cameracv/libs/opencv/modules/gapi/misc/python/samples/gaze_estimation.py
2023-05-18 21:39:43 +03:00

458 lines
16 KiB
Python
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

import argparse
import time
import numpy as np
import cv2 as cv
# ------------------------Service operations------------------------
def weight_path(model_path):
""" Get path of weights based on path to IR
Params:
model_path: the string contains path to IR file
Return:
Path to weights file
"""
assert model_path.endswith('.xml'), "Wrong topology path was provided"
return model_path[:-3] + 'bin'
def build_argparser():
""" Parse arguments from command line
Return:
Pack of arguments from command line
"""
parser = argparse.ArgumentParser(description='This is an OpenCV-based version of Gaze Estimation example')
parser.add_argument('--input',
help='Path to the input video file')
parser.add_argument('--out',
help='Path to the output video file')
parser.add_argument('--facem',
default='face-detection-retail-0005.xml',
help='Path to OpenVINO face detection model (.xml)')
parser.add_argument('--faced',
default='CPU',
help='Target device for the face detection' +
'(e.g. CPU, GPU, VPU, ...)')
parser.add_argument('--headm',
default='head-pose-estimation-adas-0001.xml',
help='Path to OpenVINO head pose estimation model (.xml)')
parser.add_argument('--headd',
default='CPU',
help='Target device for the head pose estimation inference ' +
'(e.g. CPU, GPU, VPU, ...)')
parser.add_argument('--landm',
default='facial-landmarks-35-adas-0002.xml',
help='Path to OpenVINO landmarks detector model (.xml)')
parser.add_argument('--landd',
default='CPU',
help='Target device for the landmarks detector (e.g. CPU, GPU, VPU, ...)')
parser.add_argument('--gazem',
default='gaze-estimation-adas-0002.xml',
help='Path to OpenVINO gaze vector estimaiton model (.xml)')
parser.add_argument('--gazed',
default='CPU',
help='Target device for the gaze vector estimation inference ' +
'(e.g. CPU, GPU, VPU, ...)')
parser.add_argument('--eyem',
default='open-closed-eye-0001.xml',
help='Path to OpenVINO open closed eye model (.xml)')
parser.add_argument('--eyed',
default='CPU',
help='Target device for the eyes state inference (e.g. CPU, GPU, VPU, ...)')
return parser
# ------------------------Support functions for custom kernels------------------------
def intersection(surface, rect):
""" Remove zone of out of bound from ROI
Params:
surface: image bounds is rect representation (top left coordinates and width and height)
rect: region of interest is also has rect representation
Return:
Modified ROI with correct bounds
"""
l_x = max(surface[0], rect[0])
l_y = max(surface[1], rect[1])
width = min(surface[0] + surface[2], rect[0] + rect[2]) - l_x
height = min(surface[1] + surface[3], rect[1] + rect[3]) - l_y
if width < 0 or height < 0:
return (0, 0, 0, 0)
return (l_x, l_y, width, height)
def process_landmarks(r_x, r_y, r_w, r_h, landmarks):
""" Create points from result of inference of facial-landmarks network and size of input image
Params:
r_x: x coordinate of top left corner of input image
r_y: y coordinate of top left corner of input image
r_w: width of input image
r_h: height of input image
landmarks: result of inference of facial-landmarks network
Return:
Array of landmarks points for one face
"""
lmrks = landmarks[0]
raw_x = lmrks[::2] * r_w + r_x
raw_y = lmrks[1::2] * r_h + r_y
return np.array([[int(x), int(y)] for x, y in zip(raw_x, raw_y)])
def eye_box(p_1, p_2, scale=1.8):
""" Get bounding box of eye
Params:
p_1: point of left edge of eye
p_2: point of right edge of eye
scale: change size of box with this value
Return:
Bounding box of eye and its midpoint
"""
size = np.linalg.norm(p_1 - p_2)
midpoint = (p_1 + p_2) / 2
width = scale * size
height = width
p_x = midpoint[0] - (width / 2)
p_y = midpoint[1] - (height / 2)
return (int(p_x), int(p_y), int(width), int(height)), list(map(int, midpoint))
# ------------------------Custom graph operations------------------------
@cv.gapi.op('custom.GProcessPoses',
in_types=[cv.GArray.GMat, cv.GArray.GMat, cv.GArray.GMat],
out_types=[cv.GArray.GMat])
class GProcessPoses:
@staticmethod
def outMeta(arr_desc0, arr_desc1, arr_desc2):
return cv.empty_array_desc()
@cv.gapi.op('custom.GParseEyes',
in_types=[cv.GArray.GMat, cv.GArray.Rect, cv.GOpaque.Size],
out_types=[cv.GArray.Rect, cv.GArray.Rect, cv.GArray.Point, cv.GArray.Point])
class GParseEyes:
@staticmethod
def outMeta(arr_desc0, arr_desc1, arr_desc2):
return cv.empty_array_desc(), cv.empty_array_desc(), \
cv.empty_array_desc(), cv.empty_array_desc()
@cv.gapi.op('custom.GGetStates',
in_types=[cv.GArray.GMat, cv.GArray.GMat],
out_types=[cv.GArray.Int, cv.GArray.Int])
class GGetStates:
@staticmethod
def outMeta(arr_desc0, arr_desc1):
return cv.empty_array_desc(), cv.empty_array_desc()
# ------------------------Custom kernels------------------------
@cv.gapi.kernel(GProcessPoses)
class GProcessPosesImpl:
""" Custom kernel. Processed poses of heads
"""
@staticmethod
def run(in_ys, in_ps, in_rs):
""" Сustom kernel executable code
Params:
in_ys: yaw angle of head
in_ps: pitch angle of head
in_rs: roll angle of head
Return:
Arrays with heads poses
"""
return [np.array([ys[0], ps[0], rs[0]]).T for ys, ps, rs in zip(in_ys, in_ps, in_rs)]
@cv.gapi.kernel(GParseEyes)
class GParseEyesImpl:
""" Custom kernel. Get information about eyes
"""
@staticmethod
def run(in_landm_per_face, in_face_rcs, frame_size):
""" Сustom kernel executable code
Params:
in_landm_per_face: landmarks from inference of facial-landmarks network for each face
in_face_rcs: bounding boxes for each face
frame_size: size of input image
Return:
Arrays of ROI for left and right eyes, array of midpoints and
array of landmarks points
"""
left_eyes = []
right_eyes = []
midpoints = []
lmarks = []
surface = (0, 0, *frame_size)
for landm_face, rect in zip(in_landm_per_face, in_face_rcs):
points = process_landmarks(*rect, landm_face)
lmarks.extend(points)
rect, midpoint_l = eye_box(points[0], points[1])
left_eyes.append(intersection(surface, rect))
rect, midpoint_r = eye_box(points[2], points[3])
right_eyes.append(intersection(surface, rect))
midpoints.append(midpoint_l)
midpoints.append(midpoint_r)
return left_eyes, right_eyes, midpoints, lmarks
@cv.gapi.kernel(GGetStates)
class GGetStatesImpl:
""" Custom kernel. Get state of eye - open or closed
"""
@staticmethod
def run(eyesl, eyesr):
""" Сustom kernel executable code
Params:
eyesl: result of inference of open-closed-eye network for left eye
eyesr: result of inference of open-closed-eye network for right eye
Return:
States of left eyes and states of right eyes
"""
out_l_st = [int(st) for eye_l in eyesl for st in (eye_l[:, 0] < eye_l[:, 1]).ravel()]
out_r_st = [int(st) for eye_r in eyesr for st in (eye_r[:, 0] < eye_r[:, 1]).ravel()]
return out_l_st, out_r_st
if __name__ == '__main__':
ARGUMENTS = build_argparser().parse_args()
# ------------------------Demo's graph------------------------
g_in = cv.GMat()
# Detect faces
face_inputs = cv.GInferInputs()
face_inputs.setInput('data', g_in)
face_outputs = cv.gapi.infer('face-detection', face_inputs)
faces = face_outputs.at('detection_out')
# Parse faces
sz = cv.gapi.streaming.size(g_in)
faces_rc = cv.gapi.parseSSD(faces, sz, 0.5, False, False)
# Detect poses
head_inputs = cv.GInferInputs()
head_inputs.setInput('data', g_in)
face_outputs = cv.gapi.infer('head-pose', faces_rc, head_inputs)
angles_y = face_outputs.at('angle_y_fc')
angles_p = face_outputs.at('angle_p_fc')
angles_r = face_outputs.at('angle_r_fc')
# Parse poses
heads_pos = GProcessPoses.on(angles_y, angles_p, angles_r)
# Detect landmarks
landmark_inputs = cv.GInferInputs()
landmark_inputs.setInput('data', g_in)
landmark_outputs = cv.gapi.infer('facial-landmarks', faces_rc,
landmark_inputs)
landmark = landmark_outputs.at('align_fc3')
# Parse landmarks
left_eyes, right_eyes, mids, lmarks = GParseEyes.on(landmark, faces_rc, sz)
# Detect eyes
eyes_inputs = cv.GInferInputs()
eyes_inputs.setInput('input.1', g_in)
eyesl_outputs = cv.gapi.infer('open-closed-eye', left_eyes, eyes_inputs)
eyesr_outputs = cv.gapi.infer('open-closed-eye', right_eyes, eyes_inputs)
eyesl = eyesl_outputs.at('19')
eyesr = eyesr_outputs.at('19')
# Process eyes states
l_eye_st, r_eye_st = GGetStates.on(eyesl, eyesr)
# Gaze estimation
gaze_inputs = cv.GInferListInputs()
gaze_inputs.setInput('left_eye_image', left_eyes)
gaze_inputs.setInput('right_eye_image', right_eyes)
gaze_inputs.setInput('head_pose_angles', heads_pos)
gaze_outputs = cv.gapi.infer2('gaze-estimation', g_in, gaze_inputs)
gaze_vectors = gaze_outputs.at('gaze_vector')
out = cv.gapi.copy(g_in)
# ------------------------End of graph------------------------
comp = cv.GComputation(cv.GIn(g_in), cv.GOut(out,
faces_rc,
left_eyes,
right_eyes,
gaze_vectors,
angles_y,
angles_p,
angles_r,
l_eye_st,
r_eye_st,
mids,
lmarks))
# Networks
face_net = cv.gapi.ie.params('face-detection', ARGUMENTS.facem,
weight_path(ARGUMENTS.facem), ARGUMENTS.faced)
head_pose_net = cv.gapi.ie.params('head-pose', ARGUMENTS.headm,
weight_path(ARGUMENTS.headm), ARGUMENTS.headd)
landmarks_net = cv.gapi.ie.params('facial-landmarks', ARGUMENTS.landm,
weight_path(ARGUMENTS.landm), ARGUMENTS.landd)
gaze_net = cv.gapi.ie.params('gaze-estimation', ARGUMENTS.gazem,
weight_path(ARGUMENTS.gazem), ARGUMENTS.gazed)
eye_net = cv.gapi.ie.params('open-closed-eye', ARGUMENTS.eyem,
weight_path(ARGUMENTS.eyem), ARGUMENTS.eyed)
nets = cv.gapi.networks(face_net, head_pose_net, landmarks_net, gaze_net, eye_net)
# Kernels pack
kernels = cv.gapi.kernels(GParseEyesImpl, GProcessPosesImpl, GGetStatesImpl)
# ------------------------Execution part------------------------
ccomp = comp.compileStreaming(args=cv.gapi.compile_args(kernels, nets))
source = cv.gapi.wip.make_capture_src(ARGUMENTS.input)
ccomp.setSource(cv.gin(source))
ccomp.start()
frames = 0
fps = 0
print('Processing')
START_TIME = time.time()
while True:
start_time_cycle = time.time()
has_frame, (oimg,
outr,
l_eyes,
r_eyes,
outg,
out_y,
out_p,
out_r,
out_st_l,
out_st_r,
out_mids,
outl) = ccomp.pull()
if not has_frame:
break
# Draw
GREEN = (0, 255, 0)
RED = (0, 0, 255)
WHITE = (255, 255, 255)
BLUE = (255, 0, 0)
PINK = (255, 0, 255)
YELLOW = (0, 255, 255)
M_PI_180 = np.pi / 180
M_PI_2 = np.pi / 2
M_PI = np.pi
FACES_SIZE = len(outr)
for i, out_rect in enumerate(outr):
# Face box
cv.rectangle(oimg, out_rect, WHITE, 1)
rx, ry, rwidth, rheight = out_rect
# Landmarks
lm_radius = int(0.01 * rwidth + 1)
lmsize = int(len(outl) / FACES_SIZE)
for j in range(lmsize):
cv.circle(oimg, outl[j + i * lmsize], lm_radius, YELLOW, -1)
# Headposes
yaw = out_y[i]
pitch = out_p[i]
roll = out_r[i]
sin_y = np.sin(yaw[:] * M_PI_180)
sin_p = np.sin(pitch[:] * M_PI_180)
sin_r = np.sin(roll[:] * M_PI_180)
cos_y = np.cos(yaw[:] * M_PI_180)
cos_p = np.cos(pitch[:] * M_PI_180)
cos_r = np.cos(roll[:] * M_PI_180)
axis_length = 0.4 * rwidth
x_center = int(rx + rwidth / 2)
y_center = int(ry + rheight / 2)
# center to right
cv.line(oimg, [x_center, y_center],
[int(x_center + axis_length * (cos_r * cos_y + sin_y * sin_p * sin_r)),
int(y_center + axis_length * cos_p * sin_r)],
RED, 2)
# center to top
cv.line(oimg, [x_center, y_center],
[int(x_center + axis_length * (cos_r * sin_y * sin_p + cos_y * sin_r)),
int(y_center - axis_length * cos_p * cos_r)],
GREEN, 2)
# center to forward
cv.line(oimg, [x_center, y_center],
[int(x_center + axis_length * sin_y * cos_p),
int(y_center + axis_length * sin_p)],
PINK, 2)
scale_box = 0.002 * rwidth
cv.putText(oimg, "head pose: (y=%0.0f, p=%0.0f, r=%0.0f)" %
(np.round(yaw), np.round(pitch), np.round(roll)),
[int(rx), int(ry + rheight + 5 * rwidth / 100)],
cv.FONT_HERSHEY_PLAIN, scale_box * 2, WHITE, 1)
# Eyes boxes
color_l = GREEN if out_st_l[i] else RED
cv.rectangle(oimg, l_eyes[i], color_l, 1)
color_r = GREEN if out_st_r[i] else RED
cv.rectangle(oimg, r_eyes[i], color_r, 1)
# Gaze vectors
norm_gazes = np.linalg.norm(outg[i][0])
gaze_vector = outg[i][0] / norm_gazes
arrow_length = 0.4 * rwidth
gaze_arrow = [arrow_length * gaze_vector[0], -arrow_length * gaze_vector[1]]
left_arrow = [int(a+b) for a, b in zip(out_mids[0 + i * 2], gaze_arrow)]
right_arrow = [int(a+b) for a, b in zip(out_mids[1 + i * 2], gaze_arrow)]
if out_st_l[i]:
cv.arrowedLine(oimg, out_mids[0 + i * 2], left_arrow, BLUE, 2)
if out_st_r[i]:
cv.arrowedLine(oimg, out_mids[1 + i * 2], right_arrow, BLUE, 2)
v0, v1, v2 = outg[i][0]
gaze_angles = [180 / M_PI * (M_PI_2 + np.arctan2(v2, v0)),
180 / M_PI * (M_PI_2 - np.arccos(v1 / norm_gazes))]
cv.putText(oimg, "gaze angles: (h=%0.0f, v=%0.0f)" %
(np.round(gaze_angles[0]), np.round(gaze_angles[1])),
[int(rx), int(ry + rheight + 12 * rwidth / 100)],
cv.FONT_HERSHEY_PLAIN, scale_box * 2, WHITE, 1)
# Add FPS value to frame
cv.putText(oimg, "FPS: %0i" % (fps), [int(20), int(40)],
cv.FONT_HERSHEY_PLAIN, 2, RED, 2)
# Show result
cv.imshow('Gaze Estimation', oimg)
cv.waitKey(1)
fps = int(1. / (time.time() - start_time_cycle))
frames += 1
EXECUTION_TIME = time.time() - START_TIME
print('Execution successful')
print('Mean FPS is ', int(frames / EXECUTION_TIME))