][2]);
|
|
S w = S(v.x * m[0][3] + v.y * m[1][3] + v.z * m[2][3] + m[3][3]);
|
|
|
|
return Vec3<S> (x / w, y / w, z / w);
|
|
}
|
|
|
|
|
|
template <class S, class T>
|
|
inline const Vec4<S> &
|
|
operator *= (Vec4<S> &v, const Matrix44<T> &m)
|
|
{
|
|
S x = S(v.x * m[0][0] + v.y * m[1][0] + v.z * m[2][0] + v.w * m[3][0]);
|
|
S y = S(v.x * m[0][1] + v.y * m[1][1] + v.z * m[2][1] + v.w * m[3][1]);
|
|
S z = S(v.x * m[0][2] + v.y * m[1][2] + v.z * m[2][2] + v.w * m[3][2]);
|
|
S w = S(v.x * m[0][3] + v.y * m[1][3] + v.z * m[2][3] + v.w * m[3][3]);
|
|
|
|
v.x = x;
|
|
v.y = y;
|
|
v.z = z;
|
|
v.w = w;
|
|
|
|
return v;
|
|
}
|
|
|
|
template <class S, class T>
|
|
inline Vec4<S>
|
|
operator * (const Vec4<S> &v, const Matrix44<T> &m)
|
|
{
|
|
S x = S(v.x * m[0][0] + v.y * m[1][0] + v.z * m[2][0] + v.w * m[3][0]);
|
|
S y = S(v.x * m[0][1] + v.y * m[1][1] + v.z * m[2][1] + v.w * m[3][1]);
|
|
S z = S(v.x * m[0][2] + v.y * m[1][2] + v.z * m[2][2] + v.w * m[3][2]);
|
|
S w = S(v.x * m[0][3] + v.y * m[1][3] + v.z * m[2][3] + v.w * m[3][3]);
|
|
|
|
return Vec4<S> (x, y, z, w);
|
|
}
|
|
|
|
IMATH_INTERNAL_NAMESPACE_HEADER_EXIT
|
|
|
|
#endif // INCLUDED_IMATHMATRIX_H
|