70 lines
1.7 KiB
Python
70 lines
1.7 KiB
Python
#!/usr/bin/env python
|
|
|
|
'''
|
|
Robust line fitting.
|
|
==================
|
|
|
|
Example of using cv.fitLine function for fitting line
|
|
to points in presence of outliers.
|
|
|
|
Switch through different M-estimator functions and see,
|
|
how well the robust functions fit the line even
|
|
in case of ~50% of outliers.
|
|
|
|
'''
|
|
|
|
# Python 2/3 compatibility
|
|
from __future__ import print_function
|
|
import sys
|
|
PY3 = sys.version_info[0] == 3
|
|
|
|
import numpy as np
|
|
import cv2 as cv
|
|
|
|
from tests_common import NewOpenCVTests
|
|
|
|
w, h = 512, 256
|
|
|
|
def toint(p):
|
|
return tuple(map(int, p))
|
|
|
|
def sample_line(p1, p2, n, noise=0.0):
|
|
np.random.seed(10)
|
|
p1 = np.float32(p1)
|
|
t = np.random.rand(n,1)
|
|
return p1 + (p2-p1)*t + np.random.normal(size=(n, 2))*noise
|
|
|
|
dist_func_names = ['DIST_L2', 'DIST_L1', 'DIST_L12', 'DIST_FAIR', 'DIST_WELSCH', 'DIST_HUBER']
|
|
|
|
class fitline_test(NewOpenCVTests):
|
|
|
|
def test_fitline(self):
|
|
|
|
noise = 5
|
|
n = 200
|
|
r = 5 / 100.0
|
|
outn = int(n*r)
|
|
|
|
p0, p1 = (90, 80), (w-90, h-80)
|
|
line_points = sample_line(p0, p1, n-outn, noise)
|
|
outliers = np.random.rand(outn, 2) * (w, h)
|
|
points = np.vstack([line_points, outliers])
|
|
|
|
lines = []
|
|
|
|
for name in dist_func_names:
|
|
func = getattr(cv, name)
|
|
vx, vy, cx, cy = cv.fitLine(np.float32(points), func, 0, 0.01, 0.01)
|
|
line = [float(vx), float(vy), float(cx), float(cy)]
|
|
lines.append(line)
|
|
|
|
eps = 0.05
|
|
|
|
refVec = (np.float32(p1) - p0) / cv.norm(np.float32(p1) - p0)
|
|
|
|
for i in range(len(lines)):
|
|
self.assertLessEqual(cv.norm(refVec - lines[i][0:2], cv.NORM_L2), eps)
|
|
|
|
|
|
if __name__ == '__main__':
|
|
NewOpenCVTests.bootstrap()
|