cameracv/libs/opencv/modules/imgcodecs/test/test_exr.impl.hpp

309 lines
10 KiB
C++
Raw Normal View History

2023-05-18 21:39:43 +03:00
// This file is part of OpenCV project.
// It is subject to the license terms in the LICENSE file found in the top-level directory
// of this distribution and at http://opencv.org/license.html
//#define GENERATE_DATA
namespace opencv_test { namespace {
size_t getFileSize(const string& filename)
{
std::ifstream ifs(filename.c_str(), std::ios::in | std::ios::binary);
if (ifs.is_open())
{
ifs.seekg(0, std::ios::end);
return (size_t)ifs.tellg();
}
return 0;
}
TEST(Imgcodecs_EXR, readWrite_32FC1)
{ // Y channels
const string root = cvtest::TS::ptr()->get_data_path();
const string filenameInput = root + "readwrite/test32FC1.exr";
const string filenameOutput = cv::tempfile(".exr");
#ifndef GENERATE_DATA
const Mat img = cv::imread(filenameInput, IMREAD_UNCHANGED);
#else
const Size sz(64, 32);
Mat img(sz, CV_32FC1, Scalar(0.5, 0.1, 1));
img(Rect(10, 5, sz.width - 30, sz.height - 20)).setTo(Scalar(1, 0, 0));
ASSERT_TRUE(cv::imwrite(filenameInput, img));
#endif
ASSERT_FALSE(img.empty());
ASSERT_EQ(CV_32FC1,img.type());
ASSERT_TRUE(cv::imwrite(filenameOutput, img));
// Check generated file size to ensure that it's compressed with proper options
ASSERT_EQ(396u, getFileSize(filenameOutput));
const Mat img2 = cv::imread(filenameOutput, IMREAD_UNCHANGED);
ASSERT_EQ(img2.type(), img.type());
ASSERT_EQ(img2.size(), img.size());
EXPECT_LE(cvtest::norm(img, img2, NORM_INF | NORM_RELATIVE), 1e-3);
EXPECT_EQ(0, remove(filenameOutput.c_str()));
}
TEST(Imgcodecs_EXR, readWrite_32FC3)
{ // RGB channels
const string root = cvtest::TS::ptr()->get_data_path();
const string filenameInput = root + "readwrite/test32FC3.exr";
const string filenameOutput = cv::tempfile(".exr");
#ifndef GENERATE_DATA
const Mat img = cv::imread(filenameInput, IMREAD_UNCHANGED);
#else
const Size sz(64, 32);
Mat img(sz, CV_32FC3, Scalar(0.5, 0.1, 1));
img(Rect(10, 5, sz.width - 30, sz.height - 20)).setTo(Scalar(1, 0, 0));
ASSERT_TRUE(cv::imwrite(filenameInput, img));
#endif
ASSERT_FALSE(img.empty());
ASSERT_EQ(CV_32FC3, img.type());
ASSERT_TRUE(cv::imwrite(filenameOutput, img));
const Mat img2 = cv::imread(filenameOutput, IMREAD_UNCHANGED);
ASSERT_EQ(img2.type(), img.type());
ASSERT_EQ(img2.size(), img.size());
EXPECT_LE(cvtest::norm(img, img2, NORM_INF | NORM_RELATIVE), 1e-3);
EXPECT_EQ(0, remove(filenameOutput.c_str()));
}
TEST(Imgcodecs_EXR, readWrite_32FC1_half)
{
const string root = cvtest::TS::ptr()->get_data_path();
const string filenameInput = root + "readwrite/test32FC1_half.exr";
const string filenameOutput = cv::tempfile(".exr");
std::vector<int> params;
params.push_back(IMWRITE_EXR_TYPE);
params.push_back(IMWRITE_EXR_TYPE_HALF);
#ifndef GENERATE_DATA
const Mat img = cv::imread(filenameInput, IMREAD_UNCHANGED);
#else
const Size sz(64, 32);
Mat img(sz, CV_32FC1, Scalar(0.5, 0.1, 1));
img(Rect(10, 5, sz.width - 30, sz.height - 20)).setTo(Scalar(1, 0, 0));
ASSERT_TRUE(cv::imwrite(filenameInput, img, params));
#endif
ASSERT_FALSE(img.empty());
ASSERT_EQ(CV_32FC1,img.type());
ASSERT_TRUE(cv::imwrite(filenameOutput, img, params));
const Mat img2 = cv::imread(filenameOutput, IMREAD_UNCHANGED);
ASSERT_EQ(img2.type(), img.type());
ASSERT_EQ(img2.size(), img.size());
EXPECT_LE(cvtest::norm(img, img2, NORM_INF | NORM_RELATIVE), 1e-3);
EXPECT_EQ(0, remove(filenameOutput.c_str()));
}
TEST(Imgcodecs_EXR, readWrite_32FC3_half)
{
const string root = cvtest::TS::ptr()->get_data_path();
const string filenameInput = root + "readwrite/test32FC3_half.exr";
const string filenameOutput = cv::tempfile(".exr");
std::vector<int> params;
params.push_back(IMWRITE_EXR_TYPE);
params.push_back(IMWRITE_EXR_TYPE_HALF);
#ifndef GENERATE_DATA
const Mat img = cv::imread(filenameInput, IMREAD_UNCHANGED);
#else
const Size sz(64, 32);
Mat img(sz, CV_32FC3, Scalar(0.5, 0.1, 1));
img(Rect(10, 5, sz.width - 30, sz.height - 20)).setTo(Scalar(1, 0, 0));
ASSERT_TRUE(cv::imwrite(filenameInput, img, params));
#endif
ASSERT_FALSE(img.empty());
ASSERT_EQ(CV_32FC3, img.type());
ASSERT_TRUE(cv::imwrite(filenameOutput, img, params));
const Mat img2 = cv::imread(filenameOutput, IMREAD_UNCHANGED);
ASSERT_EQ(img2.type(), img.type());
ASSERT_EQ(img2.size(), img.size());
EXPECT_LE(cvtest::norm(img, img2, NORM_INF | NORM_RELATIVE), 1e-3);
EXPECT_EQ(0, remove(filenameOutput.c_str()));
}
TEST(Imgcodecs_EXR, readWrite_32FC1_PIZ)
{
const string root = cvtest::TS::ptr()->get_data_path();
const string filenameInput = root + "readwrite/test32FC1.exr";
const string filenameOutput = cv::tempfile(".exr");
const Mat img = cv::imread(filenameInput, IMREAD_UNCHANGED);
ASSERT_FALSE(img.empty());
ASSERT_EQ(CV_32FC1, img.type());
std::vector<int> params;
params.push_back(IMWRITE_EXR_COMPRESSION);
params.push_back(IMWRITE_EXR_COMPRESSION_PIZ);
ASSERT_TRUE(cv::imwrite(filenameOutput, img, params));
// Check generated file size to ensure that it's compressed with proper options
ASSERT_EQ(849u, getFileSize(filenameOutput));
const Mat img2 = cv::imread(filenameOutput, IMREAD_UNCHANGED);
ASSERT_EQ(img2.type(), img.type());
ASSERT_EQ(img2.size(), img.size());
EXPECT_LE(cvtest::norm(img, img2, NORM_INF | NORM_RELATIVE), 1e-3);
EXPECT_EQ(0, remove(filenameOutput.c_str()));
}
// Note: YC to GRAYSCALE (IMREAD_GRAYSCALE | IMREAD_ANYDEPTH)
// outputs a black image,
// as does Y to RGB (IMREAD_COLOR | IMREAD_ANYDEPTH).
// This behavoir predates adding EXR alpha support issue
// 16115.
TEST(Imgcodecs_EXR, read_YA_ignore_alpha)
{
const string root = cvtest::TS::ptr()->get_data_path();
const string filenameInput = root + "readwrite/test_YA.exr";
const Mat img = cv::imread(filenameInput, IMREAD_GRAYSCALE | IMREAD_ANYDEPTH);
ASSERT_FALSE(img.empty());
ASSERT_EQ(CV_32FC1, img.type());
// Writing Y covered by test 32FC1
}
TEST(Imgcodecs_EXR, read_YA_unchanged)
{
const string root = cvtest::TS::ptr()->get_data_path();
const string filenameInput = root + "readwrite/test_YA.exr";
const Mat img = cv::imread(filenameInput, IMREAD_UNCHANGED);
ASSERT_FALSE(img.empty());
ASSERT_EQ(CV_32FC2, img.type());
// Cannot test writing, 2 channel writing not suppported by loadsave
}
TEST(Imgcodecs_EXR, read_YC_changeDepth)
{
const string root = cvtest::TS::ptr()->get_data_path();
const string filenameInput = root + "readwrite/test_YRYBY.exr";
const Mat img = cv::imread(filenameInput, IMREAD_COLOR);
ASSERT_FALSE(img.empty());
ASSERT_EQ(CV_8UC3, img.type());
// Cannot test writing, EXR encoder doesn't support 8U depth
}
TEST(Imgcodecs_EXR, readwrite_YCA_ignore_alpha)
{
const string root = cvtest::TS::ptr()->get_data_path();
const string filenameInput = root + "readwrite/test_YRYBYA.exr";
const string filenameOutput = cv::tempfile(".exr");
const Mat img = cv::imread(filenameInput, IMREAD_COLOR | IMREAD_ANYDEPTH);
ASSERT_FALSE(img.empty());
ASSERT_EQ(CV_32FC3, img.type());
ASSERT_TRUE(cv::imwrite(filenameOutput, img));
const Mat img2 = cv::imread(filenameOutput, IMREAD_UNCHANGED);
ASSERT_EQ(img2.type(), img.type());
ASSERT_EQ(img2.size(), img.size());
EXPECT_LE(cvtest::norm(img, img2, NORM_INF | NORM_RELATIVE), 1e-3);
EXPECT_EQ(0, remove(filenameOutput.c_str()));
}
TEST(Imgcodecs_EXR, read_YC_unchanged)
{
const string root = cvtest::TS::ptr()->get_data_path();
const string filenameInput = root + "readwrite/test_YRYBY.exr";
const Mat img = cv::imread(filenameInput, IMREAD_UNCHANGED);
ASSERT_FALSE(img.empty());
ASSERT_EQ(CV_32FC3, img.type());
// Writing YC covered by test readwrite_YCA_ignore_alpha
}
TEST(Imgcodecs_EXR, readwrite_YCA_unchanged)
{
const string root = cvtest::TS::ptr()->get_data_path();
const string filenameInput = root + "readwrite/test_YRYBYA.exr";
const string filenameOutput = cv::tempfile(".exr");
const Mat img = cv::imread(filenameInput, IMREAD_UNCHANGED);
ASSERT_FALSE(img.empty());
ASSERT_EQ(CV_32FC4, img.type());
ASSERT_TRUE(cv::imwrite(filenameOutput, img));
const Mat img2 = cv::imread(filenameOutput, IMREAD_UNCHANGED);
ASSERT_EQ(img2.type(), img.type());
ASSERT_EQ(img2.size(), img.size());
EXPECT_LE(cvtest::norm(img, img2, NORM_INF | NORM_RELATIVE), 1e-3);
EXPECT_EQ(0, remove(filenameOutput.c_str()));
}
TEST(Imgcodecs_EXR, readwrite_RGBA_togreyscale)
{
const string root = cvtest::TS::ptr()->get_data_path();
const string filenameInput = root + "readwrite/test_GeneratedRGBA.exr";
const string filenameOutput = cv::tempfile(".exr");
const Mat img = cv::imread(filenameInput, IMREAD_GRAYSCALE | IMREAD_ANYDEPTH);
ASSERT_FALSE(img.empty());
ASSERT_EQ(CV_32FC1, img.type());
ASSERT_TRUE(cv::imwrite(filenameOutput, img));
const Mat img2 = cv::imread(filenameOutput, IMREAD_UNCHANGED);
ASSERT_EQ(img2.type(), img.type());
ASSERT_EQ(img2.size(), img.size());
EXPECT_LE(cvtest::norm(img, img2, NORM_INF | NORM_RELATIVE), 1e-3);
EXPECT_EQ(0, remove(filenameOutput.c_str()));
}
TEST(Imgcodecs_EXR, read_RGBA_ignore_alpha)
{
const string root = cvtest::TS::ptr()->get_data_path();
const string filenameInput = root + "readwrite/test_GeneratedRGBA.exr";
const Mat img = cv::imread(filenameInput, IMREAD_COLOR | IMREAD_ANYDEPTH);
ASSERT_FALSE(img.empty());
ASSERT_EQ(CV_32FC3, img.type());
// Writing RGB covered by test 32FC3
}
TEST(Imgcodecs_EXR, read_RGBA_unchanged)
{
const string root = cvtest::TS::ptr()->get_data_path();
const string filenameInput = root + "readwrite/test_GeneratedRGBA.exr";
const string filenameOutput = cv::tempfile(".exr");
#ifndef GENERATE_DATA
const Mat img = cv::imread(filenameInput, IMREAD_UNCHANGED);
#else
const Size sz(64, 32);
Mat img(sz, CV_32FC4, Scalar(0.5, 0.1, 1, 1));
img(Rect(10, 5, sz.width - 30, sz.height - 20)).setTo(Scalar(1, 0, 0, 1));
img(Rect(10, 20, sz.width - 30, sz.height - 20)).setTo(Scalar(1, 1, 0, 0));
ASSERT_TRUE(cv::imwrite(filenameInput, img));
#endif
ASSERT_FALSE(img.empty());
ASSERT_EQ(CV_32FC4, img.type());
ASSERT_TRUE(cv::imwrite(filenameOutput, img));
const Mat img2 = cv::imread(filenameOutput, IMREAD_UNCHANGED);
ASSERT_EQ(img2.type(), img.type());
ASSERT_EQ(img2.size(), img.size());
EXPECT_LE(cvtest::norm(img, img2, NORM_INF | NORM_RELATIVE), 1e-3);
EXPECT_EQ(0, remove(filenameOutput.c_str()));
}
}} // namespace