182 lines
6.2 KiB
C++
182 lines
6.2 KiB
C++
// This example provides a digital recognition based on LeNet-5 and connected component analysis.
|
|
// It makes it possible for OpenCV beginner to run dnn models in real time using only CPU.
|
|
// It can read pictures from the camera in real time to make predictions, and display the recognized digits as overlays on top of the original digits.
|
|
//
|
|
// In order to achieve a better display effect, please write the number on white paper and occupy the entire camera.
|
|
//
|
|
// You can follow the following guide to train LeNet-5 by yourself using the MNIST dataset.
|
|
// https://github.com/intel/caffe/blob/a3d5b022fe026e9092fc7abc7654b1162ab9940d/examples/mnist/readme.md
|
|
//
|
|
// You can also download already trained model directly.
|
|
// https://github.com/zihaomu/opencv_digit_text_recognition_demo/tree/master/src
|
|
|
|
|
|
#include <opencv2/imgproc.hpp>
|
|
#include <opencv2/highgui.hpp>
|
|
#include <opencv2/dnn.hpp>
|
|
|
|
#include <iostream>
|
|
#include <vector>
|
|
|
|
using namespace cv;
|
|
using namespace cv::dnn;
|
|
|
|
const char *keys =
|
|
"{ help h | | Print help message. }"
|
|
"{ input i | | Path to input image or video file. Skip this argument to capture frames from a camera.}"
|
|
"{ device | 0 | camera device number. }"
|
|
"{ modelBin | | Path to a binary .caffemodel file contains trained network.}"
|
|
"{ modelTxt | | Path to a .prototxt file contains the model definition of trained network.}"
|
|
"{ width | 640 | Set the width of the camera }"
|
|
"{ height | 480 | Set the height of the camera }"
|
|
"{ thr | 0.7 | Confidence threshold. }";
|
|
|
|
// Find best class for the blob (i.e. class with maximal probability)
|
|
static void getMaxClass(const Mat &probBlob, int &classId, double &classProb);
|
|
|
|
void predictor(Net net, const Mat &roi, int &class_id, double &probability);
|
|
|
|
int main(int argc, char **argv)
|
|
{
|
|
// Parse command line arguments.
|
|
CommandLineParser parser(argc, argv, keys);
|
|
|
|
if (argc == 1 || parser.has("help"))
|
|
{
|
|
parser.printMessage();
|
|
return 0;
|
|
}
|
|
|
|
int vWidth = parser.get<int>("width");
|
|
int vHeight = parser.get<int>("height");
|
|
float confThreshold = parser.get<float>("thr");
|
|
std::string modelTxt = parser.get<String>("modelTxt");
|
|
std::string modelBin = parser.get<String>("modelBin");
|
|
|
|
Net net;
|
|
try
|
|
{
|
|
net = readNet(modelTxt, modelBin);
|
|
}
|
|
catch (cv::Exception &ee)
|
|
{
|
|
std::cerr << "Exception: " << ee.what() << std::endl;
|
|
std::cout << "Can't load the network by using the flowing files:" << std::endl;
|
|
std::cout << "modelTxt: " << modelTxt << std::endl;
|
|
std::cout << "modelBin: " << modelBin << std::endl;
|
|
return 1;
|
|
}
|
|
|
|
const std::string resultWinName = "Please write the number on white paper and occupy the entire camera.";
|
|
const std::string preWinName = "Preprocessing";
|
|
|
|
namedWindow(preWinName, WINDOW_AUTOSIZE);
|
|
namedWindow(resultWinName, WINDOW_AUTOSIZE);
|
|
|
|
Mat labels, stats, centroids;
|
|
Point position;
|
|
|
|
Rect getRectangle;
|
|
bool ifDrawingBox = false;
|
|
|
|
int classId = 0;
|
|
double probability = 0;
|
|
|
|
Rect basicRect = Rect(0, 0, vWidth, vHeight);
|
|
Mat rawImage;
|
|
|
|
double fps = 0;
|
|
|
|
// Open a video file or an image file or a camera stream.
|
|
VideoCapture cap;
|
|
if (parser.has("input"))
|
|
cap.open(parser.get<String>("input"));
|
|
else
|
|
cap.open(parser.get<int>("device"));
|
|
|
|
TickMeter tm;
|
|
|
|
while (waitKey(1) < 0)
|
|
{
|
|
cap >> rawImage;
|
|
if (rawImage.empty())
|
|
{
|
|
waitKey();
|
|
break;
|
|
}
|
|
|
|
tm.reset();
|
|
tm.start();
|
|
|
|
Mat image = rawImage.clone();
|
|
// Image preprocessing
|
|
cvtColor(image, image, COLOR_BGR2GRAY);
|
|
GaussianBlur(image, image, Size(3, 3), 2, 2);
|
|
adaptiveThreshold(image, image, 255, ADAPTIVE_THRESH_MEAN_C, THRESH_BINARY, 25, 10);
|
|
bitwise_not(image, image);
|
|
|
|
Mat element = getStructuringElement(MORPH_RECT, Size(3, 3), Point(-1,-1));
|
|
dilate(image, image, element, Point(-1,-1), 1);
|
|
// Find connected component
|
|
int nccomps = cv::connectedComponentsWithStats(image, labels, stats, centroids);
|
|
|
|
for (int i = 1; i < nccomps; i++)
|
|
{
|
|
ifDrawingBox = false;
|
|
|
|
// Extend the bounding box of connected component for easier recognition
|
|
if (stats.at<int>(i - 1, CC_STAT_AREA) > 80 && stats.at<int>(i - 1, CC_STAT_AREA) < 3000)
|
|
{
|
|
ifDrawingBox = true;
|
|
int left = stats.at<int>(i - 1, CC_STAT_HEIGHT) / 4;
|
|
getRectangle = Rect(stats.at<int>(i - 1, CC_STAT_LEFT) - left, stats.at<int>(i - 1, CC_STAT_TOP) - left, stats.at<int>(i - 1, CC_STAT_WIDTH) + 2 * left, stats.at<int>(i - 1, CC_STAT_HEIGHT) + 2 * left);
|
|
getRectangle &= basicRect;
|
|
}
|
|
|
|
if (ifDrawingBox && !getRectangle.empty())
|
|
{
|
|
Mat roi = image(getRectangle);
|
|
predictor(net, roi, classId, probability);
|
|
|
|
if (probability < confThreshold)
|
|
continue;
|
|
|
|
rectangle(rawImage, getRectangle, Scalar(128, 255, 128), 2);
|
|
|
|
position = Point(getRectangle.br().x - 7, getRectangle.br().y + 25);
|
|
putText(rawImage, std::to_string(classId), position, 3, 1.0, Scalar(128, 128, 255), 2);
|
|
}
|
|
}
|
|
|
|
tm.stop();
|
|
fps = 1 / tm.getTimeSec();
|
|
std::string fpsString = format("Inference FPS: %.2f.", fps);
|
|
putText(rawImage, fpsString, Point(5, 20), FONT_HERSHEY_SIMPLEX, 0.6, Scalar(128, 255, 128));
|
|
|
|
imshow(resultWinName, rawImage);
|
|
imshow(preWinName, image);
|
|
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static void getMaxClass(const Mat &probBlob, int &classId, double &classProb)
|
|
{
|
|
Mat probMat = probBlob.reshape(1, 1);
|
|
Point classNumber;
|
|
minMaxLoc(probMat, NULL, &classProb, NULL, &classNumber);
|
|
classId = classNumber.x;
|
|
}
|
|
|
|
void predictor(Net net, const Mat &roi, int &classId, double &probability)
|
|
{
|
|
Mat pred;
|
|
// Convert Mat to batch of images
|
|
Mat inputBlob = dnn::blobFromImage(roi, 1.0, Size(28, 28));
|
|
// Set the network input
|
|
net.setInput(inputBlob);
|
|
// Compute output
|
|
pred = net.forward();
|
|
getMaxClass(pred, classId, probability);
|
|
}
|