cameracv/libs/opencv/modules/gapi/samples/semantic_segmentation.cpp
2023-05-18 21:39:43 +03:00

184 lines
6 KiB
C++

#include <opencv2/imgproc.hpp>
#include <opencv2/gapi/infer/ie.hpp>
#include <opencv2/gapi/cpu/gcpukernel.hpp>
#include <opencv2/gapi/streaming/cap.hpp>
#include <opencv2/gapi/operators.hpp>
#include <opencv2/highgui.hpp>
const std::string keys =
"{ h help | | Print this help message }"
"{ input | | Path to the input video file }"
"{ output | | Path to the output video file }"
"{ ssm | semantic-segmentation-adas-0001.xml | Path to OpenVINO IE semantic segmentation model (.xml) }";
// 20 colors for 20 classes of semantic-segmentation-adas-0001
const std::vector<cv::Vec3b> colors = {
{ 128, 64, 128 },
{ 232, 35, 244 },
{ 70, 70, 70 },
{ 156, 102, 102 },
{ 153, 153, 190 },
{ 153, 153, 153 },
{ 30, 170, 250 },
{ 0, 220, 220 },
{ 35, 142, 107 },
{ 152, 251, 152 },
{ 180, 130, 70 },
{ 60, 20, 220 },
{ 0, 0, 255 },
{ 142, 0, 0 },
{ 70, 0, 0 },
{ 100, 60, 0 },
{ 90, 0, 0 },
{ 230, 0, 0 },
{ 32, 11, 119 },
{ 0, 74, 111 },
};
namespace {
std::string get_weights_path(const std::string &model_path) {
const auto EXT_LEN = 4u;
const auto sz = model_path.size();
CV_Assert(sz > EXT_LEN);
auto ext = model_path.substr(sz - EXT_LEN);
std::transform(ext.begin(), ext.end(), ext.begin(), [](unsigned char c){
return static_cast<unsigned char>(std::tolower(c));
});
CV_Assert(ext == ".xml");
return model_path.substr(0u, sz - EXT_LEN) + ".bin";
}
void classesToColors(const cv::Mat &out_blob,
cv::Mat &mask_img) {
const int H = out_blob.size[0];
const int W = out_blob.size[1];
mask_img.create(H, W, CV_8UC3);
GAPI_Assert(out_blob.type() == CV_8UC1);
const uint8_t* const classes = out_blob.ptr<uint8_t>();
for (int rowId = 0; rowId < H; ++rowId) {
for (int colId = 0; colId < W; ++colId) {
uint8_t class_id = classes[rowId * W + colId];
mask_img.at<cv::Vec3b>(rowId, colId) =
class_id < colors.size()
? colors[class_id]
: cv::Vec3b{0, 0, 0}; // NB: sample supports 20 classes
}
}
}
void probsToClasses(const cv::Mat& probs, cv::Mat& classes) {
const int C = probs.size[1];
const int H = probs.size[2];
const int W = probs.size[3];
classes.create(H, W, CV_8UC1);
GAPI_Assert(probs.depth() == CV_32F);
float* out_p = reinterpret_cast<float*>(probs.data);
uint8_t* classes_p = reinterpret_cast<uint8_t*>(classes.data);
for (int h = 0; h < H; ++h) {
for (int w = 0; w < W; ++w) {
double max = 0;
int class_id = 0;
for (int c = 0; c < C; ++c) {
int idx = c * H * W + h * W + w;
if (out_p[idx] > max) {
max = out_p[idx];
class_id = c;
}
}
classes_p[h * W + w] = static_cast<uint8_t>(class_id);
}
}
}
} // anonymous namespace
namespace custom {
G_API_OP(PostProcessing, <cv::GMat(cv::GMat, cv::GMat)>, "sample.custom.post_processing") {
static cv::GMatDesc outMeta(const cv::GMatDesc &in, const cv::GMatDesc &) {
return in;
}
};
GAPI_OCV_KERNEL(OCVPostProcessing, PostProcessing) {
static void run(const cv::Mat &in, const cv::Mat &out_blob, cv::Mat &out) {
cv::Mat classes;
// NB: If output has more than single plane, it contains probabilities
// otherwise class id.
if (out_blob.size[1] > 1) {
probsToClasses(out_blob, classes);
} else {
out_blob.convertTo(classes, CV_8UC1);
classes = classes.reshape(1, out_blob.size[2]);
}
cv::Mat mask_img;
classesToColors(classes, mask_img);
cv::resize(mask_img, out, in.size());
}
};
} // namespace custom
int main(int argc, char *argv[]) {
cv::CommandLineParser cmd(argc, argv, keys);
if (cmd.has("help")) {
cmd.printMessage();
return 0;
}
// Prepare parameters first
const std::string input = cmd.get<std::string>("input");
const std::string output = cmd.get<std::string>("output");
const auto model_path = cmd.get<std::string>("ssm");
const auto weights_path = get_weights_path(model_path);
const auto device = "CPU";
G_API_NET(SemSegmNet, <cv::GMat(cv::GMat)>, "semantic-segmentation");
const auto net = cv::gapi::ie::Params<SemSegmNet> {
model_path, weights_path, device
};
const auto kernels = cv::gapi::kernels<custom::OCVPostProcessing>();
const auto networks = cv::gapi::networks(net);
// Now build the graph
cv::GMat in;
cv::GMat out_blob = cv::gapi::infer<SemSegmNet>(in);
cv::GMat post_proc_out = custom::PostProcessing::on(in, out_blob);
cv::GMat blending_in = in * 0.3f;
cv::GMat blending_out = post_proc_out * 0.7f;
cv::GMat out = blending_in + blending_out;
cv::GStreamingCompiled pipeline = cv::GComputation(cv::GIn(in), cv::GOut(out))
.compileStreaming(cv::compile_args(kernels, networks));
auto inputs = cv::gin(cv::gapi::wip::make_src<cv::gapi::wip::GCaptureSource>(input));
// The execution part
pipeline.setSource(std::move(inputs));
cv::VideoWriter writer;
cv::TickMeter tm;
cv::Mat outMat;
std::size_t frames = 0u;
tm.start();
pipeline.start();
while (pipeline.pull(cv::gout(outMat))) {
++frames;
cv::imshow("Out", outMat);
cv::waitKey(1);
if (!output.empty()) {
if (!writer.isOpened()) {
const auto sz = cv::Size{outMat.cols, outMat.rows};
writer.open(output, cv::VideoWriter::fourcc('M','J','P','G'), 25.0, sz);
CV_Assert(writer.isOpened());
}
writer << outMat;
}
}
tm.stop();
std::cout << "Processed " << frames << " frames" << " (" << frames / tm.getTimeSec() << " FPS)" << std::endl;
return 0;
}