1738 lines
50 KiB
C++
1738 lines
50 KiB
C++
///////////////////////////////////////////////////////////////////////////
|
|
//
|
|
// Copyright (c) 2004, Industrial Light & Magic, a division of Lucas
|
|
// Digital Ltd. LLC
|
|
//
|
|
// All rights reserved.
|
|
//
|
|
// Redistribution and use in source and binary forms, with or without
|
|
// modification, are permitted provided that the following conditions are
|
|
// met:
|
|
// * Redistributions of source code must retain the above copyright
|
|
// notice, this list of conditions and the following disclaimer.
|
|
// * Redistributions in binary form must reproduce the above
|
|
// copyright notice, this list of conditions and the following disclaimer
|
|
// in the documentation and/or other materials provided with the
|
|
// distribution.
|
|
// * Neither the name of Industrial Light & Magic nor the names of
|
|
// its contributors may be used to endorse or promote products derived
|
|
// from this software without specific prior written permission.
|
|
//
|
|
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
|
|
// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
|
|
// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
|
|
// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
|
|
// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
|
|
// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
|
|
// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
|
|
// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
|
|
// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
|
|
// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
|
|
// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
|
//
|
|
///////////////////////////////////////////////////////////////////////////
|
|
|
|
|
|
//-----------------------------------------------------------------------------
|
|
//
|
|
// class ScanLineInputFile
|
|
//
|
|
//-----------------------------------------------------------------------------
|
|
|
|
#include "ImfScanLineInputFile.h"
|
|
#include "ImfChannelList.h"
|
|
#include "ImfMisc.h"
|
|
#include "ImfStdIO.h"
|
|
#include "ImfCompressor.h"
|
|
#include "ImathBox.h"
|
|
#include "ImathFun.h"
|
|
#include <ImfXdr.h>
|
|
#include <ImfConvert.h>
|
|
#include <ImfThreading.h>
|
|
#include <ImfPartType.h>
|
|
#include "IlmThreadPool.h"
|
|
#include "IlmThreadSemaphore.h"
|
|
#include "IlmThreadMutex.h"
|
|
#include "Iex.h"
|
|
#include "ImfVersion.h"
|
|
#include "ImfOptimizedPixelReading.h"
|
|
#include "ImfNamespace.h"
|
|
#include "ImfStandardAttributes.h"
|
|
|
|
#include <algorithm>
|
|
#include <string>
|
|
#include <vector>
|
|
#include <assert.h>
|
|
#include <cstring>
|
|
|
|
OPENEXR_IMF_INTERNAL_NAMESPACE_SOURCE_ENTER
|
|
|
|
|
|
using IMATH_NAMESPACE::Box2i;
|
|
using IMATH_NAMESPACE::divp;
|
|
using IMATH_NAMESPACE::modp;
|
|
using std::string;
|
|
using std::vector;
|
|
using std::ifstream;
|
|
using std::min;
|
|
using std::max;
|
|
using std::sort;
|
|
using ILMTHREAD_NAMESPACE::Mutex;
|
|
using ILMTHREAD_NAMESPACE::Lock;
|
|
using ILMTHREAD_NAMESPACE::Semaphore;
|
|
using ILMTHREAD_NAMESPACE::Task;
|
|
using ILMTHREAD_NAMESPACE::TaskGroup;
|
|
using ILMTHREAD_NAMESPACE::ThreadPool;
|
|
|
|
namespace {
|
|
|
|
struct InSliceInfo
|
|
{
|
|
PixelType typeInFrameBuffer;
|
|
PixelType typeInFile;
|
|
char * base;
|
|
size_t xStride;
|
|
size_t yStride;
|
|
int xSampling;
|
|
int ySampling;
|
|
bool fill;
|
|
bool skip;
|
|
double fillValue;
|
|
|
|
InSliceInfo (PixelType typeInFrameBuffer = HALF,
|
|
PixelType typeInFile = HALF,
|
|
char *base = 0,
|
|
size_t xStride = 0,
|
|
size_t yStride = 0,
|
|
int xSampling = 1,
|
|
int ySampling = 1,
|
|
bool fill = false,
|
|
bool skip = false,
|
|
double fillValue = 0.0);
|
|
};
|
|
|
|
|
|
InSliceInfo::InSliceInfo (PixelType tifb,
|
|
PixelType tifl,
|
|
char *b,
|
|
size_t xs, size_t ys,
|
|
int xsm, int ysm,
|
|
bool f, bool s,
|
|
double fv)
|
|
:
|
|
typeInFrameBuffer (tifb),
|
|
typeInFile (tifl),
|
|
base (b),
|
|
xStride (xs),
|
|
yStride (ys),
|
|
xSampling (xsm),
|
|
ySampling (ysm),
|
|
fill (f),
|
|
skip (s),
|
|
fillValue (fv)
|
|
{
|
|
// empty
|
|
}
|
|
|
|
|
|
struct LineBuffer
|
|
{
|
|
const char * uncompressedData;
|
|
char * buffer;
|
|
int dataSize;
|
|
int minY;
|
|
int maxY;
|
|
Compressor * compressor;
|
|
Compressor::Format format;
|
|
int number;
|
|
bool hasException;
|
|
string exception;
|
|
|
|
LineBuffer (Compressor * const comp);
|
|
~LineBuffer ();
|
|
|
|
inline void wait () {_sem.wait();}
|
|
inline void post () {_sem.post();}
|
|
|
|
private:
|
|
|
|
Semaphore _sem;
|
|
};
|
|
|
|
|
|
LineBuffer::LineBuffer (Compressor *comp):
|
|
uncompressedData (0),
|
|
buffer (0),
|
|
dataSize (0),
|
|
compressor (comp),
|
|
format (defaultFormat(compressor)),
|
|
number (-1),
|
|
hasException (false),
|
|
exception (),
|
|
_sem (1)
|
|
{
|
|
// empty
|
|
}
|
|
|
|
|
|
LineBuffer::~LineBuffer ()
|
|
{
|
|
delete compressor;
|
|
}
|
|
|
|
/// helper struct used to detect the order that the channels are stored
|
|
|
|
struct sliceOptimizationData
|
|
{
|
|
const char * base; ///< pointer to pixel data
|
|
bool fill; ///< is this channel being filled with constant, instead of read?
|
|
half fillValue; ///< if filling, the value to use
|
|
size_t offset; ///< position this channel will be in the read buffer, accounting for previous channels, as well as their type
|
|
PixelType type; ///< type of channel
|
|
size_t xStride; ///< x-stride of channel in buffer (must be set to cause channels to interleave)
|
|
size_t yStride; ///< y-stride of channel in buffer (must be same in all channels, else order will change, which is bad)
|
|
int xSampling; ///< channel x sampling
|
|
int ySampling; ///< channel y sampling
|
|
|
|
|
|
/// we need to keep the list sorted in the order they'll be written to memory
|
|
bool operator<(const sliceOptimizationData& other ) const
|
|
{
|
|
return base < other.base;
|
|
}
|
|
};
|
|
|
|
|
|
} // namespace
|
|
|
|
|
|
struct ScanLineInputFile::Data: public Mutex
|
|
{
|
|
Header header; // the image header
|
|
int version; // file's version
|
|
FrameBuffer frameBuffer; // framebuffer to write into
|
|
LineOrder lineOrder; // order of the scanlines in file
|
|
int minX; // data window's min x coord
|
|
int maxX; // data window's max x coord
|
|
int minY; // data window's min y coord
|
|
int maxY; // data window's max x coord
|
|
vector<Int64> lineOffsets; // stores offsets in file for
|
|
// each line
|
|
bool fileIsComplete; // True if no scanlines are missing
|
|
// in the file
|
|
int nextLineBufferMinY; // minimum y of the next linebuffer
|
|
vector<size_t> bytesPerLine; // combined size of a line over all
|
|
// channels
|
|
vector<size_t> offsetInLineBuffer; // offset for each scanline in its
|
|
// linebuffer
|
|
vector<InSliceInfo> slices; // info about channels in file
|
|
|
|
vector<LineBuffer*> lineBuffers; // each holds one line buffer
|
|
int linesInBuffer; // number of scanlines each buffer
|
|
// holds
|
|
size_t lineBufferSize; // size of the line buffer
|
|
int partNumber; // part number
|
|
|
|
bool memoryMapped; // if the stream is memory mapped
|
|
OptimizationMode optimizationMode; // optimizibility of the input file
|
|
vector<sliceOptimizationData> optimizationData; ///< channel ordering for optimized reading
|
|
|
|
Data (int numThreads);
|
|
~Data ();
|
|
|
|
inline LineBuffer * getLineBuffer (int number); // hash function from line
|
|
// buffer indices into our
|
|
// vector of line buffers
|
|
|
|
|
|
};
|
|
|
|
|
|
ScanLineInputFile::Data::Data (int numThreads):
|
|
partNumber(-1),
|
|
memoryMapped(false)
|
|
{
|
|
//
|
|
// We need at least one lineBuffer, but if threading is used,
|
|
// to keep n threads busy we need 2*n lineBuffers
|
|
//
|
|
|
|
lineBuffers.resize (max (1, 2 * numThreads));
|
|
}
|
|
|
|
|
|
ScanLineInputFile::Data::~Data ()
|
|
{
|
|
for (size_t i = 0; i < lineBuffers.size(); i++)
|
|
delete lineBuffers[i];
|
|
}
|
|
|
|
|
|
inline LineBuffer *
|
|
ScanLineInputFile::Data::getLineBuffer (int lineBufferNumber)
|
|
{
|
|
return lineBuffers[lineBufferNumber % lineBuffers.size()];
|
|
}
|
|
|
|
|
|
namespace {
|
|
|
|
|
|
void
|
|
reconstructLineOffsets (OPENEXR_IMF_INTERNAL_NAMESPACE::IStream &is,
|
|
LineOrder lineOrder,
|
|
vector<Int64> &lineOffsets)
|
|
{
|
|
Int64 position = is.tellg();
|
|
|
|
try
|
|
{
|
|
for (unsigned int i = 0; i < lineOffsets.size(); i++)
|
|
{
|
|
Int64 lineOffset = is.tellg();
|
|
|
|
int y;
|
|
OPENEXR_IMF_INTERNAL_NAMESPACE::Xdr::read <OPENEXR_IMF_INTERNAL_NAMESPACE::StreamIO> (is, y);
|
|
|
|
int dataSize;
|
|
OPENEXR_IMF_INTERNAL_NAMESPACE::Xdr::read <OPENEXR_IMF_INTERNAL_NAMESPACE::StreamIO> (is, dataSize);
|
|
|
|
Xdr::skip <StreamIO> (is, dataSize);
|
|
|
|
if (lineOrder == INCREASING_Y)
|
|
lineOffsets[i] = lineOffset;
|
|
else
|
|
lineOffsets[lineOffsets.size() - i - 1] = lineOffset;
|
|
}
|
|
}
|
|
catch (...)
|
|
{
|
|
//
|
|
// Suppress all exceptions. This functions is
|
|
// called only to reconstruct the line offset
|
|
// table for incomplete files, and exceptions
|
|
// are likely.
|
|
//
|
|
}
|
|
|
|
is.clear();
|
|
is.seekg (position);
|
|
}
|
|
|
|
|
|
void
|
|
readLineOffsets (OPENEXR_IMF_INTERNAL_NAMESPACE::IStream &is,
|
|
LineOrder lineOrder,
|
|
vector<Int64> &lineOffsets,
|
|
bool &complete)
|
|
{
|
|
for (unsigned int i = 0; i < lineOffsets.size(); i++)
|
|
{
|
|
OPENEXR_IMF_INTERNAL_NAMESPACE::Xdr::read <OPENEXR_IMF_INTERNAL_NAMESPACE::StreamIO> (is, lineOffsets[i]);
|
|
}
|
|
|
|
complete = true;
|
|
|
|
for (unsigned int i = 0; i < lineOffsets.size(); i++)
|
|
{
|
|
if (lineOffsets[i] <= 0)
|
|
{
|
|
//
|
|
// Invalid data in the line offset table mean that
|
|
// the file is probably incomplete (the table is
|
|
// the last thing written to the file). Either
|
|
// some process is still busy writing the file,
|
|
// or writing the file was aborted.
|
|
//
|
|
// We should still be able to read the existing
|
|
// parts of the file. In order to do this, we
|
|
// have to make a sequential scan over the scan
|
|
// line data to reconstruct the line offset table.
|
|
//
|
|
|
|
complete = false;
|
|
reconstructLineOffsets (is, lineOrder, lineOffsets);
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
|
|
|
|
void
|
|
readPixelData (InputStreamMutex *streamData,
|
|
ScanLineInputFile::Data *ifd,
|
|
int minY,
|
|
char *&buffer,
|
|
int &dataSize)
|
|
{
|
|
//
|
|
// Read a single line buffer from the input file.
|
|
//
|
|
// If the input file is not memory-mapped, we copy the pixel data into
|
|
// into the array pointed to by buffer. If the file is memory-mapped,
|
|
// then we change where buffer points to instead of writing into the
|
|
// array (hence buffer needs to be a reference to a char *).
|
|
//
|
|
|
|
int lineBufferNumber = (minY - ifd->minY) / ifd->linesInBuffer;
|
|
if (lineBufferNumber < 0 || lineBufferNumber >= int(ifd->lineOffsets.size()))
|
|
THROW (IEX_NAMESPACE::InputExc, "Invalid scan line " << minY << " requested or missing.");
|
|
|
|
Int64 lineOffset = ifd->lineOffsets[lineBufferNumber];
|
|
|
|
if (lineOffset == 0)
|
|
THROW (IEX_NAMESPACE::InputExc, "Scan line " << minY << " is missing.");
|
|
|
|
//
|
|
// Seek to the start of the scan line in the file,
|
|
// if necessary.
|
|
//
|
|
|
|
if ( !isMultiPart(ifd->version) )
|
|
{
|
|
if (ifd->nextLineBufferMinY != minY)
|
|
streamData->is->seekg (lineOffset);
|
|
}
|
|
else
|
|
{
|
|
//
|
|
// In a multi-part file, the file pointer may have been moved by
|
|
// other parts, so we have to ask tellg() where we are.
|
|
//
|
|
if (streamData->is->tellg() != ifd->lineOffsets[lineBufferNumber])
|
|
streamData->is->seekg (lineOffset);
|
|
}
|
|
|
|
//
|
|
// Read the data block's header.
|
|
//
|
|
|
|
int yInFile;
|
|
|
|
//
|
|
// Read the part number when we are dealing with a multi-part file.
|
|
//
|
|
if (isMultiPart(ifd->version))
|
|
{
|
|
int partNumber;
|
|
OPENEXR_IMF_INTERNAL_NAMESPACE::Xdr::read <OPENEXR_IMF_INTERNAL_NAMESPACE::StreamIO> (*streamData->is, partNumber);
|
|
if (partNumber != ifd->partNumber)
|
|
{
|
|
THROW (IEX_NAMESPACE::ArgExc, "Unexpected part number " << partNumber
|
|
<< ", should be " << ifd->partNumber << ".");
|
|
}
|
|
}
|
|
|
|
OPENEXR_IMF_INTERNAL_NAMESPACE::Xdr::read <OPENEXR_IMF_INTERNAL_NAMESPACE::StreamIO> (*streamData->is, yInFile);
|
|
OPENEXR_IMF_INTERNAL_NAMESPACE::Xdr::read <OPENEXR_IMF_INTERNAL_NAMESPACE::StreamIO> (*streamData->is, dataSize);
|
|
|
|
if (yInFile != minY)
|
|
throw IEX_NAMESPACE::InputExc ("Unexpected data block y coordinate.");
|
|
|
|
if (dataSize > (int) ifd->lineBufferSize)
|
|
throw IEX_NAMESPACE::InputExc ("Unexpected data block length.");
|
|
|
|
//
|
|
// Read the pixel data.
|
|
//
|
|
|
|
if (streamData->is->isMemoryMapped ())
|
|
buffer = streamData->is->readMemoryMapped (dataSize);
|
|
else
|
|
streamData->is->read (buffer, dataSize);
|
|
|
|
//
|
|
// Keep track of which scan line is the next one in
|
|
// the file, so that we can avoid redundant seekg()
|
|
// operations (seekg() can be fairly expensive).
|
|
//
|
|
|
|
if (ifd->lineOrder == INCREASING_Y)
|
|
ifd->nextLineBufferMinY = minY + ifd->linesInBuffer;
|
|
else
|
|
ifd->nextLineBufferMinY = minY - ifd->linesInBuffer;
|
|
}
|
|
|
|
|
|
|
|
//
|
|
// A LineBufferTask encapsulates the task uncompressing a set of
|
|
// scanlines (line buffer) and copying them into the frame buffer.
|
|
//
|
|
|
|
class LineBufferTask : public Task
|
|
{
|
|
public:
|
|
|
|
LineBufferTask (TaskGroup *group,
|
|
ScanLineInputFile::Data *ifd,
|
|
LineBuffer *lineBuffer,
|
|
int scanLineMin,
|
|
int scanLineMax,
|
|
OptimizationMode optimizationMode);
|
|
|
|
virtual ~LineBufferTask ();
|
|
|
|
virtual void execute ();
|
|
|
|
private:
|
|
|
|
ScanLineInputFile::Data * _ifd;
|
|
LineBuffer * _lineBuffer;
|
|
int _scanLineMin;
|
|
int _scanLineMax;
|
|
OptimizationMode _optimizationMode;
|
|
};
|
|
|
|
|
|
LineBufferTask::LineBufferTask
|
|
(TaskGroup *group,
|
|
ScanLineInputFile::Data *ifd,
|
|
LineBuffer *lineBuffer,
|
|
int scanLineMin,
|
|
int scanLineMax,OptimizationMode optimizationMode)
|
|
:
|
|
Task (group),
|
|
_ifd (ifd),
|
|
_lineBuffer (lineBuffer),
|
|
_scanLineMin (scanLineMin),
|
|
_scanLineMax (scanLineMax),
|
|
_optimizationMode(optimizationMode)
|
|
{
|
|
// empty
|
|
}
|
|
|
|
|
|
LineBufferTask::~LineBufferTask ()
|
|
{
|
|
//
|
|
// Signal that the line buffer is now free
|
|
//
|
|
|
|
_lineBuffer->post ();
|
|
}
|
|
|
|
|
|
void
|
|
LineBufferTask::execute ()
|
|
{
|
|
try
|
|
{
|
|
//
|
|
// Uncompress the data, if necessary
|
|
//
|
|
|
|
if (_lineBuffer->uncompressedData == 0)
|
|
{
|
|
int uncompressedSize = 0;
|
|
int maxY = min (_lineBuffer->maxY, _ifd->maxY);
|
|
|
|
for (int i = _lineBuffer->minY - _ifd->minY;
|
|
i <= maxY - _ifd->minY;
|
|
++i)
|
|
{
|
|
uncompressedSize += (int) _ifd->bytesPerLine[i];
|
|
}
|
|
|
|
if (_lineBuffer->compressor &&
|
|
_lineBuffer->dataSize < uncompressedSize)
|
|
{
|
|
_lineBuffer->format = _lineBuffer->compressor->format();
|
|
|
|
_lineBuffer->dataSize = _lineBuffer->compressor->uncompress
|
|
(_lineBuffer->buffer,
|
|
_lineBuffer->dataSize,
|
|
_lineBuffer->minY,
|
|
_lineBuffer->uncompressedData);
|
|
}
|
|
else
|
|
{
|
|
//
|
|
// If the line is uncompressed, it's in XDR format,
|
|
// regardless of the compressor's output format.
|
|
//
|
|
|
|
_lineBuffer->format = Compressor::XDR;
|
|
_lineBuffer->uncompressedData = _lineBuffer->buffer;
|
|
}
|
|
}
|
|
|
|
int yStart, yStop, dy;
|
|
|
|
if (_ifd->lineOrder == INCREASING_Y)
|
|
{
|
|
yStart = _scanLineMin;
|
|
yStop = _scanLineMax + 1;
|
|
dy = 1;
|
|
}
|
|
else
|
|
{
|
|
yStart = _scanLineMax;
|
|
yStop = _scanLineMin - 1;
|
|
dy = -1;
|
|
}
|
|
|
|
for (int y = yStart; y != yStop; y += dy)
|
|
{
|
|
//
|
|
// Convert one scan line's worth of pixel data back
|
|
// from the machine-independent representation, and
|
|
// store the result in the frame buffer.
|
|
//
|
|
|
|
const char *readPtr = _lineBuffer->uncompressedData +
|
|
_ifd->offsetInLineBuffer[y - _ifd->minY];
|
|
|
|
//
|
|
// Iterate over all image channels.
|
|
//
|
|
|
|
for (unsigned int i = 0; i < _ifd->slices.size(); ++i)
|
|
{
|
|
//
|
|
// Test if scan line y of this channel contains any data
|
|
// (the scan line contains data only if y % ySampling == 0).
|
|
//
|
|
|
|
const InSliceInfo &slice = _ifd->slices[i];
|
|
|
|
if (modp (y, slice.ySampling) != 0)
|
|
continue;
|
|
|
|
//
|
|
// Find the x coordinates of the leftmost and rightmost
|
|
// sampled pixels (i.e. pixels within the data window
|
|
// for which x % xSampling == 0).
|
|
//
|
|
|
|
int dMinX = divp (_ifd->minX, slice.xSampling);
|
|
int dMaxX = divp (_ifd->maxX, slice.xSampling);
|
|
|
|
//
|
|
// Fill the frame buffer with pixel data.
|
|
//
|
|
|
|
if (slice.skip)
|
|
{
|
|
//
|
|
// The file contains data for this channel, but
|
|
// the frame buffer contains no slice for this channel.
|
|
//
|
|
|
|
skipChannel (readPtr, slice.typeInFile, dMaxX - dMinX + 1);
|
|
}
|
|
else
|
|
{
|
|
//
|
|
// The frame buffer contains a slice for this channel.
|
|
//
|
|
|
|
char *linePtr = slice.base +
|
|
divp (y, slice.ySampling) *
|
|
slice.yStride;
|
|
|
|
char *writePtr = linePtr + dMinX * slice.xStride;
|
|
char *endPtr = linePtr + dMaxX * slice.xStride;
|
|
|
|
copyIntoFrameBuffer (readPtr, writePtr, endPtr,
|
|
slice.xStride, slice.fill,
|
|
slice.fillValue, _lineBuffer->format,
|
|
slice.typeInFrameBuffer,
|
|
slice.typeInFile);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
catch (std::exception &e)
|
|
{
|
|
if (!_lineBuffer->hasException)
|
|
{
|
|
_lineBuffer->exception = e.what();
|
|
_lineBuffer->hasException = true;
|
|
}
|
|
}
|
|
catch (...)
|
|
{
|
|
if (!_lineBuffer->hasException)
|
|
{
|
|
_lineBuffer->exception = "unrecognized exception";
|
|
_lineBuffer->hasException = true;
|
|
}
|
|
}
|
|
}
|
|
|
|
|
|
#ifdef IMF_HAVE_SSE2
|
|
//
|
|
// IIF format is more restricted than a perfectly generic one,
|
|
// so it is possible to perform some optimizations.
|
|
//
|
|
class LineBufferTaskIIF : public Task
|
|
{
|
|
public:
|
|
|
|
LineBufferTaskIIF (TaskGroup *group,
|
|
ScanLineInputFile::Data *ifd,
|
|
LineBuffer *lineBuffer,
|
|
int scanLineMin,
|
|
int scanLineMax,
|
|
OptimizationMode optimizationMode);
|
|
|
|
virtual ~LineBufferTaskIIF ();
|
|
|
|
virtual void execute ();
|
|
|
|
template<typename TYPE>
|
|
void getWritePointer (int y,
|
|
unsigned short*& pOutWritePointerRight,
|
|
size_t& outPixelsToCopySSE,
|
|
size_t& outPixelsToCopyNormal,int bank=0) const;
|
|
|
|
template<typename TYPE>
|
|
void getWritePointerStereo (int y,
|
|
unsigned short*& outWritePointerRight,
|
|
unsigned short*& outWritePointerLeft,
|
|
size_t& outPixelsToCopySSE,
|
|
size_t& outPixelsToCopyNormal) const;
|
|
|
|
private:
|
|
|
|
ScanLineInputFile::Data * _ifd;
|
|
LineBuffer * _lineBuffer;
|
|
int _scanLineMin;
|
|
int _scanLineMax;
|
|
OptimizationMode _optimizationMode;
|
|
|
|
};
|
|
|
|
LineBufferTaskIIF::LineBufferTaskIIF
|
|
(TaskGroup *group,
|
|
ScanLineInputFile::Data *ifd,
|
|
LineBuffer *lineBuffer,
|
|
int scanLineMin,
|
|
int scanLineMax,
|
|
OptimizationMode optimizationMode
|
|
)
|
|
:
|
|
Task (group),
|
|
_ifd (ifd),
|
|
_lineBuffer (lineBuffer),
|
|
_scanLineMin (scanLineMin),
|
|
_scanLineMax (scanLineMax),
|
|
_optimizationMode (optimizationMode)
|
|
{
|
|
/*
|
|
//
|
|
// indicates the optimised path has been taken
|
|
//
|
|
static bool could_optimise=false;
|
|
if(could_optimise==false)
|
|
{
|
|
std::cerr << " optimised path\n";
|
|
could_optimise=true;
|
|
}
|
|
*/
|
|
}
|
|
|
|
LineBufferTaskIIF::~LineBufferTaskIIF ()
|
|
{
|
|
//
|
|
// Signal that the line buffer is now free
|
|
//
|
|
|
|
_lineBuffer->post ();
|
|
}
|
|
|
|
// Return 0 if we are to skip because of sampling
|
|
// channelBank is 0 for the first group of channels, 1 for the second
|
|
template<typename TYPE>
|
|
void LineBufferTaskIIF::getWritePointer
|
|
(int y,
|
|
unsigned short*& outWritePointerRight,
|
|
size_t& outPixelsToCopySSE,
|
|
size_t& outPixelsToCopyNormal,
|
|
int channelBank
|
|
) const
|
|
{
|
|
// Channels are saved alphabetically, so the order is B G R.
|
|
// The last slice (R) will give us the location of our write pointer.
|
|
// The only slice that we support skipping is alpha, i.e. the first one.
|
|
// This does not impact the write pointer or the pixels to copy at all.
|
|
|
|
size_t nbSlicesInBank = _ifd->optimizationData.size();
|
|
|
|
int sizeOfSingleValue = sizeof(TYPE);
|
|
|
|
if(_ifd->optimizationData.size()>4)
|
|
{
|
|
// there are two banks - we only copy one at once
|
|
nbSlicesInBank/=2;
|
|
}
|
|
|
|
|
|
size_t firstChannel = 0;
|
|
if(channelBank==1)
|
|
{
|
|
firstChannel = _ifd->optimizationData.size()/2;
|
|
}
|
|
|
|
sliceOptimizationData& firstSlice = _ifd->optimizationData[firstChannel];
|
|
|
|
if (modp (y, firstSlice.ySampling) != 0)
|
|
{
|
|
outPixelsToCopySSE = 0;
|
|
outPixelsToCopyNormal = 0;
|
|
outWritePointerRight = 0;
|
|
}
|
|
|
|
const char* linePtr1 = firstSlice.base +
|
|
divp (y, firstSlice.ySampling) *
|
|
firstSlice.yStride;
|
|
|
|
int dMinX1 = divp (_ifd->minX, firstSlice.xSampling);
|
|
int dMaxX1 = divp (_ifd->maxX, firstSlice.xSampling);
|
|
|
|
// Construct the writePtr so that we start writing at
|
|
// linePtr + Min offset in the line.
|
|
outWritePointerRight = (unsigned short*)(linePtr1 +
|
|
dMinX1 * firstSlice.xStride );
|
|
|
|
size_t bytesToCopy = ((linePtr1 + dMaxX1 * firstSlice.xStride ) -
|
|
(linePtr1 + dMinX1 * firstSlice.xStride )) + 2;
|
|
size_t shortsToCopy = bytesToCopy / sizeOfSingleValue;
|
|
size_t pixelsToCopy = (shortsToCopy / nbSlicesInBank ) + 1;
|
|
|
|
// We only support writing to SSE if we have no pixels to copy normally
|
|
outPixelsToCopySSE = pixelsToCopy / 8;
|
|
outPixelsToCopyNormal = pixelsToCopy % 8;
|
|
|
|
}
|
|
|
|
|
|
template<typename TYPE>
|
|
void LineBufferTaskIIF::getWritePointerStereo
|
|
(int y,
|
|
unsigned short*& outWritePointerRight,
|
|
unsigned short*& outWritePointerLeft,
|
|
size_t& outPixelsToCopySSE,
|
|
size_t& outPixelsToCopyNormal) const
|
|
{
|
|
getWritePointer<TYPE>(y,outWritePointerRight,outPixelsToCopySSE,outPixelsToCopyNormal,0);
|
|
|
|
|
|
if(outWritePointerRight)
|
|
{
|
|
getWritePointer<TYPE>(y,outWritePointerLeft,outPixelsToCopySSE,outPixelsToCopyNormal,1);
|
|
}
|
|
|
|
}
|
|
|
|
void
|
|
LineBufferTaskIIF::execute()
|
|
{
|
|
try
|
|
{
|
|
//
|
|
// Uncompress the data, if necessary
|
|
//
|
|
|
|
if (_lineBuffer->uncompressedData == 0)
|
|
{
|
|
int uncompressedSize = 0;
|
|
int maxY = min (_lineBuffer->maxY, _ifd->maxY);
|
|
|
|
for (int i = _lineBuffer->minY - _ifd->minY;
|
|
i <= maxY - _ifd->minY;
|
|
++i)
|
|
{
|
|
uncompressedSize += (int) _ifd->bytesPerLine[i];
|
|
}
|
|
|
|
if (_lineBuffer->compressor &&
|
|
_lineBuffer->dataSize < uncompressedSize)
|
|
{
|
|
_lineBuffer->format = _lineBuffer->compressor->format();
|
|
|
|
_lineBuffer->dataSize =
|
|
_lineBuffer->compressor->uncompress (_lineBuffer->buffer,
|
|
_lineBuffer->dataSize,
|
|
_lineBuffer->minY,
|
|
_lineBuffer->uncompressedData);
|
|
}
|
|
else
|
|
{
|
|
//
|
|
// If the line is uncompressed, it's in XDR format,
|
|
// regardless of the compressor's output format.
|
|
//
|
|
|
|
_lineBuffer->format = Compressor::XDR;
|
|
_lineBuffer->uncompressedData = _lineBuffer->buffer;
|
|
}
|
|
}
|
|
|
|
int yStart, yStop, dy;
|
|
|
|
if (_ifd->lineOrder == INCREASING_Y)
|
|
{
|
|
yStart = _scanLineMin;
|
|
yStop = _scanLineMax + 1;
|
|
dy = 1;
|
|
}
|
|
else
|
|
{
|
|
yStart = _scanLineMax;
|
|
yStop = _scanLineMin - 1;
|
|
dy = -1;
|
|
}
|
|
|
|
for (int y = yStart; y != yStop; y += dy)
|
|
{
|
|
if (modp (y, _optimizationMode._ySampling) != 0)
|
|
continue;
|
|
|
|
//
|
|
// Convert one scan line's worth of pixel data back
|
|
// from the machine-independent representation, and
|
|
// store the result in the frame buffer.
|
|
//
|
|
|
|
// Set the readPtr to read at the start of uncompressedData
|
|
// but with an offet based on calculated array.
|
|
// _ifd->offsetInLineBuffer contains offsets based on which
|
|
// line we are currently processing.
|
|
// Stride will be taken into consideration later.
|
|
|
|
|
|
const char* readPtr = _lineBuffer->uncompressedData +
|
|
_ifd->offsetInLineBuffer[y - _ifd->minY];
|
|
|
|
size_t pixelsToCopySSE = 0;
|
|
size_t pixelsToCopyNormal = 0;
|
|
|
|
unsigned short* writePtrLeft = 0;
|
|
unsigned short* writePtrRight = 0;
|
|
|
|
size_t channels = _ifd->optimizationData.size();
|
|
|
|
if(channels>4)
|
|
{
|
|
getWritePointerStereo<half>(y, writePtrRight, writePtrLeft, pixelsToCopySSE, pixelsToCopyNormal);
|
|
}
|
|
else
|
|
{
|
|
getWritePointer<half>(y, writePtrRight, pixelsToCopySSE, pixelsToCopyNormal);
|
|
}
|
|
|
|
if (writePtrRight == 0 && pixelsToCopySSE == 0 && pixelsToCopyNormal == 0)
|
|
{
|
|
continue;
|
|
}
|
|
|
|
|
|
//
|
|
// support reading up to eight channels
|
|
//
|
|
unsigned short* readPointers[8];
|
|
|
|
for (size_t i = 0; i < channels ; ++i)
|
|
{
|
|
readPointers[i] = (unsigned short*)readPtr + (_ifd->optimizationData[i].offset * (pixelsToCopySSE * 8 + pixelsToCopyNormal));
|
|
}
|
|
|
|
//RGB only
|
|
if(channels==3 || channels == 6 )
|
|
{
|
|
optimizedWriteToRGB(readPointers[0], readPointers[1], readPointers[2], writePtrRight, pixelsToCopySSE, pixelsToCopyNormal);
|
|
|
|
//stereo RGB
|
|
if( channels == 6)
|
|
{
|
|
optimizedWriteToRGB(readPointers[3], readPointers[4], readPointers[5], writePtrLeft, pixelsToCopySSE, pixelsToCopyNormal);
|
|
}
|
|
//RGBA
|
|
}else if(channels==4 || channels==8)
|
|
{
|
|
|
|
if(_ifd->optimizationData[3].fill)
|
|
{
|
|
optimizedWriteToRGBAFillA(readPointers[0], readPointers[1], readPointers[2], _ifd->optimizationData[3].fillValue.bits() , writePtrRight, pixelsToCopySSE, pixelsToCopyNormal);
|
|
}else{
|
|
optimizedWriteToRGBA(readPointers[0], readPointers[1], readPointers[2], readPointers[3] , writePtrRight, pixelsToCopySSE, pixelsToCopyNormal);
|
|
}
|
|
|
|
//stereo RGBA
|
|
if( channels == 8)
|
|
{
|
|
if(_ifd->optimizationData[7].fill)
|
|
{
|
|
optimizedWriteToRGBAFillA(readPointers[4], readPointers[5], readPointers[6], _ifd->optimizationData[7].fillValue.bits() , writePtrLeft, pixelsToCopySSE, pixelsToCopyNormal);
|
|
}else{
|
|
optimizedWriteToRGBA(readPointers[4], readPointers[5], readPointers[6], readPointers[7] , writePtrLeft, pixelsToCopySSE, pixelsToCopyNormal);
|
|
}
|
|
}
|
|
}
|
|
else {
|
|
throw(IEX_NAMESPACE::LogicExc("IIF mode called with incorrect channel pattern"));
|
|
}
|
|
|
|
// If we are in NO_OPTIMIZATION mode, this class will never
|
|
// get instantiated, so no need to check for it and duplicate
|
|
// the code.
|
|
}
|
|
}
|
|
catch (std::exception &e)
|
|
{
|
|
if (!_lineBuffer->hasException)
|
|
{
|
|
_lineBuffer->exception = e.what();
|
|
_lineBuffer->hasException = true;
|
|
}
|
|
}
|
|
catch (...)
|
|
{
|
|
if (!_lineBuffer->hasException)
|
|
{
|
|
_lineBuffer->exception = "unrecognized exception";
|
|
_lineBuffer->hasException = true;
|
|
}
|
|
}
|
|
}
|
|
#endif
|
|
|
|
|
|
Task *
|
|
newLineBufferTask (TaskGroup *group,
|
|
InputStreamMutex *streamData,
|
|
ScanLineInputFile::Data *ifd,
|
|
int number,
|
|
int scanLineMin,
|
|
int scanLineMax,
|
|
OptimizationMode optimizationMode)
|
|
{
|
|
//
|
|
// Wait for a line buffer to become available, fill the line
|
|
// buffer with raw data from the file if necessary, and create
|
|
// a new LineBufferTask whose execute() method will uncompress
|
|
// the contents of the buffer and copy the pixels into the
|
|
// frame buffer.
|
|
//
|
|
|
|
LineBuffer *lineBuffer = ifd->getLineBuffer (number);
|
|
|
|
try
|
|
{
|
|
lineBuffer->wait ();
|
|
|
|
if (lineBuffer->number != number)
|
|
{
|
|
lineBuffer->minY = ifd->minY + number * ifd->linesInBuffer;
|
|
lineBuffer->maxY = lineBuffer->minY + ifd->linesInBuffer - 1;
|
|
|
|
lineBuffer->number = number;
|
|
lineBuffer->uncompressedData = 0;
|
|
|
|
readPixelData (streamData, ifd, lineBuffer->minY,
|
|
lineBuffer->buffer,
|
|
lineBuffer->dataSize);
|
|
}
|
|
}
|
|
catch (std::exception &e)
|
|
{
|
|
if (!lineBuffer->hasException)
|
|
{
|
|
lineBuffer->exception = e.what();
|
|
lineBuffer->hasException = true;
|
|
}
|
|
lineBuffer->number = -1;
|
|
lineBuffer->post();
|
|
throw;
|
|
}
|
|
catch (...)
|
|
{
|
|
//
|
|
// Reading from the file caused an exception.
|
|
// Signal that the line buffer is free, and
|
|
// re-throw the exception.
|
|
//
|
|
|
|
lineBuffer->exception = "unrecognized exception";
|
|
lineBuffer->hasException = true;
|
|
lineBuffer->number = -1;
|
|
lineBuffer->post();
|
|
throw;
|
|
}
|
|
|
|
scanLineMin = max (lineBuffer->minY, scanLineMin);
|
|
scanLineMax = min (lineBuffer->maxY, scanLineMax);
|
|
|
|
|
|
Task* retTask = 0;
|
|
|
|
#ifdef IMF_HAVE_SSE2
|
|
if (optimizationMode._optimizable)
|
|
{
|
|
|
|
retTask = new LineBufferTaskIIF (group, ifd, lineBuffer,
|
|
scanLineMin, scanLineMax,
|
|
optimizationMode);
|
|
|
|
}
|
|
else
|
|
#endif
|
|
{
|
|
retTask = new LineBufferTask (group, ifd, lineBuffer,
|
|
scanLineMin, scanLineMax,
|
|
optimizationMode);
|
|
}
|
|
|
|
return retTask;
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
} // namespace
|
|
|
|
|
|
void ScanLineInputFile::initialize(const Header& header)
|
|
{
|
|
try
|
|
{
|
|
_data->header = header;
|
|
|
|
_data->lineOrder = _data->header.lineOrder();
|
|
|
|
const Box2i &dataWindow = _data->header.dataWindow();
|
|
|
|
_data->minX = dataWindow.min.x;
|
|
_data->maxX = dataWindow.max.x;
|
|
_data->minY = dataWindow.min.y;
|
|
_data->maxY = dataWindow.max.y;
|
|
|
|
size_t maxBytesPerLine = bytesPerLineTable (_data->header,
|
|
_data->bytesPerLine);
|
|
|
|
for (size_t i = 0; i < _data->lineBuffers.size(); i++)
|
|
{
|
|
_data->lineBuffers[i] = new LineBuffer (newCompressor
|
|
(_data->header.compression(),
|
|
maxBytesPerLine,
|
|
_data->header));
|
|
}
|
|
|
|
_data->linesInBuffer =
|
|
numLinesInBuffer (_data->lineBuffers[0]->compressor);
|
|
|
|
_data->lineBufferSize = maxBytesPerLine * _data->linesInBuffer;
|
|
|
|
if (!_streamData->is->isMemoryMapped())
|
|
{
|
|
for (size_t i = 0; i < _data->lineBuffers.size(); i++)
|
|
{
|
|
_data->lineBuffers[i]->buffer = (char *) EXRAllocAligned(_data->lineBufferSize*sizeof(char),16);
|
|
}
|
|
}
|
|
_data->nextLineBufferMinY = _data->minY - 1;
|
|
|
|
offsetInLineBufferTable (_data->bytesPerLine,
|
|
_data->linesInBuffer,
|
|
_data->offsetInLineBuffer);
|
|
|
|
int lineOffsetSize = (dataWindow.max.y - dataWindow.min.y +
|
|
_data->linesInBuffer) / _data->linesInBuffer;
|
|
|
|
_data->lineOffsets.resize (lineOffsetSize);
|
|
}
|
|
catch (...)
|
|
{
|
|
delete _data;
|
|
_data=NULL;
|
|
throw;
|
|
}
|
|
}
|
|
|
|
|
|
ScanLineInputFile::ScanLineInputFile(InputPartData* part)
|
|
{
|
|
if (part->header.type() != SCANLINEIMAGE)
|
|
throw IEX_NAMESPACE::ArgExc("Can't build a ScanLineInputFile from a type-mismatched part.");
|
|
|
|
_data = new Data(part->numThreads);
|
|
_streamData = part->mutex;
|
|
_data->memoryMapped = _streamData->is->isMemoryMapped();
|
|
|
|
_data->version = part->version;
|
|
|
|
initialize(part->header);
|
|
|
|
_data->lineOffsets = part->chunkOffsets;
|
|
|
|
_data->partNumber = part->partNumber;
|
|
//
|
|
// (TODO) change this code later.
|
|
// The completeness of the file should be detected in MultiPartInputFile.
|
|
//
|
|
_data->fileIsComplete = true;
|
|
}
|
|
|
|
|
|
ScanLineInputFile::ScanLineInputFile
|
|
(const Header &header,
|
|
OPENEXR_IMF_INTERNAL_NAMESPACE::IStream *is,
|
|
int numThreads)
|
|
:
|
|
_data (new Data (numThreads)),
|
|
_streamData (new InputStreamMutex())
|
|
{
|
|
_streamData->is = is;
|
|
_data->memoryMapped = is->isMemoryMapped();
|
|
|
|
initialize(header);
|
|
|
|
//
|
|
// (TODO) this is nasty - we need a better way of working out what type of file has been used.
|
|
// in any case I believe this constructor only gets used with single part files
|
|
// and 'version' currently only tracks multipart state, so setting to 0 (not multipart) works for us
|
|
//
|
|
|
|
_data->version=0;
|
|
readLineOffsets (*_streamData->is,
|
|
_data->lineOrder,
|
|
_data->lineOffsets,
|
|
_data->fileIsComplete);
|
|
}
|
|
|
|
|
|
ScanLineInputFile::~ScanLineInputFile ()
|
|
{
|
|
if (!_data->memoryMapped)
|
|
{
|
|
for (size_t i = 0; i < _data->lineBuffers.size(); i++)
|
|
{
|
|
EXRFreeAligned(_data->lineBuffers[i]->buffer);
|
|
}
|
|
}
|
|
|
|
|
|
//
|
|
// ScanLineInputFile should never delete the stream,
|
|
// because it does not own the stream.
|
|
// We just delete the Mutex here.
|
|
//
|
|
if (_data->partNumber == -1)
|
|
delete _streamData;
|
|
|
|
delete _data;
|
|
}
|
|
|
|
|
|
const char *
|
|
ScanLineInputFile::fileName () const
|
|
{
|
|
return _streamData->is->fileName();
|
|
}
|
|
|
|
|
|
const Header &
|
|
ScanLineInputFile::header () const
|
|
{
|
|
return _data->header;
|
|
}
|
|
|
|
|
|
int
|
|
ScanLineInputFile::version () const
|
|
{
|
|
return _data->version;
|
|
}
|
|
|
|
|
|
namespace
|
|
{
|
|
|
|
|
|
// returns the optimization state for the given arrangement of frame bufers
|
|
// this assumes:
|
|
// both the file and framebuffer are half float data
|
|
// both the file and framebuffer have xSampling and ySampling=1
|
|
// entries in optData are sorted into their interleave order (i.e. by base address)
|
|
// These tests are done by SetFrameBuffer as it is building optData
|
|
//
|
|
OptimizationMode
|
|
detectOptimizationMode (const vector<sliceOptimizationData>& optData)
|
|
{
|
|
OptimizationMode w;
|
|
|
|
// need to be compiled with SSE optimisations: if not, just returns false
|
|
#ifdef IMF_HAVE_SSE2
|
|
|
|
|
|
// only handle reading 3,4,6 or 8 channels
|
|
switch(optData.size())
|
|
{
|
|
case 3 : break;
|
|
case 4 : break;
|
|
case 6 : break;
|
|
case 8 : break;
|
|
default :
|
|
return w;
|
|
}
|
|
|
|
//
|
|
// the point at which data switches between the primary and secondary bank
|
|
//
|
|
size_t bankSize = optData.size()>4 ? optData.size()/2 : optData.size();
|
|
|
|
for(size_t i=0;i<optData.size();i++)
|
|
{
|
|
const sliceOptimizationData& data = optData[i];
|
|
// can't fill anything other than channel 3 or channel 7
|
|
if(data.fill)
|
|
{
|
|
if(i!=3 && i!=7)
|
|
{
|
|
return w;
|
|
}
|
|
}
|
|
|
|
// cannot have gaps in the channel layout, so the stride must be (number of channels written in the bank)*2
|
|
if(data.xStride !=bankSize*2)
|
|
{
|
|
return w;
|
|
}
|
|
|
|
// each bank of channels must be channel interleaved: each channel base pointer must be (previous channel+2)
|
|
// this also means channel sampling pattern must be consistent, as must yStride
|
|
if(i!=0 && i!=bankSize)
|
|
{
|
|
if(data.base!=optData[i-1].base+2)
|
|
{
|
|
return w;
|
|
}
|
|
}
|
|
if(i!=0)
|
|
{
|
|
|
|
if(data.yStride!=optData[i-1].yStride)
|
|
{
|
|
return w;
|
|
}
|
|
}
|
|
}
|
|
|
|
|
|
w._ySampling=optData[0].ySampling;
|
|
w._optimizable=true;
|
|
|
|
#endif
|
|
|
|
return w;
|
|
}
|
|
|
|
|
|
} // Anonymous namespace
|
|
|
|
void
|
|
ScanLineInputFile::setFrameBuffer (const FrameBuffer &frameBuffer)
|
|
{
|
|
Lock lock (*_streamData);
|
|
|
|
|
|
|
|
const ChannelList &channels = _data->header.channels();
|
|
for (FrameBuffer::ConstIterator j = frameBuffer.begin();
|
|
j != frameBuffer.end();
|
|
++j)
|
|
{
|
|
ChannelList::ConstIterator i = channels.find (j.name());
|
|
|
|
if (i == channels.end())
|
|
continue;
|
|
|
|
if (i.channel().xSampling != j.slice().xSampling ||
|
|
i.channel().ySampling != j.slice().ySampling)
|
|
THROW (IEX_NAMESPACE::ArgExc, "X and/or y subsampling factors "
|
|
"of \"" << i.name() << "\" channel "
|
|
"of input file \"" << fileName() << "\" are "
|
|
"not compatible with the frame buffer's "
|
|
"subsampling factors.");
|
|
}
|
|
|
|
// optimization is possible if this is a little endian system
|
|
// and both inputs and outputs are half floats
|
|
//
|
|
bool optimizationPossible = true;
|
|
|
|
if (!GLOBAL_SYSTEM_LITTLE_ENDIAN)
|
|
{
|
|
optimizationPossible =false;
|
|
}
|
|
|
|
vector<sliceOptimizationData> optData;
|
|
|
|
|
|
//
|
|
// Initialize the slice table for readPixels().
|
|
//
|
|
|
|
vector<InSliceInfo> slices;
|
|
ChannelList::ConstIterator i = channels.begin();
|
|
|
|
// current offset of channel: pixel data starts at offset*width into the
|
|
// decompressed scanline buffer
|
|
size_t offset = 0;
|
|
|
|
for (FrameBuffer::ConstIterator j = frameBuffer.begin();
|
|
j != frameBuffer.end();
|
|
++j)
|
|
{
|
|
while (i != channels.end() && strcmp (i.name(), j.name()) < 0)
|
|
{
|
|
//
|
|
// Channel i is present in the file but not
|
|
// in the frame buffer; data for channel i
|
|
// will be skipped during readPixels().
|
|
//
|
|
|
|
slices.push_back (InSliceInfo (i.channel().type,
|
|
i.channel().type,
|
|
0, // base
|
|
0, // xStride
|
|
0, // yStride
|
|
i.channel().xSampling,
|
|
i.channel().ySampling,
|
|
false, // fill
|
|
true, // skip
|
|
0.0)); // fillValue
|
|
|
|
switch(i.channel().type)
|
|
{
|
|
case OPENEXR_IMF_INTERNAL_NAMESPACE::HALF :
|
|
offset++;
|
|
break;
|
|
case OPENEXR_IMF_INTERNAL_NAMESPACE::FLOAT :
|
|
offset+=2;
|
|
break;
|
|
case OPENEXR_IMF_INTERNAL_NAMESPACE::UINT :
|
|
offset+=2;
|
|
break;
|
|
}
|
|
++i;
|
|
}
|
|
|
|
bool fill = false;
|
|
|
|
if (i == channels.end() || strcmp (i.name(), j.name()) > 0)
|
|
{
|
|
//
|
|
// Channel i is present in the frame buffer, but not in the file.
|
|
// In the frame buffer, slice j will be filled with a default value.
|
|
//
|
|
|
|
fill = true;
|
|
}
|
|
|
|
slices.push_back (InSliceInfo (j.slice().type,
|
|
fill? j.slice().type:
|
|
i.channel().type,
|
|
j.slice().base,
|
|
j.slice().xStride,
|
|
j.slice().yStride,
|
|
j.slice().xSampling,
|
|
j.slice().ySampling,
|
|
fill,
|
|
false, // skip
|
|
j.slice().fillValue));
|
|
|
|
if(!fill && i.channel().type!=OPENEXR_IMF_INTERNAL_NAMESPACE::HALF)
|
|
{
|
|
optimizationPossible = false;
|
|
}
|
|
|
|
if(j.slice().type != OPENEXR_IMF_INTERNAL_NAMESPACE::HALF)
|
|
{
|
|
optimizationPossible = false;
|
|
}
|
|
if(j.slice().xSampling!=1 || j.slice().ySampling!=1)
|
|
{
|
|
optimizationPossible = false;
|
|
}
|
|
|
|
|
|
if(optimizationPossible)
|
|
{
|
|
sliceOptimizationData dat;
|
|
dat.base = j.slice().base;
|
|
dat.fill = fill;
|
|
dat.fillValue = j.slice().fillValue;
|
|
dat.offset = offset;
|
|
dat.xStride = j.slice().xStride;
|
|
dat.yStride = j.slice().yStride;
|
|
dat.xSampling = j.slice().xSampling;
|
|
dat.ySampling = j.slice().ySampling;
|
|
optData.push_back(dat);
|
|
}
|
|
|
|
if(!fill)
|
|
{
|
|
switch(i.channel().type)
|
|
{
|
|
case OPENEXR_IMF_INTERNAL_NAMESPACE::HALF :
|
|
offset++;
|
|
break;
|
|
case OPENEXR_IMF_INTERNAL_NAMESPACE::FLOAT :
|
|
offset+=2;
|
|
break;
|
|
case OPENEXR_IMF_INTERNAL_NAMESPACE::UINT :
|
|
offset+=2;
|
|
break;
|
|
}
|
|
}
|
|
|
|
|
|
|
|
if (i != channels.end() && !fill)
|
|
++i;
|
|
}
|
|
|
|
|
|
if(optimizationPossible)
|
|
{
|
|
//
|
|
// check optimisibility
|
|
// based on channel ordering and fill channel positions
|
|
//
|
|
sort(optData.begin(),optData.end());
|
|
_data->optimizationMode = detectOptimizationMode(optData);
|
|
}
|
|
|
|
if(!optimizationPossible || _data->optimizationMode._optimizable==false)
|
|
{
|
|
optData = vector<sliceOptimizationData>();
|
|
_data->optimizationMode._optimizable=false;
|
|
}
|
|
|
|
//
|
|
// Store the new frame buffer.
|
|
//
|
|
|
|
_data->frameBuffer = frameBuffer;
|
|
_data->slices = slices;
|
|
_data->optimizationData = optData;
|
|
}
|
|
|
|
|
|
const FrameBuffer &
|
|
ScanLineInputFile::frameBuffer () const
|
|
{
|
|
Lock lock (*_streamData);
|
|
return _data->frameBuffer;
|
|
}
|
|
|
|
|
|
bool
|
|
ScanLineInputFile::isComplete () const
|
|
{
|
|
return _data->fileIsComplete;
|
|
}
|
|
|
|
bool ScanLineInputFile::isOptimizationEnabled() const
|
|
{
|
|
if (_data->slices.size() == 0)
|
|
throw IEX_NAMESPACE::ArgExc ("No frame buffer specified "
|
|
"as pixel data destination.");
|
|
|
|
return _data->optimizationMode._optimizable;
|
|
}
|
|
|
|
|
|
void
|
|
ScanLineInputFile::readPixels (int scanLine1, int scanLine2)
|
|
{
|
|
try
|
|
{
|
|
Lock lock (*_streamData);
|
|
|
|
if (_data->slices.size() == 0)
|
|
throw IEX_NAMESPACE::ArgExc ("No frame buffer specified "
|
|
"as pixel data destination.");
|
|
|
|
int scanLineMin = min (scanLine1, scanLine2);
|
|
int scanLineMax = max (scanLine1, scanLine2);
|
|
|
|
if (scanLineMin < _data->minY || scanLineMax > _data->maxY)
|
|
throw IEX_NAMESPACE::ArgExc ("Tried to read scan line outside "
|
|
"the image file's data window.");
|
|
|
|
//
|
|
// We impose a numbering scheme on the lineBuffers where the first
|
|
// scanline is contained in lineBuffer 1.
|
|
//
|
|
// Determine the first and last lineBuffer numbers in this scanline
|
|
// range. We always attempt to read the scanlines in the order that
|
|
// they are stored in the file.
|
|
//
|
|
|
|
int start, stop, dl;
|
|
|
|
if (_data->lineOrder == INCREASING_Y)
|
|
{
|
|
start = (scanLineMin - _data->minY) / _data->linesInBuffer;
|
|
stop = (scanLineMax - _data->minY) / _data->linesInBuffer + 1;
|
|
dl = 1;
|
|
}
|
|
else
|
|
{
|
|
start = (scanLineMax - _data->minY) / _data->linesInBuffer;
|
|
stop = (scanLineMin - _data->minY) / _data->linesInBuffer - 1;
|
|
dl = -1;
|
|
}
|
|
|
|
//
|
|
// Create a task group for all line buffer tasks. When the
|
|
// task group goes out of scope, the destructor waits until
|
|
// all tasks are complete.
|
|
//
|
|
|
|
{
|
|
TaskGroup taskGroup;
|
|
|
|
//
|
|
// Add the line buffer tasks.
|
|
//
|
|
// The tasks will execute in the order that they are created
|
|
// because we lock the line buffers during construction and the
|
|
// constructors are called by the main thread. Hence, in order
|
|
// for a successive task to execute the previous task which
|
|
// used that line buffer must have completed already.
|
|
//
|
|
|
|
for (int l = start; l != stop; l += dl)
|
|
{
|
|
ThreadPool::addGlobalTask (newLineBufferTask (&taskGroup,
|
|
_streamData,
|
|
_data, l,
|
|
scanLineMin,
|
|
scanLineMax,
|
|
_data->optimizationMode));
|
|
}
|
|
|
|
//
|
|
// finish all tasks
|
|
//
|
|
}
|
|
|
|
//
|
|
// Exeption handling:
|
|
//
|
|
// LineBufferTask::execute() may have encountered exceptions, but
|
|
// those exceptions occurred in another thread, not in the thread
|
|
// that is executing this call to ScanLineInputFile::readPixels().
|
|
// LineBufferTask::execute() has caught all exceptions and stored
|
|
// the exceptions' what() strings in the line buffers.
|
|
// Now we check if any line buffer contains a stored exception; if
|
|
// this is the case then we re-throw the exception in this thread.
|
|
// (It is possible that multiple line buffers contain stored
|
|
// exceptions. We re-throw the first exception we find and
|
|
// ignore all others.)
|
|
//
|
|
|
|
const string *exception = 0;
|
|
|
|
for (size_t i = 0; i < _data->lineBuffers.size(); ++i)
|
|
{
|
|
LineBuffer *lineBuffer = _data->lineBuffers[i];
|
|
|
|
if (lineBuffer->hasException && !exception)
|
|
exception = &lineBuffer->exception;
|
|
|
|
lineBuffer->hasException = false;
|
|
}
|
|
|
|
if (exception)
|
|
throw IEX_NAMESPACE::IoExc (*exception);
|
|
}
|
|
catch (IEX_NAMESPACE::BaseExc &e)
|
|
{
|
|
REPLACE_EXC (e, "Error reading pixel data from image "
|
|
"file \"" << fileName() << "\". " << e.what());
|
|
throw;
|
|
}
|
|
}
|
|
|
|
|
|
void
|
|
ScanLineInputFile::readPixels (int scanLine)
|
|
{
|
|
readPixels (scanLine, scanLine);
|
|
}
|
|
|
|
|
|
void
|
|
ScanLineInputFile::rawPixelData (int firstScanLine,
|
|
const char *&pixelData,
|
|
int &pixelDataSize)
|
|
{
|
|
try
|
|
{
|
|
Lock lock (*_streamData);
|
|
|
|
if (firstScanLine < _data->minY || firstScanLine > _data->maxY)
|
|
{
|
|
throw IEX_NAMESPACE::ArgExc ("Tried to read scan line outside "
|
|
"the image file's data window.");
|
|
}
|
|
|
|
int minY = lineBufferMinY
|
|
(firstScanLine, _data->minY, _data->linesInBuffer);
|
|
|
|
readPixelData
|
|
(_streamData, _data, minY, _data->lineBuffers[0]->buffer, pixelDataSize);
|
|
|
|
pixelData = _data->lineBuffers[0]->buffer;
|
|
}
|
|
catch (IEX_NAMESPACE::BaseExc &e)
|
|
{
|
|
REPLACE_EXC (e, "Error reading pixel data from image "
|
|
"file \"" << fileName() << "\". " << e.what());
|
|
throw;
|
|
}
|
|
}
|
|
|
|
|
|
void ScanLineInputFile::rawPixelDataToBuffer(int scanLine,
|
|
char *pixelData,
|
|
int &pixelDataSize) const
|
|
{
|
|
if (_data->memoryMapped) {
|
|
throw IEX_NAMESPACE::ArgExc ("Reading raw pixel data to a buffer "
|
|
"is not supported for memory mapped "
|
|
"streams." );
|
|
}
|
|
|
|
try
|
|
{
|
|
Lock lock (*_streamData);
|
|
|
|
if (scanLine < _data->minY || scanLine > _data->maxY)
|
|
{
|
|
throw IEX_NAMESPACE::ArgExc ("Tried to read scan line outside "
|
|
"the image file's data window.");
|
|
}
|
|
|
|
readPixelData
|
|
(_streamData, _data, scanLine, pixelData, pixelDataSize);
|
|
|
|
}
|
|
catch (IEX_NAMESPACE::BaseExc &e)
|
|
{
|
|
REPLACE_EXC (e, "Error reading pixel data from image "
|
|
"file \"" << fileName() << "\". " << e.what());
|
|
throw;
|
|
}
|
|
}
|
|
|
|
|
|
OPENEXR_IMF_INTERNAL_NAMESPACE_SOURCE_EXIT
|