cameracv/libs/opencv/modules/ml/src/lr.cpp
2023-05-18 21:39:43 +03:00

604 lines
18 KiB
C++

// This file is part of OpenCV project.
// It is subject to the license terms in the LICENSE file found in the top-level directory
// of this distribution and at http://opencv.org/license.html.
//
// AUTHOR: Rahul Kavi rahulkavi[at]live[at]com
//
// This is a implementation of the Logistic Regression algorithm
//
#include "precomp.hpp"
using namespace std;
namespace cv {
namespace ml {
class LrParams
{
public:
LrParams()
{
alpha = 0.001;
num_iters = 1000;
norm = LogisticRegression::REG_L2;
train_method = LogisticRegression::BATCH;
mini_batch_size = 1;
term_crit = TermCriteria(TermCriteria::COUNT + TermCriteria::EPS, num_iters, alpha);
}
double alpha; //!< learning rate.
int num_iters; //!< number of iterations.
int norm;
int train_method;
int mini_batch_size;
TermCriteria term_crit;
};
class LogisticRegressionImpl CV_FINAL : public LogisticRegression
{
public:
LogisticRegressionImpl() { }
virtual ~LogisticRegressionImpl() {}
inline double getLearningRate() const CV_OVERRIDE { return params.alpha; }
inline void setLearningRate(double val) CV_OVERRIDE { params.alpha = val; }
inline int getIterations() const CV_OVERRIDE { return params.num_iters; }
inline void setIterations(int val) CV_OVERRIDE { params.num_iters = val; }
inline int getRegularization() const CV_OVERRIDE { return params.norm; }
inline void setRegularization(int val) CV_OVERRIDE { params.norm = val; }
inline int getTrainMethod() const CV_OVERRIDE { return params.train_method; }
inline void setTrainMethod(int val) CV_OVERRIDE { params.train_method = val; }
inline int getMiniBatchSize() const CV_OVERRIDE { return params.mini_batch_size; }
inline void setMiniBatchSize(int val) CV_OVERRIDE { params.mini_batch_size = val; }
inline TermCriteria getTermCriteria() const CV_OVERRIDE { return params.term_crit; }
inline void setTermCriteria(TermCriteria val) CV_OVERRIDE { params.term_crit = val; }
virtual bool train( const Ptr<TrainData>& trainData, int=0 ) CV_OVERRIDE;
virtual float predict(InputArray samples, OutputArray results, int flags=0) const CV_OVERRIDE;
virtual void clear() CV_OVERRIDE;
virtual void write(FileStorage& fs) const CV_OVERRIDE;
virtual void read(const FileNode& fn) CV_OVERRIDE;
virtual Mat get_learnt_thetas() const CV_OVERRIDE { return learnt_thetas; }
virtual int getVarCount() const CV_OVERRIDE { return learnt_thetas.cols; }
virtual bool isTrained() const CV_OVERRIDE { return !learnt_thetas.empty(); }
virtual bool isClassifier() const CV_OVERRIDE { return true; }
virtual String getDefaultName() const CV_OVERRIDE { return "opencv_ml_lr"; }
protected:
Mat calc_sigmoid(const Mat& data) const;
double compute_cost(const Mat& _data, const Mat& _labels, const Mat& _init_theta);
void compute_gradient(const Mat& _data, const Mat& _labels, const Mat &_theta, const double _lambda, Mat & _gradient );
Mat batch_gradient_descent(const Mat& _data, const Mat& _labels, const Mat& _init_theta);
Mat mini_batch_gradient_descent(const Mat& _data, const Mat& _labels, const Mat& _init_theta);
bool set_label_map(const Mat& _labels_i);
Mat remap_labels(const Mat& _labels_i, const map<int, int>& lmap) const;
protected:
LrParams params;
Mat learnt_thetas;
map<int, int> forward_mapper;
map<int, int> reverse_mapper;
Mat labels_o;
Mat labels_n;
};
Ptr<LogisticRegression> LogisticRegression::create()
{
return makePtr<LogisticRegressionImpl>();
}
Ptr<LogisticRegression> LogisticRegression::load(const String& filepath, const String& nodeName)
{
return Algorithm::load<LogisticRegression>(filepath, nodeName);
}
bool LogisticRegressionImpl::train(const Ptr<TrainData>& trainData, int)
{
CV_TRACE_FUNCTION_SKIP_NESTED();
CV_Assert(!trainData.empty());
// return value
bool ok = false;
clear();
Mat _data_i = trainData->getSamples();
Mat _labels_i = trainData->getResponses();
// check size and type of training data
CV_Assert( !_labels_i.empty() && !_data_i.empty());
if(_labels_i.cols != 1)
{
CV_Error( CV_StsBadArg, "labels should be a column matrix" );
}
if(_data_i.type() != CV_32FC1 || _labels_i.type() != CV_32FC1)
{
CV_Error( CV_StsBadArg, "data and labels must be a floating point matrix" );
}
if(_labels_i.rows != _data_i.rows)
{
CV_Error( CV_StsBadArg, "number of rows in data and labels should be equal" );
}
// class labels
set_label_map(_labels_i);
Mat labels_l = remap_labels(_labels_i, this->forward_mapper);
int num_classes = (int) this->forward_mapper.size();
if(num_classes < 2)
{
CV_Error( CV_StsBadArg, "data should have atleast 2 classes" );
}
// add a column of ones to the data (bias/intercept term)
Mat data_t;
hconcat( cv::Mat::ones( _data_i.rows, 1, CV_32F ), _data_i, data_t );
// coefficient matrix (zero-initialized)
Mat thetas;
Mat init_theta = Mat::zeros(data_t.cols, 1, CV_32F);
// fit the model (handles binary and multiclass cases)
Mat new_theta;
Mat labels;
if(num_classes == 2)
{
labels_l.convertTo(labels, CV_32F);
if(this->params.train_method == LogisticRegression::BATCH)
new_theta = batch_gradient_descent(data_t, labels, init_theta);
else
new_theta = mini_batch_gradient_descent(data_t, labels, init_theta);
thetas = new_theta.t();
}
else
{
/* take each class and rename classes you will get a theta per class
as in multi class class scenario, we will have n thetas for n classes */
thetas.create(num_classes, data_t.cols, CV_32F);
Mat labels_binary;
int ii = 0;
for(map<int,int>::iterator it = this->forward_mapper.begin(); it != this->forward_mapper.end(); ++it)
{
// one-vs-rest (OvR) scheme
labels_binary = (labels_l == it->second)/255;
labels_binary.convertTo(labels, CV_32F);
if(this->params.train_method == LogisticRegression::BATCH)
new_theta = batch_gradient_descent(data_t, labels, init_theta);
else
new_theta = mini_batch_gradient_descent(data_t, labels, init_theta);
hconcat(new_theta.t(), thetas.row(ii));
ii += 1;
}
}
// check that the estimates are stable and finite
this->learnt_thetas = thetas.clone();
if( cvIsNaN( (double)sum(this->learnt_thetas)[0] ) )
{
CV_Error( CV_StsBadArg, "check training parameters. Invalid training classifier" );
}
// success
ok = true;
return ok;
}
float LogisticRegressionImpl::predict(InputArray samples, OutputArray results, int flags) const
{
// check if learnt_mats array is populated
if(!this->isTrained())
{
CV_Error( CV_StsBadArg, "classifier should be trained first" );
}
// coefficient matrix
Mat thetas;
if ( learnt_thetas.type() == CV_32F )
{
thetas = learnt_thetas;
}
else
{
this->learnt_thetas.convertTo( thetas, CV_32F );
}
CV_Assert(thetas.rows > 0);
// data samples
Mat data = samples.getMat();
if(data.type() != CV_32F)
{
CV_Error( CV_StsBadArg, "data must be of floating type" );
}
// add a column of ones to the data (bias/intercept term)
Mat data_t;
hconcat( cv::Mat::ones( data.rows, 1, CV_32F ), data, data_t );
CV_Assert(data_t.cols == thetas.cols);
// predict class labels for samples (handles binary and multiclass cases)
Mat labels_c;
Mat pred_m;
Mat temp_pred;
if(thetas.rows == 1)
{
// apply sigmoid function
temp_pred = calc_sigmoid(data_t * thetas.t());
CV_Assert(temp_pred.cols==1);
pred_m = temp_pred.clone();
// if greater than 0.5, predict class 0 or predict class 1
temp_pred = (temp_pred > 0.5f) / 255;
temp_pred.convertTo(labels_c, CV_32S);
}
else
{
// apply sigmoid function
pred_m.create(data_t.rows, thetas.rows, data.type());
for(int i = 0; i < thetas.rows; i++)
{
temp_pred = calc_sigmoid(data_t * thetas.row(i).t());
vconcat(temp_pred, pred_m.col(i));
}
// predict class with the maximum output
Point max_loc;
Mat labels;
for(int i = 0; i < pred_m.rows; i++)
{
temp_pred = pred_m.row(i);
minMaxLoc( temp_pred, NULL, NULL, NULL, &max_loc );
labels.push_back(max_loc.x);
}
labels.convertTo(labels_c, CV_32S);
}
// return label of the predicted class. class names can be 1,2,3,...
Mat pred_labs = remap_labels(labels_c, this->reverse_mapper);
pred_labs.convertTo(pred_labs, CV_32S);
// return either the labels or the raw output
if ( results.needed() )
{
if ( flags & StatModel::RAW_OUTPUT )
{
pred_m.copyTo( results );
}
else
{
pred_labs.copyTo(results);
}
}
return ( pred_labs.empty() ? 0.f : static_cast<float>(pred_labs.at<int>(0)) );
}
Mat LogisticRegressionImpl::calc_sigmoid(const Mat& data) const
{
CV_TRACE_FUNCTION();
Mat dest;
exp(-data, dest);
return 1.0/(1.0+dest);
}
double LogisticRegressionImpl::compute_cost(const Mat& _data, const Mat& _labels, const Mat& _init_theta)
{
CV_TRACE_FUNCTION();
float llambda = 0; /*changed llambda from int to float to solve issue #7924*/
int m;
int n;
double cost = 0;
double rparameter = 0;
Mat theta_b;
Mat theta_c;
Mat d_a;
Mat d_b;
m = _data.rows;
n = _data.cols;
theta_b = _init_theta(Range(1, n), Range::all());
if (params.norm != REG_DISABLE)
{
llambda = 1;
}
if(this->params.norm == LogisticRegression::REG_L1)
{
rparameter = (llambda/(2*m)) * sum(theta_b)[0];
}
else
{
// assuming it to be L2 by default
multiply(theta_b, theta_b, theta_c, 1);
rparameter = (llambda/(2*m)) * sum(theta_c)[0];
}
d_a = calc_sigmoid(_data * _init_theta);
log(d_a, d_a);
multiply(d_a, _labels, d_a);
// use the fact that: log(1 - sigmoid(x)) = log(sigmoid(-x))
d_b = calc_sigmoid(- _data * _init_theta);
log(d_b, d_b);
multiply(d_b, 1-_labels, d_b);
cost = (-1.0/m) * (sum(d_a)[0] + sum(d_b)[0]);
cost = cost + rparameter;
if(cvIsNaN( cost ) == 1)
{
CV_Error( CV_StsBadArg, "check training parameters. Invalid training classifier" );
}
return cost;
}
struct LogisticRegressionImpl_ComputeDradient_Impl : ParallelLoopBody
{
const Mat* data;
const Mat* theta;
const Mat* pcal_a;
Mat* gradient;
double lambda;
LogisticRegressionImpl_ComputeDradient_Impl(const Mat& _data, const Mat &_theta, const Mat& _pcal_a, const double _lambda, Mat & _gradient)
: data(&_data)
, theta(&_theta)
, pcal_a(&_pcal_a)
, gradient(&_gradient)
, lambda(_lambda)
{
}
void operator()(const cv::Range& r) const CV_OVERRIDE
{
const Mat& _data = *data;
const Mat &_theta = *theta;
Mat & _gradient = *gradient;
const Mat & _pcal_a = *pcal_a;
const int m = _data.rows;
Mat pcal_ab;
for (int ii = r.start; ii<r.end; ii++)
{
Mat pcal_b = _data(Range::all(), Range(ii,ii+1));
multiply(_pcal_a, pcal_b, pcal_ab, 1);
_gradient.row(ii) = (1.0/m)*sum(pcal_ab)[0] + (lambda/m) * _theta.row(ii);
}
}
};
void LogisticRegressionImpl::compute_gradient(const Mat& _data, const Mat& _labels, const Mat &_theta, const double _lambda, Mat & _gradient )
{
CV_TRACE_FUNCTION();
const int m = _data.rows;
Mat pcal_a, pcal_b, pcal_ab;
const Mat z = _data * _theta;
CV_Assert( _gradient.rows == _theta.rows && _gradient.cols == _theta.cols );
pcal_a = calc_sigmoid(z) - _labels;
pcal_b = _data(Range::all(), Range(0,1));
multiply(pcal_a, pcal_b, pcal_ab, 1);
_gradient.row(0) = ((float)1/m) * sum(pcal_ab)[0];
//cout<<"for each training data entry"<<endl;
LogisticRegressionImpl_ComputeDradient_Impl invoker(_data, _theta, pcal_a, _lambda, _gradient);
cv::parallel_for_(cv::Range(1, _gradient.rows), invoker);
}
Mat LogisticRegressionImpl::batch_gradient_descent(const Mat& _data, const Mat& _labels, const Mat& _init_theta)
{
CV_TRACE_FUNCTION();
// implements batch gradient descent
if(this->params.alpha<=0)
{
CV_Error( CV_StsBadArg, "check training parameters (learning rate) for the classifier" );
}
if(this->params.num_iters <= 0)
{
CV_Error( CV_StsBadArg, "number of iterations cannot be zero or a negative number" );
}
int llambda = 0;
int m;
Mat theta_p = _init_theta.clone();
Mat gradient( theta_p.rows, theta_p.cols, theta_p.type() );
m = _data.rows;
if (params.norm != REG_DISABLE)
{
llambda = 1;
}
for(int i = 0;i<this->params.num_iters;i++)
{
// this seems to only be called to ensure that cost is not NaN
compute_cost(_data, _labels, theta_p);
compute_gradient( _data, _labels, theta_p, llambda, gradient );
theta_p = theta_p - ( static_cast<double>(this->params.alpha)/m)*gradient;
}
return theta_p;
}
Mat LogisticRegressionImpl::mini_batch_gradient_descent(const Mat& _data, const Mat& _labels, const Mat& _init_theta)
{
// implements batch gradient descent
int lambda_l = 0;
int m;
int j = 0;
int size_b = this->params.mini_batch_size;
if(this->params.mini_batch_size <= 0 || this->params.alpha == 0)
{
CV_Error( CV_StsBadArg, "check training parameters for the classifier" );
}
if(this->params.num_iters <= 0)
{
CV_Error( CV_StsBadArg, "number of iterations cannot be zero or a negative number" );
}
Mat theta_p = _init_theta.clone();
Mat gradient( theta_p.rows, theta_p.cols, theta_p.type() );
Mat data_d;
Mat labels_l;
if (params.norm != REG_DISABLE)
{
lambda_l = 1;
}
for(int i = 0;i<this->params.term_crit.maxCount;i++)
{
if(j+size_b<=_data.rows)
{
data_d = _data(Range(j,j+size_b), Range::all());
labels_l = _labels(Range(j,j+size_b),Range::all());
}
else
{
data_d = _data(Range(j, _data.rows), Range::all());
labels_l = _labels(Range(j, _labels.rows),Range::all());
}
m = data_d.rows;
// this seems to only be called to ensure that cost is not NaN
compute_cost(data_d, labels_l, theta_p);
compute_gradient(data_d, labels_l, theta_p, lambda_l, gradient);
theta_p = theta_p - ( static_cast<double>(this->params.alpha)/m)*gradient;
j += this->params.mini_batch_size;
// if parsed through all data variables
if (j >= _data.rows) {
j = 0;
}
}
return theta_p;
}
bool LogisticRegressionImpl::set_label_map(const Mat &_labels_i)
{
// this function creates two maps to map user defined labels to program friendly labels two ways.
int ii = 0;
Mat labels;
this->labels_o = Mat(0,1, CV_8U);
this->labels_n = Mat(0,1, CV_8U);
_labels_i.convertTo(labels, CV_32S);
for(int i = 0;i<labels.rows;i++)
{
this->forward_mapper[labels.at<int>(i)] += 1;
}
for(map<int,int>::iterator it = this->forward_mapper.begin(); it != this->forward_mapper.end(); ++it)
{
this->forward_mapper[it->first] = ii;
this->labels_o.push_back(it->first);
this->labels_n.push_back(ii);
ii += 1;
}
for(map<int,int>::iterator it = this->forward_mapper.begin(); it != this->forward_mapper.end(); ++it)
{
this->reverse_mapper[it->second] = it->first;
}
return true;
}
Mat LogisticRegressionImpl::remap_labels(const Mat& _labels_i, const map<int, int>& lmap) const
{
Mat labels;
_labels_i.convertTo(labels, CV_32S);
Mat new_labels = Mat::zeros(labels.rows, labels.cols, labels.type());
CV_Assert( !lmap.empty() );
for(int i =0;i<labels.rows;i++)
{
map<int, int>::const_iterator val = lmap.find(labels.at<int>(i,0));
CV_Assert(val != lmap.end());
new_labels.at<int>(i,0) = val->second;
}
return new_labels;
}
void LogisticRegressionImpl::clear()
{
this->learnt_thetas.release();
this->labels_o.release();
this->labels_n.release();
}
void LogisticRegressionImpl::write(FileStorage& fs) const
{
// check if open
if(fs.isOpened() == 0)
{
CV_Error(CV_StsBadArg,"file can't open. Check file path");
}
writeFormat(fs);
string desc = "Logistic Regression Classifier";
fs<<"classifier"<<desc.c_str();
fs<<"alpha"<<this->params.alpha;
fs<<"iterations"<<this->params.num_iters;
fs<<"norm"<<this->params.norm;
fs<<"train_method"<<this->params.train_method;
if(this->params.train_method == LogisticRegression::MINI_BATCH)
{
fs<<"mini_batch_size"<<this->params.mini_batch_size;
}
fs<<"learnt_thetas"<<this->learnt_thetas;
fs<<"n_labels"<<this->labels_n;
fs<<"o_labels"<<this->labels_o;
}
void LogisticRegressionImpl::read(const FileNode& fn)
{
// check if empty
if(fn.empty())
{
CV_Error( CV_StsBadArg, "empty FileNode object" );
}
this->params.alpha = (double)fn["alpha"];
this->params.num_iters = (int)fn["iterations"];
this->params.norm = (int)fn["norm"];
this->params.train_method = (int)fn["train_method"];
if(this->params.train_method == LogisticRegression::MINI_BATCH)
{
this->params.mini_batch_size = (int)fn["mini_batch_size"];
}
fn["learnt_thetas"] >> this->learnt_thetas;
fn["o_labels"] >> this->labels_o;
fn["n_labels"] >> this->labels_n;
for(int ii =0;ii<labels_o.rows;ii++)
{
this->forward_mapper[labels_o.at<int>(ii,0)] = labels_n.at<int>(ii,0);
this->reverse_mapper[labels_n.at<int>(ii,0)] = labels_o.at<int>(ii,0);
}
}
}
}
/* End of file. */