cameracv/libs/opencv/modules/python/src2/cv2_numpy.hpp
2023-05-18 21:39:43 +03:00

217 lines
5.8 KiB
C++

#ifndef CV2_NUMPY_HPP
#define CV2_NUMPY_HPP
#include "cv2.hpp"
#include "opencv2/core.hpp"
class NumpyAllocator : public cv::MatAllocator
{
public:
NumpyAllocator() { stdAllocator = cv::Mat::getStdAllocator(); }
~NumpyAllocator() {}
cv::UMatData* allocate(PyObject* o, int dims, const int* sizes, int type, size_t* step) const;
cv::UMatData* allocate(int dims0, const int* sizes, int type, void* data, size_t* step, cv::AccessFlag flags, cv::UMatUsageFlags usageFlags) const CV_OVERRIDE;
bool allocate(cv::UMatData* u, cv::AccessFlag accessFlags, cv::UMatUsageFlags usageFlags) const CV_OVERRIDE;
void deallocate(cv::UMatData* u) const CV_OVERRIDE;
const cv::MatAllocator* stdAllocator;
};
extern NumpyAllocator g_numpyAllocator;
//======================================================================================================================
// HACK(?): function from cv2_util.hpp
extern int failmsg(const char *fmt, ...);
namespace {
template<class T>
NPY_TYPES asNumpyType()
{
return NPY_OBJECT;
}
template<>
NPY_TYPES asNumpyType<bool>()
{
return NPY_BOOL;
}
#define CV_GENERATE_INTEGRAL_TYPE_NPY_CONVERSION(src, dst) \
template<> \
NPY_TYPES asNumpyType<src>() \
{ \
return NPY_##dst; \
} \
template<> \
NPY_TYPES asNumpyType<u##src>() \
{ \
return NPY_U##dst; \
}
CV_GENERATE_INTEGRAL_TYPE_NPY_CONVERSION(int8_t, INT8);
CV_GENERATE_INTEGRAL_TYPE_NPY_CONVERSION(int16_t, INT16);
CV_GENERATE_INTEGRAL_TYPE_NPY_CONVERSION(int32_t, INT32);
CV_GENERATE_INTEGRAL_TYPE_NPY_CONVERSION(int64_t, INT64);
#undef CV_GENERATE_INTEGRAL_TYPE_NPY_CONVERSION
template<>
NPY_TYPES asNumpyType<float>()
{
return NPY_FLOAT;
}
template<>
NPY_TYPES asNumpyType<double>()
{
return NPY_DOUBLE;
}
template <class T>
PyArray_Descr* getNumpyTypeDescriptor()
{
return PyArray_DescrFromType(asNumpyType<T>());
}
template <>
PyArray_Descr* getNumpyTypeDescriptor<size_t>()
{
#if SIZE_MAX == ULONG_MAX
return PyArray_DescrFromType(NPY_ULONG);
#elif SIZE_MAX == ULLONG_MAX
return PyArray_DescrFromType(NPY_ULONGLONG);
#else
return PyArray_DescrFromType(NPY_UINT);
#endif
}
template <class T, class U>
bool isRepresentable(U value) {
return (std::numeric_limits<T>::min() <= value) && (value <= std::numeric_limits<T>::max());
}
template<class T>
bool canBeSafelyCasted(PyObject* obj, PyArray_Descr* to)
{
return PyArray_CanCastTo(PyArray_DescrFromScalar(obj), to) != 0;
}
template<>
bool canBeSafelyCasted<size_t>(PyObject* obj, PyArray_Descr* to)
{
PyArray_Descr* from = PyArray_DescrFromScalar(obj);
if (PyArray_CanCastTo(from, to))
{
return true;
}
else
{
// False negative scenarios:
// - Signed input is positive so it can be safely cast to unsigned output
// - Input has wider limits but value is representable within output limits
// - All the above
if (PyDataType_ISSIGNED(from))
{
int64_t input = 0;
PyArray_CastScalarToCtype(obj, &input, getNumpyTypeDescriptor<int64_t>());
return (input >= 0) && isRepresentable<size_t>(static_cast<uint64_t>(input));
}
else
{
uint64_t input = 0;
PyArray_CastScalarToCtype(obj, &input, getNumpyTypeDescriptor<uint64_t>());
return isRepresentable<size_t>(input);
}
return false;
}
}
template<class T>
bool parseNumpyScalar(PyObject* obj, T& value)
{
if (PyArray_CheckScalar(obj))
{
// According to the numpy documentation:
// There are 21 statically-defined PyArray_Descr objects for the built-in data-types
// So descriptor pointer is not owning.
PyArray_Descr* to = getNumpyTypeDescriptor<T>();
if (canBeSafelyCasted<T>(obj, to))
{
PyArray_CastScalarToCtype(obj, &value, to);
return true;
}
}
return false;
}
struct SafeSeqItem
{
PyObject * item;
SafeSeqItem(PyObject *obj, size_t idx) { item = PySequence_GetItem(obj, idx); }
~SafeSeqItem() { Py_XDECREF(item); }
private:
SafeSeqItem(const SafeSeqItem&); // = delete
SafeSeqItem& operator=(const SafeSeqItem&); // = delete
};
template <class T>
class RefWrapper
{
public:
RefWrapper(T& item) : item_(item) {}
T& get() CV_NOEXCEPT { return item_; }
private:
T& item_;
};
// In order to support this conversion on 3.x branch - use custom reference_wrapper
// and C-style array instead of std::array<T, N>
template <class T, std::size_t N>
bool parseSequence(PyObject* obj, RefWrapper<T> (&value)[N], const ArgInfo& info)
{
if (!obj || obj == Py_None)
{
return true;
}
if (!PySequence_Check(obj))
{
failmsg("Can't parse '%s'. Input argument doesn't provide sequence "
"protocol", info.name);
return false;
}
const std::size_t sequenceSize = PySequence_Size(obj);
if (sequenceSize != N)
{
failmsg("Can't parse '%s'. Expected sequence length %lu, got %lu",
info.name, N, sequenceSize);
return false;
}
for (std::size_t i = 0; i < N; ++i)
{
SafeSeqItem seqItem(obj, i);
if (!pyopencv_to(seqItem.item, value[i].get(), info))
{
failmsg("Can't parse '%s'. Sequence item with index %lu has a "
"wrong type", info.name, i);
return false;
}
}
return true;
}
} // namespace
#endif // CV2_NUMPY_HPP