198 lines
6.2 KiB
Python
Executable file
198 lines
6.2 KiB
Python
Executable file
#!/usr/bin/env python
|
|
|
|
'''
|
|
MOSSE tracking sample
|
|
|
|
This sample implements correlation-based tracking approach, described in [1].
|
|
|
|
Usage:
|
|
mosse.py [--pause] [<video source>]
|
|
|
|
--pause - Start with playback paused at the first video frame.
|
|
Useful for tracking target selection.
|
|
|
|
Draw rectangles around objects with a mouse to track them.
|
|
|
|
Keys:
|
|
SPACE - pause video
|
|
c - clear targets
|
|
|
|
[1] David S. Bolme et al. "Visual Object Tracking using Adaptive Correlation Filters"
|
|
http://www.cs.colostate.edu/~draper/papers/bolme_cvpr10.pdf
|
|
'''
|
|
|
|
# Python 2/3 compatibility
|
|
from __future__ import print_function
|
|
import sys
|
|
PY3 = sys.version_info[0] == 3
|
|
|
|
if PY3:
|
|
xrange = range
|
|
|
|
import numpy as np
|
|
import cv2 as cv
|
|
from common import draw_str, RectSelector
|
|
import video
|
|
|
|
def rnd_warp(a):
|
|
h, w = a.shape[:2]
|
|
T = np.zeros((2, 3))
|
|
coef = 0.2
|
|
ang = (np.random.rand()-0.5)*coef
|
|
c, s = np.cos(ang), np.sin(ang)
|
|
T[:2, :2] = [[c,-s], [s, c]]
|
|
T[:2, :2] += (np.random.rand(2, 2) - 0.5)*coef
|
|
c = (w/2, h/2)
|
|
T[:,2] = c - np.dot(T[:2, :2], c)
|
|
return cv.warpAffine(a, T, (w, h), borderMode = cv.BORDER_REFLECT)
|
|
|
|
def divSpec(A, B):
|
|
Ar, Ai = A[...,0], A[...,1]
|
|
Br, Bi = B[...,0], B[...,1]
|
|
C = (Ar+1j*Ai)/(Br+1j*Bi)
|
|
C = np.dstack([np.real(C), np.imag(C)]).copy()
|
|
return C
|
|
|
|
eps = 1e-5
|
|
|
|
class MOSSE:
|
|
def __init__(self, frame, rect):
|
|
x1, y1, x2, y2 = rect
|
|
w, h = map(cv.getOptimalDFTSize, [x2-x1, y2-y1])
|
|
x1, y1 = (x1+x2-w)//2, (y1+y2-h)//2
|
|
self.pos = x, y = x1+0.5*(w-1), y1+0.5*(h-1)
|
|
self.size = w, h
|
|
img = cv.getRectSubPix(frame, (w, h), (x, y))
|
|
|
|
self.win = cv.createHanningWindow((w, h), cv.CV_32F)
|
|
g = np.zeros((h, w), np.float32)
|
|
g[h//2, w//2] = 1
|
|
g = cv.GaussianBlur(g, (-1, -1), 2.0)
|
|
g /= g.max()
|
|
|
|
self.G = cv.dft(g, flags=cv.DFT_COMPLEX_OUTPUT)
|
|
self.H1 = np.zeros_like(self.G)
|
|
self.H2 = np.zeros_like(self.G)
|
|
for _i in xrange(128):
|
|
a = self.preprocess(rnd_warp(img))
|
|
A = cv.dft(a, flags=cv.DFT_COMPLEX_OUTPUT)
|
|
self.H1 += cv.mulSpectrums(self.G, A, 0, conjB=True)
|
|
self.H2 += cv.mulSpectrums( A, A, 0, conjB=True)
|
|
self.update_kernel()
|
|
self.update(frame)
|
|
|
|
def update(self, frame, rate = 0.125):
|
|
(x, y), (w, h) = self.pos, self.size
|
|
self.last_img = img = cv.getRectSubPix(frame, (w, h), (x, y))
|
|
img = self.preprocess(img)
|
|
self.last_resp, (dx, dy), self.psr = self.correlate(img)
|
|
self.good = self.psr > 8.0
|
|
if not self.good:
|
|
return
|
|
|
|
self.pos = x+dx, y+dy
|
|
self.last_img = img = cv.getRectSubPix(frame, (w, h), self.pos)
|
|
img = self.preprocess(img)
|
|
|
|
A = cv.dft(img, flags=cv.DFT_COMPLEX_OUTPUT)
|
|
H1 = cv.mulSpectrums(self.G, A, 0, conjB=True)
|
|
H2 = cv.mulSpectrums( A, A, 0, conjB=True)
|
|
self.H1 = self.H1 * (1.0-rate) + H1 * rate
|
|
self.H2 = self.H2 * (1.0-rate) + H2 * rate
|
|
self.update_kernel()
|
|
|
|
@property
|
|
def state_vis(self):
|
|
f = cv.idft(self.H, flags=cv.DFT_SCALE | cv.DFT_REAL_OUTPUT )
|
|
h, w = f.shape
|
|
f = np.roll(f, -h//2, 0)
|
|
f = np.roll(f, -w//2, 1)
|
|
kernel = np.uint8( (f-f.min()) / f.ptp()*255 )
|
|
resp = self.last_resp
|
|
resp = np.uint8(np.clip(resp/resp.max(), 0, 1)*255)
|
|
vis = np.hstack([self.last_img, kernel, resp])
|
|
return vis
|
|
|
|
def draw_state(self, vis):
|
|
(x, y), (w, h) = self.pos, self.size
|
|
x1, y1, x2, y2 = int(x-0.5*w), int(y-0.5*h), int(x+0.5*w), int(y+0.5*h)
|
|
cv.rectangle(vis, (x1, y1), (x2, y2), (0, 0, 255))
|
|
if self.good:
|
|
cv.circle(vis, (int(x), int(y)), 2, (0, 0, 255), -1)
|
|
else:
|
|
cv.line(vis, (x1, y1), (x2, y2), (0, 0, 255))
|
|
cv.line(vis, (x2, y1), (x1, y2), (0, 0, 255))
|
|
draw_str(vis, (x1, y2+16), 'PSR: %.2f' % self.psr)
|
|
|
|
def preprocess(self, img):
|
|
img = np.log(np.float32(img)+1.0)
|
|
img = (img-img.mean()) / (img.std()+eps)
|
|
return img*self.win
|
|
|
|
def correlate(self, img):
|
|
C = cv.mulSpectrums(cv.dft(img, flags=cv.DFT_COMPLEX_OUTPUT), self.H, 0, conjB=True)
|
|
resp = cv.idft(C, flags=cv.DFT_SCALE | cv.DFT_REAL_OUTPUT)
|
|
h, w = resp.shape
|
|
_, mval, _, (mx, my) = cv.minMaxLoc(resp)
|
|
side_resp = resp.copy()
|
|
cv.rectangle(side_resp, (mx-5, my-5), (mx+5, my+5), 0, -1)
|
|
smean, sstd = side_resp.mean(), side_resp.std()
|
|
psr = (mval-smean) / (sstd+eps)
|
|
return resp, (mx-w//2, my-h//2), psr
|
|
|
|
def update_kernel(self):
|
|
self.H = divSpec(self.H1, self.H2)
|
|
self.H[...,1] *= -1
|
|
|
|
class App:
|
|
def __init__(self, video_src, paused = False):
|
|
self.cap = video.create_capture(video_src)
|
|
_, self.frame = self.cap.read()
|
|
cv.imshow('frame', self.frame)
|
|
self.rect_sel = RectSelector('frame', self.onrect)
|
|
self.trackers = []
|
|
self.paused = paused
|
|
|
|
def onrect(self, rect):
|
|
frame_gray = cv.cvtColor(self.frame, cv.COLOR_BGR2GRAY)
|
|
tracker = MOSSE(frame_gray, rect)
|
|
self.trackers.append(tracker)
|
|
|
|
def run(self):
|
|
while True:
|
|
if not self.paused:
|
|
ret, self.frame = self.cap.read()
|
|
if not ret:
|
|
break
|
|
frame_gray = cv.cvtColor(self.frame, cv.COLOR_BGR2GRAY)
|
|
for tracker in self.trackers:
|
|
tracker.update(frame_gray)
|
|
|
|
vis = self.frame.copy()
|
|
for tracker in self.trackers:
|
|
tracker.draw_state(vis)
|
|
if len(self.trackers) > 0:
|
|
cv.imshow('tracker state', self.trackers[-1].state_vis)
|
|
self.rect_sel.draw(vis)
|
|
|
|
cv.imshow('frame', vis)
|
|
ch = cv.waitKey(10)
|
|
if ch == 27:
|
|
break
|
|
if ch == ord(' '):
|
|
self.paused = not self.paused
|
|
if ch == ord('c'):
|
|
self.trackers = []
|
|
|
|
|
|
if __name__ == '__main__':
|
|
print (__doc__)
|
|
import sys, getopt
|
|
opts, args = getopt.getopt(sys.argv[1:], '', ['pause'])
|
|
opts = dict(opts)
|
|
try:
|
|
video_src = args[0]
|
|
except:
|
|
video_src = '0'
|
|
|
|
App(video_src, paused = '--pause' in opts).run()
|