cameracv/libs/opencv/samples/dnn/tf_text_graph_mask_rcnn.py
2023-05-18 21:39:43 +03:00

297 lines
11 KiB
Python

import argparse
import numpy as np
from tf_text_graph_common import *
parser = argparse.ArgumentParser(description='Run this script to get a text graph of '
'Mask-RCNN model from TensorFlow Object Detection API. '
'Then pass it with .pb file to cv::dnn::readNetFromTensorflow function.')
parser.add_argument('--input', required=True, help='Path to frozen TensorFlow graph.')
parser.add_argument('--output', required=True, help='Path to output text graph.')
parser.add_argument('--config', required=True, help='Path to a *.config file is used for training.')
args = parser.parse_args()
scopesToKeep = ('FirstStageFeatureExtractor', 'Conv',
'FirstStageBoxPredictor/BoxEncodingPredictor',
'FirstStageBoxPredictor/ClassPredictor',
'CropAndResize',
'MaxPool2D',
'SecondStageFeatureExtractor',
'SecondStageBoxPredictor',
'Preprocessor/sub',
'Preprocessor/mul',
'image_tensor')
scopesToIgnore = ('FirstStageFeatureExtractor/Assert',
'FirstStageFeatureExtractor/Shape',
'FirstStageFeatureExtractor/strided_slice',
'FirstStageFeatureExtractor/GreaterEqual',
'FirstStageFeatureExtractor/LogicalAnd',
'Conv/required_space_to_batch_paddings')
# Load a config file.
config = readTextMessage(args.config)
config = config['model'][0]['faster_rcnn'][0]
num_classes = int(config['num_classes'][0])
grid_anchor_generator = config['first_stage_anchor_generator'][0]['grid_anchor_generator'][0]
scales = [float(s) for s in grid_anchor_generator['scales']]
aspect_ratios = [float(ar) for ar in grid_anchor_generator['aspect_ratios']]
width_stride = float(grid_anchor_generator['width_stride'][0])
height_stride = float(grid_anchor_generator['height_stride'][0])
features_stride = float(config['feature_extractor'][0]['first_stage_features_stride'][0])
first_stage_nms_iou_threshold = float(config['first_stage_nms_iou_threshold'][0])
first_stage_max_proposals = int(config['first_stage_max_proposals'][0])
print('Number of classes: %d' % num_classes)
print('Scales: %s' % str(scales))
print('Aspect ratios: %s' % str(aspect_ratios))
print('Width stride: %f' % width_stride)
print('Height stride: %f' % height_stride)
print('Features stride: %f' % features_stride)
# Read the graph.
writeTextGraph(args.input, args.output, ['num_detections', 'detection_scores', 'detection_boxes', 'detection_classes', 'detection_masks'])
graph_def = parseTextGraph(args.output)
removeIdentity(graph_def)
nodesToKeep = []
def to_remove(name, op):
if name in nodesToKeep:
return False
return op == 'Const' or name.startswith(scopesToIgnore) or not name.startswith(scopesToKeep) or \
(name.startswith('CropAndResize') and op != 'CropAndResize')
# Fuse atrous convolutions (with dilations).
nodesMap = {node.name: node for node in graph_def.node}
for node in reversed(graph_def.node):
if node.op == 'BatchToSpaceND':
del node.input[2]
conv = nodesMap[node.input[0]]
spaceToBatchND = nodesMap[conv.input[0]]
paddingsNode = NodeDef()
paddingsNode.name = conv.name + '/paddings'
paddingsNode.op = 'Const'
paddingsNode.addAttr('value', [2, 2, 2, 2])
graph_def.node.insert(graph_def.node.index(spaceToBatchND), paddingsNode)
nodesToKeep.append(paddingsNode.name)
spaceToBatchND.input[2] = paddingsNode.name
removeUnusedNodesAndAttrs(to_remove, graph_def)
# Connect input node to the first layer
assert(graph_def.node[0].op == 'Placeholder')
graph_def.node[1].input.insert(0, graph_def.node[0].name)
# Temporarily remove top nodes.
topNodes = []
numCropAndResize = 0
while True:
node = graph_def.node.pop()
topNodes.append(node)
if node.op == 'CropAndResize':
numCropAndResize += 1
if numCropAndResize == 2:
break
addReshape('FirstStageBoxPredictor/ClassPredictor/BiasAdd',
'FirstStageBoxPredictor/ClassPredictor/reshape_1', [0, -1, 2], graph_def)
addSoftMax('FirstStageBoxPredictor/ClassPredictor/reshape_1',
'FirstStageBoxPredictor/ClassPredictor/softmax', graph_def) # Compare with Reshape_4
addFlatten('FirstStageBoxPredictor/ClassPredictor/softmax',
'FirstStageBoxPredictor/ClassPredictor/softmax/flatten', graph_def)
# Compare with FirstStageBoxPredictor/BoxEncodingPredictor/BiasAdd
addFlatten('FirstStageBoxPredictor/BoxEncodingPredictor/BiasAdd',
'FirstStageBoxPredictor/BoxEncodingPredictor/flatten', graph_def)
proposals = NodeDef()
proposals.name = 'proposals' # Compare with ClipToWindow/Gather/Gather (NOTE: normalized)
proposals.op = 'PriorBox'
proposals.input.append('FirstStageBoxPredictor/BoxEncodingPredictor/BiasAdd')
proposals.input.append(graph_def.node[0].name) # image_tensor
proposals.addAttr('flip', False)
proposals.addAttr('clip', True)
proposals.addAttr('step', features_stride)
proposals.addAttr('offset', 0.0)
proposals.addAttr('variance', [0.1, 0.1, 0.2, 0.2])
widths = []
heights = []
for a in aspect_ratios:
for s in scales:
ar = np.sqrt(a)
heights.append((height_stride**2) * s / ar)
widths.append((width_stride**2) * s * ar)
proposals.addAttr('width', widths)
proposals.addAttr('height', heights)
graph_def.node.extend([proposals])
# Compare with Reshape_5
detectionOut = NodeDef()
detectionOut.name = 'detection_out'
detectionOut.op = 'DetectionOutput'
detectionOut.input.append('FirstStageBoxPredictor/BoxEncodingPredictor/flatten')
detectionOut.input.append('FirstStageBoxPredictor/ClassPredictor/softmax/flatten')
detectionOut.input.append('proposals')
detectionOut.addAttr('num_classes', 2)
detectionOut.addAttr('share_location', True)
detectionOut.addAttr('background_label_id', 0)
detectionOut.addAttr('nms_threshold', first_stage_nms_iou_threshold)
detectionOut.addAttr('top_k', 6000)
detectionOut.addAttr('code_type', "CENTER_SIZE")
detectionOut.addAttr('keep_top_k', first_stage_max_proposals)
detectionOut.addAttr('clip', True)
graph_def.node.extend([detectionOut])
# Save as text.
cropAndResizeNodesNames = []
for node in reversed(topNodes):
if node.op != 'CropAndResize':
graph_def.node.extend([node])
topNodes.pop()
else:
cropAndResizeNodesNames.append(node.name)
if numCropAndResize == 1:
break
else:
graph_def.node.extend([node])
topNodes.pop()
numCropAndResize -= 1
addSoftMax('SecondStageBoxPredictor/Reshape_1', 'SecondStageBoxPredictor/Reshape_1/softmax', graph_def)
addSlice('SecondStageBoxPredictor/Reshape_1/softmax',
'SecondStageBoxPredictor/Reshape_1/slice',
[0, 0, 1], [-1, -1, -1], graph_def)
addReshape('SecondStageBoxPredictor/Reshape_1/slice',
'SecondStageBoxPredictor/Reshape_1/Reshape', [1, -1], graph_def)
# Replace Flatten subgraph onto a single node.
for i in reversed(range(len(graph_def.node))):
if graph_def.node[i].op == 'CropAndResize':
graph_def.node[i].input.insert(1, 'detection_out')
if graph_def.node[i].name == 'SecondStageBoxPredictor/Reshape':
addConstNode('SecondStageBoxPredictor/Reshape/shape2', [1, -1, 4], graph_def)
graph_def.node[i].input.pop()
graph_def.node[i].input.append('SecondStageBoxPredictor/Reshape/shape2')
if graph_def.node[i].name in ['SecondStageBoxPredictor/Flatten/flatten/Shape',
'SecondStageBoxPredictor/Flatten/flatten/strided_slice',
'SecondStageBoxPredictor/Flatten/flatten/Reshape/shape',
'SecondStageBoxPredictor/Flatten_1/flatten/Shape',
'SecondStageBoxPredictor/Flatten_1/flatten/strided_slice',
'SecondStageBoxPredictor/Flatten_1/flatten/Reshape/shape']:
del graph_def.node[i]
for node in graph_def.node:
if node.name == 'SecondStageBoxPredictor/Flatten/flatten/Reshape' or \
node.name == 'SecondStageBoxPredictor/Flatten_1/flatten/Reshape':
node.op = 'Flatten'
node.input.pop()
if node.name in ['FirstStageBoxPredictor/BoxEncodingPredictor/Conv2D',
'SecondStageBoxPredictor/BoxEncodingPredictor/MatMul']:
node.addAttr('loc_pred_transposed', True)
if node.name.startswith('MaxPool2D'):
assert(node.op == 'MaxPool')
assert(len(cropAndResizeNodesNames) == 2)
node.input = [cropAndResizeNodesNames[0]]
del cropAndResizeNodesNames[0]
################################################################################
### Postprocessing
################################################################################
addSlice('detection_out', 'detection_out/slice', [0, 0, 0, 3], [-1, -1, -1, 4], graph_def)
variance = NodeDef()
variance.name = 'proposals/variance'
variance.op = 'Const'
variance.addAttr('value', [0.1, 0.1, 0.2, 0.2])
graph_def.node.extend([variance])
varianceEncoder = NodeDef()
varianceEncoder.name = 'variance_encoded'
varianceEncoder.op = 'Mul'
varianceEncoder.input.append('SecondStageBoxPredictor/Reshape')
varianceEncoder.input.append(variance.name)
varianceEncoder.addAttr('axis', 2)
graph_def.node.extend([varianceEncoder])
addReshape('detection_out/slice', 'detection_out/slice/reshape', [1, 1, -1], graph_def)
addFlatten('variance_encoded', 'variance_encoded/flatten', graph_def)
detectionOut = NodeDef()
detectionOut.name = 'detection_out_final'
detectionOut.op = 'DetectionOutput'
detectionOut.input.append('variance_encoded/flatten')
detectionOut.input.append('SecondStageBoxPredictor/Reshape_1/Reshape')
detectionOut.input.append('detection_out/slice/reshape')
detectionOut.addAttr('num_classes', num_classes)
detectionOut.addAttr('share_location', False)
detectionOut.addAttr('background_label_id', num_classes + 1)
detectionOut.addAttr('nms_threshold', 0.6)
detectionOut.addAttr('code_type', "CENTER_SIZE")
detectionOut.addAttr('keep_top_k',100)
detectionOut.addAttr('clip', True)
detectionOut.addAttr('variance_encoded_in_target', True)
detectionOut.addAttr('confidence_threshold', 0.3)
detectionOut.addAttr('group_by_classes', False)
graph_def.node.extend([detectionOut])
for node in reversed(topNodes):
graph_def.node.extend([node])
if node.name.startswith('MaxPool2D'):
assert(node.op == 'MaxPool')
assert(len(cropAndResizeNodesNames) == 1)
node.input = [cropAndResizeNodesNames[0]]
for i in reversed(range(len(graph_def.node))):
if graph_def.node[i].op == 'CropAndResize':
graph_def.node[i].input.insert(1, 'detection_out_final')
break
graph_def.node[-1].name = 'detection_masks'
graph_def.node[-1].op = 'Sigmoid'
graph_def.node[-1].input.pop()
def getUnconnectedNodes():
unconnected = [node.name for node in graph_def.node]
for node in graph_def.node:
for inp in node.input:
if inp in unconnected:
unconnected.remove(inp)
return unconnected
while True:
unconnectedNodes = getUnconnectedNodes()
unconnectedNodes.remove(graph_def.node[-1].name)
if not unconnectedNodes:
break
for name in unconnectedNodes:
for i in range(len(graph_def.node)):
if graph_def.node[i].name == name:
del graph_def.node[i]
break
# Save as text.
graph_def.save(args.output)