cameracv/libs/opencv/modules/calib3d/test/test_chessboardgenerator.cpp
2023-05-18 21:39:43 +03:00

331 lines
13 KiB
C++

/*M///////////////////////////////////////////////////////////////////////////////////////
//
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
//
// By downloading, copying, installing or using the software you agree to this license.
// If you do not agree to this license, do not download, install,
// copy or use the software.
//
//
// License Agreement
// For Open Source Computer Vision Library
//
// Copyright (C) 2000-2008, Intel Corporation, all rights reserved.
// Copyright (C) 2009, Willow Garage Inc., all rights reserved.
// Third party copyrights are property of their respective owners.
//
// Redistribution and use in source and binary forms, with or without modification,
// are permitted provided that the following conditions are met:
//
// * Redistribution's of source code must retain the above copyright notice,
// this list of conditions and the following disclaimer.
//
// * Redistribution's in binary form must reproduce the above copyright notice,
// this list of conditions and the following disclaimer in the documentation
// and/or other materials provided with the distribution.
//
// * The name of the copyright holders may not be used to endorse or promote products
// derived from this software without specific prior written permission.
//
// This software is provided by the copyright holders and contributors "as is" and
// any express or implied warranties, including, but not limited to, the implied
// warranties of merchantability and fitness for a particular purpose are disclaimed.
// In no event shall the Intel Corporation or contributors be liable for any direct,
// indirect, incidental, special, exemplary, or consequential damages
// (including, but not limited to, procurement of substitute goods or services;
// loss of use, data, or profits; or business interruption) however caused
// and on any theory of liability, whether in contract, strict liability,
// or tort (including negligence or otherwise) arising in any way out of
// the use of this software, even if advised of the possibility of such damage.
//
//M*/
#include "test_precomp.hpp"
#include "test_chessboardgenerator.hpp"
namespace cv {
ChessBoardGenerator::ChessBoardGenerator(const Size& _patternSize) : sensorWidth(32), sensorHeight(24),
squareEdgePointsNum(200), min_cos(std::sqrt(3.f)*0.5f), cov(0.5),
patternSize(_patternSize), rendererResolutionMultiplier(4), tvec(Mat::zeros(1, 3, CV_32F))
{
rvec.create(3, 1, CV_32F);
cvtest::Rodrigues(Mat::eye(3, 3, CV_32F), rvec);
}
void ChessBoardGenerator::generateEdge(const Point3f& p1, const Point3f& p2, vector<Point3f>& out) const
{
Point3f step = (p2 - p1) * (1.f/squareEdgePointsNum);
for(size_t n = 0; n < squareEdgePointsNum; ++n)
out.push_back( p1 + step * (float)n);
}
Size ChessBoardGenerator::cornersSize() const
{
return Size(patternSize.width-1, patternSize.height-1);
}
struct Mult
{
float m;
Mult(int mult) : m((float)mult) {}
Point2f operator()(const Point2f& p)const { return p * m; }
};
void ChessBoardGenerator::generateBasis(Point3f& pb1, Point3f& pb2) const
{
RNG& rng = theRNG();
Vec3f n;
for(;;)
{
n[0] = rng.uniform(-1.f, 1.f);
n[1] = rng.uniform(-1.f, 1.f);
n[2] = rng.uniform(0.0f, 1.f);
float len = (float)norm(n);
if (len < 1e-3)
continue;
n[0]/=len;
n[1]/=len;
n[2]/=len;
if (n[2] > min_cos)
break;
}
Vec3f n_temp = n; n_temp[0] += 100;
Vec3f b1 = n.cross(n_temp);
Vec3f b2 = n.cross(b1);
float len_b1 = (float)norm(b1);
float len_b2 = (float)norm(b2);
pb1 = Point3f(b1[0]/len_b1, b1[1]/len_b1, b1[2]/len_b1);
pb2 = Point3f(b2[0]/len_b1, b2[1]/len_b2, b2[2]/len_b2);
}
Mat ChessBoardGenerator::generateChessBoard(const Mat& bg, const Mat& camMat, const Mat& distCoeffs,
const Point3f& zero, const Point3f& pb1, const Point3f& pb2,
float sqWidth, float sqHeight, const vector<Point3f>& whole,
vector<Point2f>& corners) const
{
vector< vector<Point> > squares_black;
for(int i = 0; i < patternSize.width; ++i)
for(int j = 0; j < patternSize.height; ++j)
if ( (i % 2 == 0 && j % 2 == 0) || (i % 2 != 0 && j % 2 != 0) )
{
vector<Point3f> pts_square3d;
vector<Point2f> pts_square2d;
Point3f p1 = zero + (i + 0) * sqWidth * pb1 + (j + 0) * sqHeight * pb2;
Point3f p2 = zero + (i + 1) * sqWidth * pb1 + (j + 0) * sqHeight * pb2;
Point3f p3 = zero + (i + 1) * sqWidth * pb1 + (j + 1) * sqHeight * pb2;
Point3f p4 = zero + (i + 0) * sqWidth * pb1 + (j + 1) * sqHeight * pb2;
generateEdge(p1, p2, pts_square3d);
generateEdge(p2, p3, pts_square3d);
generateEdge(p3, p4, pts_square3d);
generateEdge(p4, p1, pts_square3d);
projectPoints(pts_square3d, rvec, tvec, camMat, distCoeffs, pts_square2d);
squares_black.resize(squares_black.size() + 1);
vector<Point2f> temp;
approxPolyDP(pts_square2d, temp, 1.0, true);
transform(temp.begin(), temp.end(), back_inserter(squares_black.back()), Mult(rendererResolutionMultiplier));
}
/* calculate corners */
corners3d.clear();
for(int j = 0; j < patternSize.height - 1; ++j)
for(int i = 0; i < patternSize.width - 1; ++i)
corners3d.push_back(zero + (i + 1) * sqWidth * pb1 + (j + 1) * sqHeight * pb2);
corners.clear();
projectPoints(corners3d, rvec, tvec, camMat, distCoeffs, corners);
vector<Point3f> whole3d;
vector<Point2f> whole2d;
generateEdge(whole[0], whole[1], whole3d);
generateEdge(whole[1], whole[2], whole3d);
generateEdge(whole[2], whole[3], whole3d);
generateEdge(whole[3], whole[0], whole3d);
projectPoints(whole3d, rvec, tvec, camMat, distCoeffs, whole2d);
vector<Point2f> temp_whole2d;
approxPolyDP(whole2d, temp_whole2d, 1.0, true);
vector< vector<Point > > whole_contour(1);
transform(temp_whole2d.begin(), temp_whole2d.end(),
back_inserter(whole_contour.front()), Mult(rendererResolutionMultiplier));
Mat result;
if (rendererResolutionMultiplier == 1)
{
result = bg.clone();
drawContours(result, whole_contour, -1, Scalar::all(255), FILLED, LINE_AA);
drawContours(result, squares_black, -1, Scalar::all(0), FILLED, LINE_AA);
}
else
{
Mat tmp;
resize(bg, tmp, bg.size() * rendererResolutionMultiplier, 0, 0, INTER_LINEAR_EXACT);
drawContours(tmp, whole_contour, -1, Scalar::all(255), FILLED, LINE_AA);
drawContours(tmp, squares_black, -1, Scalar::all(0), FILLED, LINE_AA);
resize(tmp, result, bg.size(), 0, 0, INTER_AREA);
}
return result;
}
Mat ChessBoardGenerator::operator ()(const Mat& bg, const Mat& camMat, const Mat& distCoeffs, vector<Point2f>& corners) const
{
cov = std::min(cov, 0.8);
double fovx, fovy, focalLen;
Point2d principalPoint;
double aspect;
calibrationMatrixValues( camMat, bg.size(), sensorWidth, sensorHeight,
fovx, fovy, focalLen, principalPoint, aspect);
RNG& rng = theRNG();
float d1 = static_cast<float>(rng.uniform(0.1, 10.0));
float ah = static_cast<float>(rng.uniform(-fovx/2 * cov, fovx/2 * cov) * CV_PI / 180);
float av = static_cast<float>(rng.uniform(-fovy/2 * cov, fovy/2 * cov) * CV_PI / 180);
Point3f p;
p.z = cos(ah) * d1;
p.x = sin(ah) * d1;
p.y = p.z * tan(av);
Point3f pb1, pb2;
generateBasis(pb1, pb2);
float cbHalfWidth = static_cast<float>(norm(p) * sin( std::min(fovx, fovy) * 0.5 * CV_PI / 180));
float cbHalfHeight = cbHalfWidth * patternSize.height / patternSize.width;
float cbHalfWidthEx = cbHalfWidth * ( patternSize.width + 1) / patternSize.width;
float cbHalfHeightEx = cbHalfHeight * (patternSize.height + 1) / patternSize.height;
vector<Point3f> pts3d(4);
vector<Point2f> pts2d(4);
for(;;)
{
pts3d[0] = p + pb1 * cbHalfWidthEx + cbHalfHeightEx * pb2;
pts3d[1] = p + pb1 * cbHalfWidthEx - cbHalfHeightEx * pb2;
pts3d[2] = p - pb1 * cbHalfWidthEx - cbHalfHeightEx * pb2;
pts3d[3] = p - pb1 * cbHalfWidthEx + cbHalfHeightEx * pb2;
/* can remake with better perf */
projectPoints(pts3d, rvec, tvec, camMat, distCoeffs, pts2d);
bool inrect1 = pts2d[0].x < bg.cols && pts2d[0].y < bg.rows && pts2d[0].x > 0 && pts2d[0].y > 0;
bool inrect2 = pts2d[1].x < bg.cols && pts2d[1].y < bg.rows && pts2d[1].x > 0 && pts2d[1].y > 0;
bool inrect3 = pts2d[2].x < bg.cols && pts2d[2].y < bg.rows && pts2d[2].x > 0 && pts2d[2].y > 0;
bool inrect4 = pts2d[3].x < bg.cols && pts2d[3].y < bg.rows && pts2d[3].x > 0 && pts2d[3].y > 0;
if (inrect1 && inrect2 && inrect3 && inrect4)
break;
cbHalfWidth*=0.8f;
cbHalfHeight = cbHalfWidth * patternSize.height / patternSize.width;
cbHalfWidthEx = cbHalfWidth * ( patternSize.width + 1) / patternSize.width;
cbHalfHeightEx = cbHalfHeight * (patternSize.height + 1) / patternSize.height;
}
Point3f zero = p - pb1 * cbHalfWidth - cbHalfHeight * pb2;
float sqWidth = 2 * cbHalfWidth/patternSize.width;
float sqHeight = 2 * cbHalfHeight/patternSize.height;
return generateChessBoard(bg, camMat, distCoeffs, zero, pb1, pb2, sqWidth, sqHeight, pts3d, corners);
}
Mat ChessBoardGenerator::operator ()(const Mat& bg, const Mat& camMat, const Mat& distCoeffs,
const Size2f& squareSize, vector<Point2f>& corners) const
{
cov = std::min(cov, 0.8);
double fovx, fovy, focalLen;
Point2d principalPoint;
double aspect;
calibrationMatrixValues( camMat, bg.size(), sensorWidth, sensorHeight,
fovx, fovy, focalLen, principalPoint, aspect);
RNG& rng = theRNG();
float d1 = static_cast<float>(rng.uniform(0.1, 10.0));
float ah = static_cast<float>(rng.uniform(-fovx/2 * cov, fovx/2 * cov) * CV_PI / 180);
float av = static_cast<float>(rng.uniform(-fovy/2 * cov, fovy/2 * cov) * CV_PI / 180);
Point3f p;
p.z = cos(ah) * d1;
p.x = sin(ah) * d1;
p.y = p.z * tan(av);
Point3f pb1, pb2;
generateBasis(pb1, pb2);
float cbHalfWidth = squareSize.width * patternSize.width * 0.5f;
float cbHalfHeight = squareSize.height * patternSize.height * 0.5f;
float cbHalfWidthEx = cbHalfWidth * ( patternSize.width + 1) / patternSize.width;
float cbHalfHeightEx = cbHalfHeight * (patternSize.height + 1) / patternSize.height;
vector<Point3f> pts3d(4);
vector<Point2f> pts2d(4);
for(;;)
{
pts3d[0] = p + pb1 * cbHalfWidthEx + cbHalfHeightEx * pb2;
pts3d[1] = p + pb1 * cbHalfWidthEx - cbHalfHeightEx * pb2;
pts3d[2] = p - pb1 * cbHalfWidthEx - cbHalfHeightEx * pb2;
pts3d[3] = p - pb1 * cbHalfWidthEx + cbHalfHeightEx * pb2;
/* can remake with better perf */
projectPoints(pts3d, rvec, tvec, camMat, distCoeffs, pts2d);
bool inrect1 = pts2d[0].x < bg.cols && pts2d[0].y < bg.rows && pts2d[0].x > 0 && pts2d[0].y > 0;
bool inrect2 = pts2d[1].x < bg.cols && pts2d[1].y < bg.rows && pts2d[1].x > 0 && pts2d[1].y > 0;
bool inrect3 = pts2d[2].x < bg.cols && pts2d[2].y < bg.rows && pts2d[2].x > 0 && pts2d[2].y > 0;
bool inrect4 = pts2d[3].x < bg.cols && pts2d[3].y < bg.rows && pts2d[3].x > 0 && pts2d[3].y > 0;
if ( inrect1 && inrect2 && inrect3 && inrect4)
break;
p.z *= 1.1f;
}
Point3f zero = p - pb1 * cbHalfWidth - cbHalfHeight * pb2;
return generateChessBoard(bg, camMat, distCoeffs, zero, pb1, pb2,
squareSize.width, squareSize.height, pts3d, corners);
}
Mat ChessBoardGenerator::operator ()(const Mat& bg, const Mat& camMat, const Mat& distCoeffs,
const Size2f& squareSize, const Point3f& pos, vector<Point2f>& corners) const
{
cov = std::min(cov, 0.8);
Point3f p = pos;
Point3f pb1, pb2;
generateBasis(pb1, pb2);
float cbHalfWidth = squareSize.width * patternSize.width * 0.5f;
float cbHalfHeight = squareSize.height * patternSize.height * 0.5f;
float cbHalfWidthEx = cbHalfWidth * ( patternSize.width + 1) / patternSize.width;
float cbHalfHeightEx = cbHalfHeight * (patternSize.height + 1) / patternSize.height;
vector<Point3f> pts3d(4);
vector<Point2f> pts2d(4);
pts3d[0] = p + pb1 * cbHalfWidthEx + cbHalfHeightEx * pb2;
pts3d[1] = p + pb1 * cbHalfWidthEx - cbHalfHeightEx * pb2;
pts3d[2] = p - pb1 * cbHalfWidthEx - cbHalfHeightEx * pb2;
pts3d[3] = p - pb1 * cbHalfWidthEx + cbHalfHeightEx * pb2;
/* can remake with better perf */
projectPoints(pts3d, rvec, tvec, camMat, distCoeffs, pts2d);
Point3f zero = p - pb1 * cbHalfWidth - cbHalfHeight * pb2;
return generateChessBoard(bg, camMat, distCoeffs, zero, pb1, pb2,
squareSize.width, squareSize.height, pts3d, corners);
}
} // namespace